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Mass-driven vortex collisions in flat superfluids
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Quantum vortices are often endowed with an effective inertial mass, due, for example, to massive particles in
their cores. Such “massive vortices” display new phenomena beyond the standard picture of superfluid vortex
dynamics, where mass is neglected. In this work, we demonstrate that massive vortices are allowed to collide, as
opposed to their massless counterparts. We propose a scheme to generate controllable, repeatable, deterministic
collisional events in pairs of quantum vortices. We demonstrate two mass-driven fundamental processes:
(i) the annihilation of two counter-rotating vortices and (ii) the merging of two corotating vortices, thus pointing
out new mechanisms supporting incompressible-to-compressible kinetic-energy conversion, as well as doubly
quantized vortex stabilization in flat superfluids.
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I. INTRODUCTION

Quantum vortices are topological excitations characterized
by the quantized circulation of the velocity field. Their ap-
pearance in a rotating system represents the “smoking gun”
of superfluidity, since they are the most direct consequence of
the existence of a macroscopic wave function associated with
the superfluid [1]. They are observed in contexts as diverse
as liquid helium [2,3], ultracold gases [4–6], superconductors
[7], and quantum fluids of lights in nonlinear optical sys-
tems [8]. Their existence has been also speculated in neutron
matter [9,10]. The vortex motion is responsible for the on-
set of dissipative phenomena [7,11], while the unbinding of
vortex-antivortex pairs constitutes the ultimate mechanism de-
stroying the quasi-long-range coherence in a two-dimensional
(2D) system [12,13].

Vortices are often pictured as funnel-like holes, where the
superfluid density goes to zero and around which the quantum
fluid exhibits a swirling flow. However, in many physical
systems, vortex cores are not simply empty, but turn out to
be filled by other particles, following different mechanisms.
Such filling particles can be thermal atoms which coexist with
the superfluid fraction [3,14], quasiparticle bound states [11],
atoms deliberately introduced to better trace vortex trajecto-
ries [15,16], or atoms of a different quantum fluid [17–24].
Irrespective of their microscopic origin, atoms trapped within
vortex cores have a deep influence on the vortex dynamics.

In two-dimensional (2D) systems, vortices can be seen
for many purposes as point-like objects whose dynamics is
described by an effective Lagrangian. The number q charac-
terizing the quantized circulation is refereed to as the “charge”
of the vortex. If the core is empty, the dynamics does not
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contain any inertial term, and the equations of motion are of
first order and dominated by the so-called Magnus force. The
presence of a dressed core, however, makes the vortex massive
and calls for the inclusion of inertial terms.

The need for the inclusion of a mass term in the dynamics
of vortex-like structures (skyrmions) was discussed in the con-
text of magnets more than 30 years ago [25,26] (see Ref. [27]
and references therein for a recent discussion). Although the
physical origin of the mass can be rather different from what
is discussed here, its effect on the skyrmion dynamics is the
same. Around 10 years ago, an inertial term was discussed
by Turner [28], studying polar-core vortices in the easy-plane
phase of spin-1 condensates. A Lagrangian formulation and
the comparison with numerical simulations of the full Gross–
Pitaevskii equation (GPE) describing the gas can be found in
Ref. [29]. Recently it was shown [20,21,30] that the inertial
term in the particle-like description of vortices arises naturally
in highly unbalanced Bose-Bose mixtures, where the majority
component hosts a vortex, whose core is filled by the minority
one. This provided a clear interpretation of the rise of the vor-
tex mass as due to the dynamics of the minority component.

In this work, we show that, even in the absence of dissipa-
tion mechanisms ensuing, e.g., from the interaction with the
thermal component, the presence of massive particles trapped
within vortex cores opens the door to a new class of phe-
nomena, when more than a single vortex is considered. While
massless vortices can only interact at a distance, without get-
ting too close one to each other [31,32], we find that massive
vortices can actually collide and merge or annihilate, depend-
ing on their charge. We focus on two fundamental classes of
two-vortex collisions: the collision of vortices with opposite
or equal circulation. In the former case, the collision results
in their mutual annihilation and in the consequent emission
of sound waves. In the latter case, the collision of two singly
quantized (q1 = q2 = ±1) vortices results in the formation of
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a doubly quantized vortex q = ±2, a seemingly unstable state
[33–36], which is instead stabilized by the presence of core
mass, which, in turn, plays the role of an effective pinning
potential [37]. We focus on the specific case of vortices in the
majority component of a strongly unbalanced quasi-2D BEC
mixture. We propose a realistic experimental protocol, where
two-vortex collisions can be observed in a controlled fashion
thanks to a component-selective potential.

