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Many topological regions on the Bloch sphere of the spin-1/2 double-kicked top
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Floquet topological systems have been shown to exhibit features not commonly found in conventional
topological systems such as topological phases characterized by arbitrarily large winding numbers. This is
clearly highlighted in the quantum double kicked rotor coupled to spin-1/2 degrees of freedom [Phys. Rev.
A 97, 063603 (2018)] where large winding numbers are achieved by tuning the kick strengths. Here, we extend
the results to the spin-1/2 quantum double kicked top and find not only does the system exhibit topological
regions with large winding numbers, but a large number of them are needed to fully characterize the topology of
the Bloch sphere of the top for general kick strengths. Due to the geometry of the Bloch sphere it is partitioned
into regions with different topology and the boundaries separating them are home to 0 and π quasienergy bound
states. We characterize the regions by comparing local versions of the mean field, quantum, and mean chiral
displacement winding numbers. We also use a probe state to locate the boundaries by observing localization as
the state evolves when it has a large initial overlap with bound states. Finally, we briefly discuss the connections
between the spin-1/2 quantum double kicked top and multistep quantum walks, putting the system in the context
of some current experiments in the exploration of topological phases.
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I. INTRODUCTION

Periodically driven systems, also called Floquet systems,
have been a useful tool in simulating novel phases of matter.
Periodic driving allows for control in the time domain which
can lead to exotic phases such as Anderson localization in
time [1,2] and phase-space crystals [3,4]. Of particular inter-
est is the creation of effective magnetic fields and spin-orbit
couplings with lasers to simulate topological features found
in condensed-matter systems [5–8]. A notable example along
these lines are Floquet topological insulators which are laser-
induced topological states in normal materials resulting in
the creation and control of chiral edge states [9]. In some
cases, the crystal structure of solids is also simulated using
optical lattices [10–13]. In these systems, the lasers creating
the lattice are periodically driven to induce effective magnetic-
field strengths unobtainable in real materials. This has led
to the observation of the celebrated Harper-Hofstadter model
[14,15] which displays one of the more striking examples of
integer quantum Hall physics.

A special class of Floquet systems involves periodic kicks
rather than continuous driving. Their appeal comes from the
fact that only part of the Hamiltonian is responsible for evolv-
ing the system at a given time, so they are generally easier
to conceptualize than their nonkicked counterparts. Early ap-
plications of this method were used to explore connections
between topology and chaos in the kicked Harper model
[16]. In recent years, one of the main focuses has been in
controlling topological phases [17], particularly in generating
large topological invariants such as the winding number which
counts the number of symmetry-protected states in the system
[18,19]. Double kicked systems such as the quantum double
kicked rotor (QDKR) and the quantum double kicked top
(QDKT) have shown to be promising in this regard [20–22]
where large topological invariants were predicted.

Proposals involving the QDKR coupled to spin-1/2 de-
grees of freedom have shown that arbitrarily large winding
numbers can be achieved [23,24]. The additional spin-1/2
degrees of freedom are significant because they put the QDKR
in the perspective of quantum walks where it plays the role
of a coin which is “tossed” each step. The state of the spin
determines the direction the rotor evolves in and is analo-
gous to tossing a coin at regular intervals and choosing a
direction based on whether it is heads or tails in classical
random walks [25]. Of course, the difference in the quantum
case is that the coin can be in a superposition of heads and
tails. Quantum walks play an important part in the building
of efficient quantum algorithms [26,27] and provide a foun-
dation for quantum computation [28]. Quantum walks have
also been proposed as a method to explore topological phases
[29–31] where experiments involved the measurement of the
response of topological invariants to disorder [32,33] and the
identification of topologically protected bound states [34–36].

In this paper, we perform the natural step of extending the
results of the spin-1/2 QDKR to the spin-1/2 QDKT. This
is a generalization which amounts to extending the Hilbert
space of the system from a ring to a sphere [37]—commonly
referred to as the Bloch sphere. Our main result is that, due
to the change in geometry of the Hilbert space, instead of
a single topological region on the ring, an arbitrarily large
number of different topological regions can be generated on
the Bloch sphere depending on the kick strengths. In general,
many winding numbers are needed to characterize the topol-
ogy of the entire Bloch sphere and due to the bulk-boundary
correspondence, the boundaries between the regions are home
to protected bound states. The number of bound states at a
boundary can also be arbitrarily large, so there can be re-
gions around the boundaries which are especially dynamically
stable.
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We also show that the spin-1/2 QDKT dynamics can be
framed in terms of a quantum walk on the Bloch sphere
by breaking down the Floquet operator into a series of coin
tosses and coin-dependent rotations. This allows us to make
proper connections between the spin-1/2 QDKT and tradi-
tional quantum walk systems as well as highlight the key
difference between them which is the source of the topo-
logical boundaries. For instance, quantum walks are often
implemented with a particle in an optical lattice which has
discrete translational symmetry and the boundary between
two different topological regions is inserted artificially as a
local breaking of that symmetry [30,34,38]. However, the
Bloch sphere, does not have translational symmetry due to
its geometry and we show that it is this inhomogeneity that
is responsible for the topological boundaries. Therefore, the
topological boundaries of the spin-1/2 QDKT can be con-
sidered to occur naturally due to the geometry of the Bloch
sphere.

We do not choose a specific model for the top, however,
some possibilities for its physical origin are the angular mo-
mentum of a single particle or Fock states of a collection of
two-mode indistinguishable particles [39]. In the many-body
case, the two modes can be external states like the energy
levels of a trapping potential such as the system of a Bose-
Einstein condensate (BEC) occupying the ground states of
a double-well potential. The two modes can also be internal
states like the hyperfine states of atoms [40,41] or two polar-
izations of light [42]. In either case, the spin-1/2 degrees of
freedom can represent a two-mode particle that is distinguish-
able from the others and is either a different species of particle
with access to the same two modes [43,44] or the same species
with a different pair of modes. When the top operators belong
to the angular momentum of a single particle, the spin-1/2
degrees of freedom can represent the internal spin states of
that particle.

II. MODEL

The system we will be investigating is the spin-1/2 QDKT
which is described by the Hamiltonian

ĤT = �

j
Ĵ2

z + α1Ĵxσ̂x

∑
n

δ[t − nT ]

+α2Ĵyσ̂y

∑
n

δ[t − (n + 1/2)T ], (1)

where Ĵa, a = x, y, z are the top operators obeying the usual
commutation relation [Ĵi, Ĵ j] = iεi jk Ĵk and the Pauli matrices
represent the spin-1/2 degrees of freedom which we label as
↑ and ↓. The parameter � is the nonlinear energy, and α1 and
α2 are the first and second kick strengths, respectively. Each
period T there are two kicks where the second kick is delayed
by a time T/2.

The dynamics generated after one period is given by the
Floquet operator

ÛT = e−i�Ĵ2
z T/2 je−iα2 Ĵyσ̂y e−i�Ĵ2

z T/2 je−iα1 Ĵx σ̂x . (2)

We analyze a simplified version of ÛT by setting the period
to T = 4π j/�. This is similar to the on-resonance condition
found in variations of the quantum kicked rotor [45–47] and

results in the unitary operators containing Ĵ2
z becoming unity

since the eigenvalues of Ĵz, m, are integers in the range − j �
m � j. The Floquet operator becomes

ÛT = e−i κ2
j Ĵy σ̂y e−i κ1

j Ĵx σ̂x , (3)

where κ1 = α1 j and κ2 = α2 j are the scaled kick strengths.
If the interactions between the top and the spin-1/2 degrees

of freedom in Eq. (3) are difficult to generate, then a possible
solution is to use interactions of the general form Ĥint = ĴzŜz,
where in our case Ŝz = σ̂z. They can arise in squeezing exper-
iments involving interactions between matter [48] or between
matter and light [42]. Also, similar interactions are found in
a Bose-Fermi mixture in an optical lattice [49]. Using Ĥint

as a starting point, we can construct ÛT from the rotation
operators R̂x(a) = e−iaĴx , R̂y(a) = e−iaĴy , and R̂z(a) = e−iaĴz

and the general Pauli rotation operator

M̂(α, β ) =
(

cos (α/2) sin (α/2)e−iβ

− sin (α/2)eiβ cos (α/2)

)
. (4)

The x and z rotation operators can be thought of as a
phase accumulation when only tunneling and only an im-
balance between the two modes is switched on, respectively,
and can be used to create the y rotations since R̂y(a) =
R̂z(π/2)R̂x(a)R̂z(−π/2). The explicit breakdown of the uni-
tary operators in ÛT is

e−iκ1 Ĵx σ̂x/ j = M̂(−π/2, 0)R̂y(π/2)e−iκ1 Ĵz σ̂z/ j

× R̂y(−π/2)M̂(π/2, 0),

e−iκ2 Ĵyσ̂y/ j = M̂(−π/2, π/2)R̂x(−π/2)e−iκ2 Ĵz σ̂z/ j

× R̂x(π/2)M̂(π/2, π/2). (5)