II. THEORETICAL MODEL

We consider an atomic Bose-Bose mixture formed by Na

atoms of species a and Nb atoms of species b whose atomic
masses are ma and mb, respectively. The mixture is strongly
confined in the z direction by a harmonic potential charac-
terized by an oscillator length dz, such that the atomic motion
along z is frozen. At zero temperature, the gas realizes a binary
BEC, characterized by the order parameters ψa and ψb. Their
dynamics obeys the coupled GPEs [38]

ih̄
∂ψi

∂t
=

⎛
⎝− h̄2∇2

2mi
+ V i

tr +
∑
j=a,b

gi jNj |ψ j |2
⎞
⎠ψi, i = a, b,

(1)
where the quasi-2D couplings gi j = √

2π h̄2ai j/(mi jdz ) are
given by intra- and interspecies s-wave scattering lengths ai j ,
and effective masses mi j = (m−1

i + m−1
j )−1.

A particular topological solution of the coupled GPEs is
a vortex in one component, whose core is filled by the other
component, which has a trivial phase profile. When the sys-
tem is SU(2) symmetric (or close), such solutions are named
magnetic vortices since the total density is almost unaffected
(see Ref. [19] and reference therein). As long as the forces
applied to the two components do not significantly alter the
composite object, its dynamics—as for the standard vortex in
a superfluid—can be described in terms of a Lagrangian for
a point-like particle. However, a remarkable feature appears
due to the filled vortex core: the dynamics is massive, i.e.,
the time evolution of vortex coordinates (x j, y j ) =: r j is gov-
erned by second-order differential equations. The introduction
of inertial effects in superfluid vortex dynamics or, in other
words, the fact that vortices’ velocities {ṙ j} are independent
of vortex positions {r j}, opened the door to new dynamical
regimes [16,20,21]. In the context of magnetic skyrmions, it
has already been possible to prove that it is indeed neces-
sary to add an effective mass to the standard Thiele model
[39], which is inherently noninertial, in order to capture the
observed trajectories [40,41]. Interestingly, in the context of
half-quantum vortices in a two-component BEC, approaching
trajectories of vortex dipoles have been observed by solving
the GPEs [42]. Since the authors used the standard point-like
model in their analysis, they had to conclude by conjecturing
on the possible presence of an inertial mass.

In the present work, we study the effect of the vortex
mass on the vortex collisional dynamics. To ensure the vortex
stability during their dynamics, we consider an immiscible
mixture, corresponding to g2

ab > gaagbb (see discussion on
vortex stability in the Appendix D). Moreover, we consider
Nb � Na, such that the vortex core is small enough and the
use of an effective point-like particle description is justified.

While in the above-mentioned works the cores play a passive
role, since they merely constitute a sort of “heavy burden”
affecting the standard superfluid vortex dynamics, here we
flip the perspective and use the massive cores to actively
drive vortex collisions in a controlled fashion. These collisions
may indeed happen in a many-massive-vortex system, but
determining their precise location and timing is difficult and
strictly dependent on the detailed initial state of the system.
On top of this, the complexity of the dynamics, as well as the
chaotic character of vortex trajectories, hinders the possibility
to attempt any comparison between theory and experiments.

To circumvent these difficulties, we focus on the sim-
plest possible systems where collisions are possible: a pair
of vortices with the same or opposite charge. This choice
allows us to perform a theoretical investigation of vortex col-
lisions by using an experimentally accessible protocol based
on a component-selective trapping potential. We consider that
the mixture is confined in a box potential of radius R, and
that the minority component feels also a harmonic potential
V b

tr = mbω
2
br2/2.