A recent proposal of a quantum walk on the Bloch sphere
[50] used the Floquet operator

ÛW = e−i2κ Ĵz σ̂z M̂(α, β ) (6)

to evolve the system. In this context, the Pauli operators repre-
sent a quantum coin which is tossed at each step via M̂(α, β ),
then a rotation about the Jz axis is performed whose direction
depends on the state of the coin. Therefore, ÛT can be thought
of as the Floquet operator for a quantum walk on the Bloch
sphere involving four coin tosses and two rotations, one about
the Jy axis and one about the Jx axis, at each step.

Going forward we will discuss topological regions that
emerge in the space of Ĵz eigenstates, {|m〉}. To distinguish
between the different topological regions we use terms which
are commonly found in condensed-matter physics such as
“bound” and “bulk” to describe the states located near and
away from the boundaries separating the regions, respectively.
We also use the term “edge” to refer to the minimum and
maximum angular-momentum states of the top, |m = ± j〉.
Therefore, it is useful to consider m as the spatial coordinate
of a fictitious one-dimensional (1D) lattice. An important
property of this lattice is that it does not possess discrete
translational symmetry which can be seen from the raising and
lowering operators of the top

Ĵ±|m〉 =
√

( j ∓ m)( j ± m + 1)|m ± 1〉. (7)
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The inhomogeneity comes from the Hilbert space of the top
which is a Bloch sphere of radius R = √

j( j + 1). To see this
explicitly one can imagine a system consisting of a single
particle in a 1D lattice, with nearest-neighbor hopping, that
has been stretched over the surface of a sphere from the north
pole to the south pole. If the tunneling energy is inversely
proportional to the distance between sites the Hamiltonian is

Ĥsph = −α j
∑

m

1

dm,m+1
(â†

m+1âm + H.c.). (8)

Due to the curved surface of the sphere, the distance be-
tween adjacent sites is simply the arclength connecting them
dm,m+1 = R|
θm,m+1| where 
θm,m+1 = θm − θm+1 is the dif-
ference between the polar angle coordinates of the two sites.
To make a connection to the Ĵz states of the top, we require
that the site label m also be the polar axis coordinate and
that it takes unit increments in the range − j � m � j. This
gives the relation m = j cos θ or θm = arccos(m/ j). Finally,
we assume a large system size ( j � 1), so that R ≈ j and
take the leading-order term in a 1/ j expansion of the distance
dm,m+1 ≈ [1 − (m/ j)2]−1/2 which gives

Ĥsph ≈ −α
∑

m

√
j2 − m2(â†

m+1âm + H.c.). (9)

Although Eq. (9) is an approximation, the square root
factor is the mean-field version of those in Eq. (7), so their
difference relative to j vanishes as j → ∞. Here, we see that
Ĵ+ is similar to the single-particle tunneling terms

∑
m( j2 −

m2)1/2â†
m+1âm. This quick analysis is not meant to discuss

how Ĥsph can be implemented, but rather highlight two main
points: (1) the eigenvalues of Ĵz are similar to the site label of
a 1D lattice stretched over the semicircle connecting the two
poles of a sphere and (2) the square root factors come from the
curvature of the sphere and therefore have a geometric origin.
We stress the second point because, as we will show, it is the
square root factors that are responsible for the breakdown of
the state space of the spin-1/2 QDKT into regions of different
topology and therefore the boundaries between these regions
are of geometric origin.

III. RESULTS

A. Quasienergy spectrum

When dealing with time periodic systems it is convenient
to use Floquet theory which allows one to write the dynam-
ics over one period in terms of a time-independent effective
Hamiltonian

ÛT = e−iĤeff T . (10)

The set of eigenvalues of the Floquet operator are {λi} and
they can be used to calculate the eigenvalues of the effective
Hamiltonian {εi} = { i

T lnλi}, however, they are only unique
within a range of 2π , so they are referred to as quasienergies.
Going forward we set T = 1 without loss of generality. Be-
fore we discuss the quasienergy spectrum we will briefly go
over some subtleties in quantifying the topology of Floquet
systems.

In static systems, topological phases are characterized by
integers such as the winding number. Through the bulk-

FIG. 1. Quasienergies as a function of kick strength. Eigenvalues
of ÛT in Eq. (3) as a function of κ1 for a fixed value of κ2 = 0.5π

and j = 50. When κ1/π is even or odd a new pair of ε = 0 or ε = π

states are formed, respectively.

boundary correspondence, they count the number of protected
bound states at the boundary of the bulk. In periodically
driven systems it has been shown that, in addition to the usual
ε = 0 bound states, there are also ε = π bound states which
come from the fact that the quasienergies are calculated from
a unitary operator and not a Hamiltonian. These states are
protected [51] and cannot be deformed into each other without
an energy gap closing, or breaking of some symmetry, so
two winding numbers are required to characterize each phase.
Care must be taken in calculating these numbers for Floquet
systems, however, and it has been shown that the winding
numbers of two chiral symmetrized time frames which are w1

and w2, can be used to calculate the winding numbers that
count the number of ε = 0 and ε = π bound states from the
relations [52]

w0 = w1 + w2

2
, wπ = w1 − w2

2
. (11)

In the spin-1/2 QDKT the Floquet operators in the chiral
symmetrized time frames take the form

ÛT,1 = e−i κ1
2 j Ĵx σ̂x e−i κ2

j Ĵyσ̂y e−i κ1
2 j Ĵx σ̂x , (12)

ÛT,2 = e−i κ2
2 j Ĵy σ̂y e−i κ1

j Ĵx σ̂x e−i κ2
2 j Ĵyσ̂y . (13)

The chiral symmetry that Eqs. (12) and (13) possess is defined
in terms of the relations �̂ÛT,1�̂ = Û †

T,1 and �̂ÛT,2�̂ = Û †
T,2

for the operator �̂ = σ̂z. This means that, for any state with
quasienergy ε there is a partner state with quasienergy −ε

through the relation σ̂z|ε〉 = | − ε〉. The Floquet operators in
Eqs. (3), (12), and (13) are separated by unitary transforma-
tions, so they have the same spectrum. Figure 1 shows the
spectrum for a fixed value of κ2 = 0.5π and variable κ1 for
j = 50. Increasing κ1 creates new ε = 0 and ε = π states at
even and odd integer multiples of π , respectively. These states
are the bound states mentioned earlier and are protected in the
sense that one can perturb the Floquet operators with a general
term in the exponentials that respects the chiral symmetry
(terms proportional to σ̂x or σ̂y) without changing the number
of bound states.

We note that the bound states do not have quasienergies
ε = 0 and ε = π exactly due to finite-size effects. Evidence
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of this can be seen around κ1 = 4π where there is a slight
wiggle in the energy around ε = 0. Nevertheless, for the range
of values and system size shown, the bound states are quite
stable. Additionally, we note that the form of the spectrum
depends on the value of κ2 and for general values the number
of bound states does not always increase monotonically as
κ1 increases. This is highlighted in the phase diagram of the
spin-1/2 QDKR [23] which quickly becomes complicated as
κ1 and κ2 increase. With the intent of keeping our analysis
simple, we set κ2 = 0.5π for the remainder of the paper.

B. Locations of bound states

To gain a better insight into the bound states as well as the
topology of the system it would be useful to calculate Ĥeff

for the chiral symmetrized Floquet operators in Eqs. (12) and
(13), however, their forms are not obvious. Some progress can
be made by performing a mean-field approximation of the
top operators by transforming them into their coherent-state
expectation values

〈Ĵ〉 = 〈(Ĵx, Ĵy, Ĵz )〉 = j(sin θ cos φ, sin θ sin φ, cos θ ). (14)

The angles θ and φ are the polar and azimuthal angles, re-
spectively, of the Bloch sphere of the top with radius R =√

j( j + 1). Instead of the polar angle, we find it useful to
use the eigenvalue label of Ĵz, m, as a variable through the
previously mentioned relation m = j cos θ . Defining the new
parameters

K1 = κ1

√
1 − (m/ j)2 cos φ,

(15)
K2 = κ2

√
1 − (m/ j)2 sin φ,

the mean-field versions of Eqs. (12) and (13) become

Û MF
T,1 = e−i K1

2 σ̂x e−iK2σ̂y e−i K1
2 σ̂x , (16)

Û MF
T,2 = e−i K2

2 σ̂y e−iK1σ̂x e−i K2
2 σ̂y . (17)

In this form, the effective Hamiltonians can be calculated
exactly giving ĤMF

eff,i = εni · σ̂ (Appendix A), where i = 1, 2
for the two symmetrized time frames. Both the quasienergy
ε and the vector ni = (nix, niy ), which has unit length, depend
on the state of the top. This means ni maps points on the Bloch
sphere of the top to points on the equator of the spin-1/2 Bloch
sphere.