Following Ref. [21], one can derive the effective Euler-
Lagrange equations of motion for two massive vortices
subject to V b

tr (see Appendix A):

Mj r̈ j = k jρaẑ × ṙ j + ρa
k j

2π

[
ki

r j − ri

|r j − ri|2 + k j
r j

R2 − r2
j

+ ki
R2ri − r2

i r j

R4 − 2R2rir j + r2
i r2

j

]
− Mjω

2
br j, (2)

where ρa = mana = maNa/(πR2) is the planar mass den-
sity of component-a atoms, k j = q jh/ma (q j ∈ Z) is the
strength of the jth vortex, while Mj = Nbmb/2 is the mass
of component-b cores (we assume, without loss of generality,
that the total mass Mb = mbNb is equally subdivided between
the two vortices). The two terms ∝ρa are well known and
describe the contribution of the Magnus force, the intervortex
interaction and the presence of a hard-wall confining potential
(resulting in an image vortex) [44]. The term Mj r̈ j represents
the Newton-like acceleration term ensuing from the presence
of massive cores [20,21], while the last term is due to their
being subject to a harmonic confinement. The adoption of
a (massive)-point-vortex model is justified for vortex cores
much smaller than R. In our case, the characteristic size �v of
massive vortices depends also on the number of core particles
[20], but, for the considered values of Nb, it is of the order
of the healing length ξa = h̄/

√
2magaana, which, in turn, is

typically much smaller than R in standard atomic BECs.

III. POSSIBLE EXPERIMENTAL PLATFORM

As a possible platform to implement our protocol, we con-
sider a heteronuclear mixture of 87Rb and 41K atoms, both
in the internal state |F, mF 〉 = |1,+1〉. The two gases can be
condensed in the same trap and present a favorable window
of magnetic fields where the interspecies scattering length can
be smoothly tuned and three-body losses minimized [45]. In
the following, rubidium and potassium represent component a
and component b, respectively, and in all the numerical anal-
ysis, we use aaa = 99 a0, abb = 65 a0, and aab = 163 a0, with
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FIG. 1. Comparison between the massive point vortex model of
Eq. (2) (solid lines) and GP simulations (dots). (left) Trajectories of
two vortices with opposite sign, initially at a distance d/R = 0.60,
for Nb = 0, 1000, 3300, and 5400, respectively in blue, green, yellow
and red. (right) Trajectories for two same-signed vortices, initially
at a distance d/R = 0.34, for Nb = 0 and 13 500. The line thick-
ness corresponds to the typical size of the filling BEC, �v . Other
parameters used in the simulations for a mixture of 87Rb and 41K are
Na = 5 × 105, R = 25 μm, dz = 0.82 μm. ωb = 85 rad/s for the left
panel, while ωb = 250 rad/s for the right panel. See related videos
of GP simulations in the Supplemental Material [43].

a0 being the Bohr radius. For the strong confining harmonic
potential along z, we use dz = 0.82 μm.

We consider two massive vortices that, at time t = 0, are
symmetrically placed with respect to a diameter of the circu-
lar trap (x1 = −x2, y1 = y2) and are at rest. In the massless
case, the motion of these vortices is well known and does
not feature any collision: while the vortex dipole performs
symmetric lobe-like orbits [11,31], the vortex pair exhibits
a uniform circular orbit. These trajectories correspond to the
light-colored lines in the left and right panels of Fig. 1. On
the other hand, massive vortices subject to a species-selective
confining potential feel an additional force able to catalyze
the collision. Solving the equations of motion (2), one can
notice (see dark lines in Fig. 1) that the intervortex distance
r12 := |r1 − r2| can tend to zero. For our purposes, we stopped
the solution of Eqs. (2) at the time t∗ such that r12 = 2�v , at
which the two quantum vortices are expected to undergo an
actual collisional event. Solving the full GPEs with the same
initial condition of Eq. (2), we find that the massive point
vortex model gives very accurate results for 0 < t < t∗ (dots
and solid lines in Fig. 1 almost coincide).

IV. ANNIHILATION OF VORTEX-ANTIVORTEX PAIRS

In Fig. 2, we illustrate the GPE simulated dynamics of the
density field ρa (upper row) and the phase field θa (lower row)
associated with the condensate wave function ψa = √

naeiθa

for the case of two counter-rotating vortices (the wave func-
tion associated with the minority component ψb is not shown
because it is simply nonzero only within the vortex cores).