The quasienergy is the same for both time frames in
Eqs. (16) and (17) and is

ε = arccos [cos (K1) cos (K2)]. (18)

Topological transitions in Floquet systems are marked by
bound states which close the quasienergy gaps at ε = 0 and
ε = π . Looking at Eq. (18), we see that these energies oc-
cur when cos(K1) cos(K2) = ±1 which in turn occurs when
κ1[1 − (m/ j)2]1/2 cos φ = μπ and κ2[1 − (m/ j)2]1/2 sin φ =
νπ , where μ and ν are integers. Combining these two
results gives

π2

1 − (m/ j)2

(
μ2

κ2
1

+ ν2

κ2
2

)
= 1, (19)

FIG. 2. Density plot of the probability for a given eigenstate of
the top to have a given quasienergy. Darker shades of black show
higher values of the probability |〈m|εi〉|2 where the Ĵz eigenstate label
m and the quasienergy εi vary along the x and y axes, respectively.
The red dashed curve is the mean-field quasienergy from Eq. (18) for
φ = 0. The points of interest are the kinks in the mean-field result at
ε = 0, π where protected edge states are shown in the density plot as
localized states around these points. The parameter values are κ1 =
4.25π , κ2 = 0.5π , and j = 200.

which we use to find the mean-field values of m that corre-
spond to the quasienergies ε = 0 and ε = π :

mμ,ν = ± j

√
1 − π2

(
μ2

κ2
1

+ ν2

κ2
2

)
. (20)

Equation (20) is the mean-field prediction of the locations of
localized bound states and consequently gives the locations of
the boundaries separating different topological regions. The
source of these boundaries comes from the mean-field square
root factor, [1 − (m/ j)2]1/2, which is due to the curvature of
the Bloch sphere. The geometric origins of these boundaries is
reminiscent of geometry induced domain walls which appear
in a two-dimensional (2D) lattice of dipoles on the surface of
a torus [53].

To test the mean-field predictions we calculate the prob-
ability for a given Ĵz state to be in an eigenstate of the
Floquet operator in Eq. (3), P(m, εi ) = |〈m|εi〉|2. Figure 2
shows a density plot of the probability with the m state label
and the quasienergy on the x and y axes, respectively, along
with the m dependence of the mean-field quasienergy for
the azimuthal angle φ = 0 (dashed, red). The kinks in the
mean-field result at ε = 0 and ε = π are the locations of
the localized bound states predicted from Eq. (20) and they
agree quite well with the quantum probability which shows
localized states around these points. The creation (destruction)
of bound states takes place at the equator of the Bloch sphere
at m = 0. This means that as κ1 decreases in Fig. 2, the ε = 0
bound states at m ≈ 67 will move toward m = 0 until they
reach that point when κ1 = 4π . Further decreasing κ1 results
in the bound states’ destruction as they are absorbed into
the bulk.
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C. Local winding numbers

The boundaries partition the Bloch sphere into regions of
different topology which are quantified in terms of winding
numbers. Under the mean-field approximation the winding
number has a simple geometric interpretation as the number
of times the vector ni winds around the origin as φ goes from
−π to π . However, due to the square root factors, the winding
number is m dependent, so we calculate local versions of
them. The mean-field local winding number is calculated with
the equation [32]

wMF,i(m) =
∫ π

−π

dφ

2π
ni × ∂φni. (21)

The quantum winding number calculation must also be per-
formed locally due to φ not being good quantum number.
The calculation relies on the flat-band transformation of the
effective Floquet Hamiltonian, Q̂ = P̂+ − P̂−, where P̂+ is
the projector onto eigenstates with ε > 0 and P̂− is the pro-
jector onto eigenstates with ε < 0. The chiral symmetry of
Ĥeff allows us to write the flat-band projector as Q̂ = Q̂↑↓ +
Q̂↓↑ where Q̂↑↓ = �̂↑Q̂�̂↓ and �̂↑, �̂↓ are the projectors
onto the spin-1/2 ↑ and ↓ states, respectively. The spin-
1/2 projectors form the chiral symmetry operator �̂ = �̂↑ −
�̂↓ and the symmetrized winding number operator is then
[54–56]