It is clear that, at t = t∗, the two quantum vortices collide
and mutually annihilate. One can observe, in fact, that, for
t > t∗, the density-depleted hole in ρa is associated with no
phase singularities (the corresponding phase field θa is indeed
trivial) and, for this reason, it should be only ascribed to the
persistent presence of b particles which, being immiscible
with respect to the a fluid, induce a local spatial phase sep-

93 ms 123 ms 137 ms 147 ms

13 m

130 ms

− +

FIG. 2. Mass-driven collision of a pair of counter-rotating mas-
sive vortices. Starting from a pair of singly quantized vortices,
upon colliding, the two vortices mutually annihilate and their in-
compressible kinetic energy is fully transferred into a sound pulse.
First (second) row corresponds to the density (phase) field of the
majority component (87Rb). Here Nb = 5400 (the other microscopic
parameters are listed in the caption of Fig. 1), the collision time t∗
is 125 ms. See the full video of GP simulation in the Supplemental
Material [43].

aration of the two components. On the other hand, a dramatic
consequence of such annihilation process is the emission of
an intense sound pulse, basically due to the conversion of
vortex core and incompressible kinetic energies into phononic
excitations [11,46]. This may have non-trivial implications
in the context of quantum hydrodynamics [47] and quantum
turbulence [48,49], as it constitutes an unexplored mechanism
supporting the annihilation of single vortex-antivortex pairs.

V. MERGING OF SAME-SIGN VORTICES

The other fundamental class of two-vortex collisions in-
volves two corotating vortices which, due to their tendency
to repel each other, feature an intrinsic energy barrier that
can be overcome thanks to the kinetic energy provided by the
core mass. In Fig. 3, we illustrate the simulated GP dynamics,
clearly showing the merging of two singly quantized vortices
into a doubly quantized one. The latter state is known to be
dynamically unstable [33–35] and prone to splitting in the
massless case (see also Ref. [11] for a real-time observation),

1 ms 7 ms 14 ms 30 ms

13 m

181 ms

− +

FIG. 3. Mass-driven collision of a pair of corotating massive
vortices. Starting from a pair of singly quantized vortices, upon
collision, a single doubly quantized vortex is stabilized. Same mi-
croscopic model parameters (except that Nb = 1.35 × 104 and ωb =
250 rad/s) and graphical conventions of Fig. 2. The collision time is
t∗ = 9 ms. See the full video of GP simulation in the Supplemental
Material [43].
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FIG. 4. Increasing the number of core atoms (Nb ∝ η−1), the
vortices get heavier and the collisional time (t∗) decreases. Below a
critical value of Nb (vertical lines), cores are too light and vortices do
not collide at all. The stronger the harmonic confinement acting on
component-b atoms, the smaller are the collision time and the critical
value for Nb. The main panel illustrates the data upon a suitable
nondimensionalization procedure mirroring the emergence of only
one characteristic parameter η, while the inset shows the original data
in dimensionful units. Same model parameters and initial conditions
of Fig. 2 were used. The blue dashed, yellow solid, and green dotted
lines correspond to 70, 85, and 100 rad/s, respectively. In the main
panel (inset), from bottom to top (from top to bottom), data corre-
sponding to 70, 85, and 100 rad/s are illustrated, respectively.

but it is stabilized by the presence of component-b parti-
cles. These particles, therefore, not only guide the collision
of the two vortices as actively driving pinning centers, but
also stabilize the resulting doubly quantized vortex (in view
of an actual experimental realization, we argue that doubly
quantized vortices should be robust with respect to weak-
dissipation processes, since thermal atoms are expected to
be repelled by the core-filling component). This result is far
from being trivial and opens the door to the stabilization of
multiply quantized vortices in BECs, even in the absence of an
external pinning potential [37]. An external pinning potential
would freeze the position of the vortex, while the presence
of a massive core stabilizes the multiply quantized vortex
without constraining its motion. Unexpectedly, also in this
case, the collision of the two quantum vortices is inelastic, as
it comes with the emission of sound waves. This represents
an additional mechanism supporting the conversion of in-
compressible kinetic energy into compressible kinetic energy
[50–53]. The dissipation of vortex energy underlies central
problems in quantum hydrodynamics [47], such as the decay
of quantum turbulence [54,55].

VI. COLLISION TIME

To further substantiate the discussed collisional events and
their being robust with respect to variations of microscopic
parameters, we computed the collision time t∗ for different
values of Nb and ωb. As illustrated in Fig. 4, heavier core
masses (larger values of Nb) correspond to faster collisions,
i.e., to smaller values of t∗. The latter can be further lowered
by increasing ωb, the strength of the component-b trapping

potential, which we recall to be the catalyst of two-vortex
collisions in the platform presented. Also, given a specific
value of ωb, there exist a critical number Ñb of component-b
atoms below which the two vortices are too light to collide
(see vertical lines in Fig. 4). We further comment on the
relation Ñb(ωb) (Appendix C), on the robustness of massive
vortices (Appendix D), as well as on similar collisional proto-
cols featuring larger initial vortex separations (Appendix B).
Interestingly, the equations of motion for the vortex dipole can
be shown to depend on a single effective model parameter
η := kρa/(Mωb) and can be rewritten with respect to a new
set of coordinates, the center of mass, and the relative dis-
placement. This circumstance (see Appendix C) is illustrated
in Fig. 4, where data associated with different values of ωb

and Nb are shown to collapse on the same curve upon suitable
nondimensionalization.

VII. POSSIBLE EXPERIMENTAL IMPLEMENTATION

In the following, we propose a possible realistic experi-
mental implementation for the observation of the merging and
annihilation of massive vortices. A first requirement is im-
miscibility. This can be realized either using different species
or different spin states. Depending on the kind of mixture,
different methods and experimental techniques can be used.
Besides being immiscible and stable (no spin relaxation or
collisional decay channels), the mixture must allow for the
possibility to handle it with component-selective potentials
without excessive heating. As anticipated before, a mixture
of 87Rb and 41K, both in the |1,+1〉 state, appears as a
very promising candidate because the intraspecies scattering
lengths are both positive and the interspecies one can be easily
tuned around the Feshbach resonance at 78 G [45] to select
the proper immiscibility condition. Furthermore it is stable
versus spin relaxations, both species being in a stretched spin
state. The wavelengths for the D1 and D2 transitions for K
and Rb are λK

D1,D2
= 770 nm, 766.5 nm and λRb

D1,D2
= 795 nm,

780 nm. In this way, it is convenient to use Rb as component
a and selectively trap K with a focused Gaussian beam with
a tune-in wavelength for Rb at 790 nm [56–58], both for the
initial positioning of the minority b component and also for
the species-selective harmonic confinement. The mixture can
be initially trapped in a flat-box optical trap, realizable with
DMD technology [59] and able to confine both components
in a circular region. A repulsive optical barrier can be spun
[11,31,60,61] around such large impurities clockwise or coun-
terclockwise depending on the vortex charge which one wants
to have in the majority component a. Alternatively, vorticity
can be introduced through phase imprinting, by illuminating
the atomic sample with a light pattern corresponding to the
desired phase pattern [62]. In this case the regions where
phase 0 and 2π connect should be depleted using a repul-
sive potential to avoid unwanted smooth phase profiles in the
wrong direction [63]. Once vortices are created in component
a, the pinning potential for component b can be removed
while activating the harmonic potential to study the vortex
dynamics. In the alternative case of using a spin mixture of a
single atomic species, with a proper choice of magnetic states,
one could also use a magnetic harmonic trap concentric with
the optical box and prepare species a in a magnetic insensitive
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state mF = 0, while b in a low-field-seeker state. The density
of the minority component can be directly imaged in the
plane to observe the collision. Furthermore one can measure
the vorticity in the majority component after the merging
event, through Bragg interferometric measurements [64] or
by removing the species-selective potential and observing the
formation of singly quantized vortices.

VIII. CONCLUSIONS

In conclusion, we have shown that the inertial effect of
particles deliberately or accidentally trapped in the cores of
quantum vortices opens the door to two-vortex collisions, a
scenario that has no counterpart within standard superfluid
vortex dynamics [31,32], i.e., in systems where the dissipa-
tion ensuing from the interaction with the thermal component
is negligible. We have presented a realistic experimental
platform involving a quasi-2D imbalanced mixture of BECs
which allows one to design and observe two-vortex collisions
in a controlled fashion. The proposed protocol relies on the
use of a component-selective potential [56–58], which cat-
alyzes the occurrence of collisions in two-vortex systems. The
massive cores do not simply alter standard vortices trajectories
[21], but play the role of effective pinning potentials driv-
ing quantum vortices to collide. We demonstrate the mutual
annihilation of vortex dipoles and the ensuing radiation of
sound pulses, as well as the merging of two singly quantized
vortices resulting in the stabilization of a doubly quantized
vortex in the absence of an external pinning [37]. In addition,
our results provide a clear explanation to previous numerical
observations of half-quantum vortex collisions [42]. This in-
terpretation will also be important to get a better insight about
the superfluid turbulent behavior of such a system [65].