ŵi = (Q̂↓↑,i[Ĵz, Q̂↑↓,i] + Q̂↑↓,i[Ĵz, Q̂↓↑,i])|/2, (22)

where the index i = 1, 2 is for the two chiral time frames from
Eqs. (12) and (13). Therefore, the winding number localized
to a single Ĵz state is wi(m) = Trσ 〈m|ŵi|m〉 where the trace
is over the spin-1/2 degrees of freedom. It is expected that
for large system sizes and for states comfortably within a
bulk (away from the topological boundaries), the quantum and
mean field calculations will agree.

In Figs. 3(a) and 3(b), we plot the m dependence of the
mean-field (black) and quantum (green) values of w0 and
wπ , respectively, for κ1 = 4.25π and κ2 = 0.5π . The different
topological regions are shown as plateaus while the bound-
aries are shown as a steps in the mean-field case and jumps or
dips in the quantum case. In each image the step locations are
calculated from Eq. (20) mμ,ν = ± j(1 − 16μ2/289 − 4ν2)1/2

where we find five pairs of integers which satisfy the equation:
0 � μ � 4 and ν = 0. The quantum local winding number
agrees with the mean-field result strongly in the central bulk
and the agreement falls off moving closer to the edge at m =
±200. This is expected since finite-size effects become pro-
nounced at the edges of the system. Another obvious feature
of the quantum local winding number is the sudden jumps or
dips at the boundaries between different topological regions.
These are attributed to the fact that the boundaries are home
to exponentially localized bound states, so they are close to
being eigenstates of Ĵz.

Looking at Fig. 1 we see that the parameter values of
κ1 = 4.25π and κ2 = 0.5π mean there are five ε = 0 states
and four ε = π states. In Fig. 3, the quantum local winding
numbers for the central region are |w0| ≈ 5 and |wπ | ≈ 4
which match the number of bound states and therefore sup-
ports the bulk-boundary correspondence. To determine how

FIG. 3. Local winding numbers. (a) Comparison of the mean-
field (solid black), quantum (solid green), and mean chiral displace-
ment (dashed red) predictions of the ε = 0 local winding number
over the space of Ĵz states for κ1 = 4.25π , κ2 = 0.5π , and j = 200.
The locations of the steps in the mean-field prediction can be calcu-
lated from Eq. (20). (b) Same as panel (a) except the calculations are
performed for the ε = π local winding number.

the outer regions support the bulk-boundary correspondence
we once again turn to the mean-field results, specifically, the
parameters in Eq. (15). There we see that moving away from
the equator of the Bloch sphere at m = 0 has the same effect
on K1 and K2 as decreasing the scaled kick strengths κ1 and
κ2. Figure 1 shows that, as κ1 decreases, bound states are
destroyed which is why we see the mean-field local winding
number decrease in steps in Fig. 3 as one moves toward the
edges at j = ±200. We see the same decrease in the quantum
local winding numbers, however, the fluctuations increase as
the edge is approached due to finite-size effects.

The winding number is not always directly measurable in
experiments and it is often easier to extract information from
the dynamics of the system. To this end, the chiral displace-
ment [32,57]

Ci(m, n) = Trσ 〈m|Û −n
T,i Ĵzσ̂zÛ

n
T,i|m〉

=
⎛
⎝ ∑

a=↑,↓

∑
j,k

cm∗
j,acm

k,ae−i(ε j−εk )n〈εk|Ĵzσ̂z|ε j〉
⎞
⎠

i

(23)

has been shown to be related to the quantum winding number.
In the second line of Eq. (23), we take the spectral decom-
position of the Floquet operators, cm