The studied phenomenology is expected to be rather gen-
eral, as it originates only from the presence of trapped
particles within—or equivalently a mass of—the quantum
vortices, a circumstance which is quite common in many
superfluid and magnetic systems. Possible future research
directions include, but are not limited to, the study of the
celebrated Berezinskii-Kosterlitz-Thouless transition [12] in
the presence of a mechanism supporting the annihilation
of (massive) vortex-antivortex pairs, the search for possible
negative-temperature states [66,67], inverse energy cascade
[68–70], a detailed analysis of the sound pulse emitted upon
the collision, and its intriguing connections with gravitational
phenomena, such as the collision of black holes [71]. Fur-
thermore, this work could be extended from 2D to three
dimensions (3D), including the contribution of Kelvin waves
and reconnections [72,73].
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APPENDIX A: THE MASSIVE POINT VORTEX MODEL

In the Thomas-Fermi (TF) regime, vortices can be regarded
as point-like defects, a circumstance which implies that the
overall density na(x, y) is essentially uniform within the con-
sidered hard-wall trap of radius R, except in a small region
of radius ≈ξa centered at the vortex position r j = (x j, y j ).
On the other hand, the presence of a vortex of charge qj in
the atomic cloud has a profound impact on the phase field
θa(x, y) of the condensate (we recall that ψa = √

naeiθa ). It is
well known that, in the case of a circular potential well with
hard walls, the velocity field v = h̄

ma
∇θa associated with the

condensate-a wave function is such that its normal component
must vanish at the boundary of the trap [44]. This condition is
ensured by the presence of image vortices of opposite circula-
tion at the external positions r′

j = r jR2/r2
j .

A standard way to capture the dynamics of the field ψa

in the presence of Nv vortical excitations is to develop a
time-dependent variational approach [20,44,74]. One makes a
time-dependent variational ansatz for the field ψa = √

naeiθa ,
which, in our case, is given by

θa(x, y) =
Nv∑
j=1

q j

[
arctan

(
y − y j

x − x j

)
− arctan

(
y − y′

j

x − x′
j

)]
,

(A1)

and where the vortices coordinates r j (t ) = (x j (t ), y j (t )) are
the only parameters assumed to depend on time. Then, one
computes the Lagrangian functional

La[ψa] = Ta[ψa] − �Ea[ψ], (A2)

where

Ta[ψa] =
∫

ih̄

2

(
ψ∗

a

∂ψa

∂t
− ∂ψ∗

a

∂t
ψa

)
d2r (A3)

is the kinetic term and

�Ea[ψa] =
∫

|ψa|2 1

2
mav

2
a d2r =

∫
na

h̄2

2ma
(∇θa)2 d2r

(A4)
is the energy difference with respect to the vortex-free state.
�Ea is formally divergent in a vorticous flow, because the
superfluid velocity behaves as 1/|r − r j | around each vortex
core. To regularize it, one customarily excludes a circular
region of radius ξa around each vortex core.

One thus remains with an effective point-like Lagrangian
which governs the dynamics of the assumed time-dependent
variational parameters and thus provides an effective de-
scription of the system’s dynamics. The application of the
time-dependent variational approach to a many-vortex sys-
tem in a quasi-2D Bose-Einstein condensate is described in
Ref. [44].

The presence of massive particles trapped within the
vortices core modifies the “bare” vortex dynamics both
because of their inherent inertial contribution [20,21] and
because of the (radial) force F = −∂V b

tr /∂r = −mbω
2
br which
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component-b particles are subject to. Both effects can be in-
corporated into the (massless) point vortex model (A2). As in
Refs. [21,74], for the localized b-component, we introduce the
following time-dependent Gaussian ansatz:

ψb(r) =
Nv∑
j=1

√
Nb

πσ 2Nv

e−|r−r j (t )|2/2σ 2
eir·α j (t ), (A5)

representing an array of Nv localized wave packets with width
σ centered at r j (t ) and where the parameter α j (t ) allows for a
nonzero translational velocity ṙ j = h̄α j/mb. In principle, the
b-component core size σ depends on a number of microscopic
parameters, including interaction constants (ga, gb, gab), the
number of atoms in the two components (Na, Nb), their atomic
masses (ma, mb), the trap radius (R), and the condensate thick-
ness (dz) [20,75], but, for the point model to be valid, one only
requires that σ � R.

A straightforward analysis based on the time-dependent
variational approach reviewed above (see also Refs. [21,74])
leads to the effective point-like Lagrangian for species-b cores

Lb =
Nv∑
j=1

[
Nbmb

2Nv

ṙ2
j − 1

2

Nbmb

Nv

ω2
br2

j

]
, (A6)

which depends on both the average position r j and average
velocity ṙ j ∝ α j of each wave packet in Eq. (A5). Notice that
this Lagrangian includes both the Newtonian inertial term ∝ṙ2

j

and the effect of the external confining potential ∝r2
j .

As explained in Ref. [21], the effective dynamics of the
overall composite system, i.e., of component-a vortices filled
by component-b particles, can be described in terms of the
following Lagrangian, here specialized to the case of Nv = 2
vortices

Ltot = La + Lb

=
2∑

j=1

[
Mj

2
ṙ2

j + k jρa

2
ṙ j × r j · ẑ

]
− V (r1, r2), (A7)

where

V = ρa

4π

{
k1k2 ln

(
R2 − 2r1 · r2 + r2

1r2
2/R2

r2
1 − 2r1 · r2 + r2

2

)

+ k2
1 ln

(
1 − r2

1

R2

)
+ k2

2 ln

(
1 − r2

2

R2

)}
+

2∑
j=1

1

2
Mjω

2
br2

j .

(A8)

APPENDIX B: COLLISIONS OF ARBITRARILY
SPACED VORTICES

The collisional protocol illustrated in Figs. 1–3 is robust
with respect to variations of the initial intervortex separation.
In particular, within the proposed platform, it is possible to ob-
tain vortex collisions also if the initial intervortex separation
is larger than the distance between the vortex and the circular
boundary (see Fig. 5). This is made possible by the presence of
the harmonic potential which component-b atoms are subject
to. As visible from the figure, in the case of counter-rotating
vortices (left panel), for larger initial intervortex separations,
the collision point is found closer to the circular boundary.

FIG. 5. The proposed collisional protocol is robust with respect
to variations of the initial intervortex separation. Red, ice blue, and
purple lines correspond to an initial distance of 0.6 R, R, and 1.4 R,
respectively (black dots represent the starting positions). The left
(right) panel corresponds to counter- (co-) rotating vortices. The
assumed microscopic parameters are listed in the caption of Fig. 1.
(left panel) Nb = 5400, ωb = 85 rad/s. (right panel) Nb = 5000,
ωb,x = 120 rad/s, ωb,y = 400 rad/s for the red line, ωb,x = 120 rad/s,
ωb,y = 700 rad/s for the ice-blue line, and ωb,x = 80 rad/s, ωb,y =
700 rad/s for the purple line. See related videos of GP simulations in
the Supplemental Material [43].

On the other hand, the collisional protocol involving two
corotating vortices requires a more careful design because of
their repulsive interaction. Based on the point-like model (2),
one may argue that collisions are always possible, provided
that ωb is large enough. Nevertheless, when performing GP
simulations, one realizes that, if the harmonic force acting
on the vortex cores exceeds a certain critical value, than
component-b cores may be depinned from their hosting vor-
tices. To circumvent this problem, it is enough to employ an
anisotropic confining potential (namely ωb,x �= ωb,y), which
allows us to guide vortex collisions without triggering un-
desired adverse events such as the core depinning or the
formation of additional vortices in the wake of the driven
vortices. Adopting this trick, collisional protocols involving
arbitrarily spaced vortices are possible, and the ensuing colli-
sion point is typically found at the trap’s center (see right panel
of Fig. 5 and related videos in the Supplemental Material
[43]).

APPENDIX C: ANALYTICAL INSIGHT INTO THE
ANNIHILATION OF A VORTEX DIPOLE

In the main text, we mentioned that the data illustrated in
Fig. 4 collapse on the same curve upon suitable nondimen-
sionalization. To better describe this peculiar property, let us
rewrite motion equations (2) in dimensionless form. To this
purpose, we choose ω−1

b as timescale, and
√

M/ma�b [where
�b = √

h̄/(Mωb)] as length scale. The resulting motion equa-
tions read

r̈ j = − r j + ηẑ × ṙ j + η

[
− r j − ri

|r j − ri|2 + r j

R2 − r2
j

− R2ri − r2
i r j

R4 − 2R2rir j + r2
i r2

j

]
, (C1)
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and manifestly features only one characteristic parameter η :=
kρa/(Mωb), as mentioned in the main text.

In the limit of large R, Eqs. (C1) can be written in terms of
the center-of-mass Q = (r1 + r2)/2 and relative r = r1 − r2

coordinates as

r̈ = −r + ηẑ × 2Q̇ − 2η
r
r2

, (C2)

Q̈ = −Q + η

2
ẑ × ṙ, (C3)

and therefore their solutions should depend only on the pa-
rameter η. With reference to Fig. 4, this explains the collapse
of data obtained for different values of ωb and Nb on the same
curve. It is worth mentioning, as a technical caveat, that the
various data points of Fig. 4 do not fall exactly on the same
curve, but are slightly dispersed around it because the choice
of using the same initial conditions [i.e., x1(0) = −x2(0) =
0.3 R] when performing simulations in dimensionful units in-
evitably results in (slightly) different initial separations |r(0)|
upon nondimensionalization. We have explicitly checked that,
when initial conditions are chosen in such a way to be the
same in dimensionless units, the collapse is perfect.

APPENDIX D: ROBUSTNESS OF MASSIVE VORTICES

According to the collisional protocol proposed in the main
text, two vortices are led to collide by their massive cores,
which thus play the role of actively driving pinning potentials.
As a result, the trajectory r j (t ) of these vortices significantly
differ from the one predicted by standard superfluid dynamics
(compare the dark and light lines in Fig. 1). This implies that
the massive core applies a non-negligible force on its hosting
quantum vortex (and vice versa). If this force exceeds a cer-
tain critical value, the quantum-vortex–massive-core complex
breaks down. More specifically, the massive core penetrates
the vortex walls and enters the bulk of component-a con-
densate. The depinning of a massive core from its quantum
vortex is a complex phenomenon, and its description requires
a detailed analysis of the surface tension of component-a
vortex walls, the compressibility properties of the majority
component, as well as the miscibility of the two quantum
fluids.

Although we are going to fully characterize this physics
in a separate work, we anticipate that the discussed depin-
ning occurs in regimes different from those presented in
the main text. In essence, the rather-large (im)miscibility ra-
tio gab/

√
gagb ≈ 2.18 characterizing our 87Rb - 41K mixture,

together with the rather small values of the applied ωb, en-
sure the robustness of our massive vortices, as well as the
smooth running of the designed collisional protocol. We re-
mark, in this regard, that smaller values of gab would lead to
more fragile quantum-vortex–massive-core complexes, i.e., to
structures which would be more prone to undergo depinning
when subject to an acceleration. The acceleration |r̈ j (t )| ex-
perienced by massive vortices along their trajectories, from
the very beginning of the collisional protocol to the collision
itself, can be easily computed by means of Eq. (2). In Fig. 6,
we illustrate the magnitude of this acceleration for the case of
two counter-rotating massive vortices (we employ the same

FIG. 6. The (magnitude of) the acceleration |r̈ j | of the two mas-
sive vortices along their collisional trajectories is maximum at the
start (green flags), just before the collision (orange star) and at the
changes of direction. Model parameters coincide with those used for
Figs. 1–3.

model parameters used for the left panel of Fig. 1 and for
Fig. 2).

The red color denotes those portions of trajectories where
massive vortices are subject to the strongest stress, i.e., where
the force exerted on the vortex walls by the massive core
is maximum. Such portions correspond to the start of the
dynamics, to the changes of direction (cusp-like features),
and to the collision itself (orange star). They represent the
segments where the depinning of a massive core from its

FIG. 7. Maximum acceleration experienced by a massive vortex
before colliding [maxt |r̈ j (t )|] according to the collisional protocol
illustrated in the left panel of Figs. 1 and 2. The same model pa-
rameters are assumed. The white region correspond to the absence
of collisional events and its boundary represents the relation Ñb(ωb)
mentioned in the main text.
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quantum vortex may occur and their extent depends on the
value of the component-b trapping frequency, ωb. It is worth
remarking, in this regard, that, if on the one hand, higher
values of ωb correspond to smaller collision times (t∗) (see
Fig. 4), on the other hand, massive vortices would experience
larger accelerations which could, in principle, break them
before they come to collide. In Fig. 7, we plot the maximum
acceleration experienced by a massive vortex before colliding,
maxt {|r̈ j (t )|}.

Interestingly enough, each isoline can be associated with
a critical value of g̃ := gab/

√
gagb below which the massive

core would undergo depinning before colliding. As visible in
the figure, for the set of model parameters which we consid-
ered (gray cross), and given that the immiscibility ratio of our
mixture is 2.18, our quantum-vortex–massive-core complexes
are well within the stability region and hence can be safely
subject to the accelerations needed to carry out the proposed
collisional protocol without the risk of breaking.
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