j,a = 〈a, m|ε j〉 and the
subscript i = 1, 2 indicates which Floquet operator we are
using from Eqs. (12) and (13). The relation to the winding
number comes from the fact that the local winding number at
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FIG. 4. Evolution of probability distributions for different initial states. (a) Evolution generated by ÛT in Eq. (3) of the probability
distribution of an initial Gaussian state centered on the boundary between two different topological regions. The boundary is located near
m4,0� = 67 and corresponds to the right closest step to the center in Fig. 3(a), so it is the boundary between the (w0, wπ ) = (5, −4) and the
(w0, wπ ) = (3, −4) topological regions. (b) Same initial Gaussian state as in panel (a) except it is centered at m4,0 + m3,0�/2 = 104 which is
halfway between the boundary separating the (w0, wπ ) = (5,−4) and the (3, −4) regions and the boundary separating the (w0, wπ ) = (3, −4)
and the (3,−2) regions. (c) Same initial Gaussian state as in panel (a) except it is centered at m3,0� = 141 which is the boundary separating
the (w0,wπ ) = (3, −4) and the (3, −2) regions which is the right closest step to the center in Fig. 3(b). The parameters are κ1 = 4.25π ,
κ2 = 0.5π , and j = 200.

m = 0 can be approximated as [56]

wi(0) = Trσ 〈0|ŵi|0〉

=
⎛
⎝ ∑

a=↑,↓

∑
j,k

c0∗
j,ac0

k,a〈εk|Ĵzσ̂z|ε j〉
⎞
⎠

i

. (24)

Comparing this equation with Eq. (23), we see that a long time
average of the chiral displacement at m = 0,

Ci(0) = lim
N→∞

1

N

N∑
n

Ci(0, n), (25)

will be equal to the winding number if the off-diagonal terms
of 〈ε j |Ĵzσ̂z|εk〉 can be neglected since they get “washed out”
in the averaging process. This was found to be the case for the
spin-1/2 QDKR [23] and in a synthesized 1D topological wire
based on the momentum states of a BEC [56]. Although these
terms are small for our system, they are non-negligible, so
they need to be included in order for the dynamics to display
an accurate winding number. Therefore, short time averages
are better in order for the off-diagonal terms to not vanish
completely. The dashed red curves in Figs. 3(a) and 3(b) show
the chiral displacement averaged over N = 20 steps for all
states (not just the m = 0 state). We see it maintains a similar
shape to the local winding number calculated from Eq. (22)
(green) including the sudden jumps or dips at the boundaries,
however, it does fall short of the mean-field and quantum
local winding numbers over the majority of the states due
to the averaging process. A comparison between short- and
long-time averages of the chiral displacement can be found in
Appendix B.

D. Using a probe state to locate topological boundaries

The boundaries separating different topological regions
can also be located using another dynamical method which
takes advantage of the fact that the boundaries are home to
the ε = 0, π bound states. If an initial state has a strong
overlap with the bound states at a boundary, then it will remain
localized there for a long period of time. In contrast, an initial

state comfortably away from a boundary will explore more of
the Hilbert space as it evolves because of the larger overlap
with the bulk states. We choose the initial probe state to be
Gaussian in shape,

|ψ0〉 =
√

1


m
√

π

∑
m

e− (m−m0 )2

2
m2 |m,↑〉,

with 
m = 10. One of the benefits of using this method is that
the details of the initial state are not important as long as it
can pick out one boundary over another. In Fig. 4(a), we show
the evolution of the probability distribution in the ↑ subspace
of the initial Gaussian state centered on the boundary located
at m0 = m4,0� = 67. This boundary is shown in Fig. 3(a) as
the first step away from the m = 0 state. The strong overlap
between the initial state and the bound states keeps the dis-
tribution localized over the period shown. In Fig. 4(b), the
initial state is centered at m0 = 104 which is halfway between
two boundaries. Clearly the probability distribution does not
remain localized and has a checkered pattern which is due to
parts of the wave function occupying the ↓ subspace which
is not shown. The reason why the checkered pattern appears
in Fig. 4(b) and not Fig. 4(a) is because the initial state has a
larger overlap with ε �= 0, π states in Fig. 4(b) and these states
have equal support on both subspaces due to chiral symmetry
whereas the ε = 0, π bound states have support on a single
subspace. In Fig. 4(c), the initial Gaussian is centered on
another boundary at m0 = m3,0� = 141 which is the first step
from the center in Fig. 3(b). Again, the probability distribution
is fairly localized with small parts of it propagating away due
the Gaussian having a weaker overlap with the bound states
compared with those in Fig. 4(a).

To get a sense of the overall quality of the specific initial
state we chose, we take a look at the inverse participation ratio
(IPR) which is a good measure of the localization of a state in
a given basis

IPR =
∑

i

|〈εi|ψ0〉|4. (26)
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FIG. 5. Inverse participation ratio of Gaussian states in the
Floquet basis. The IPR given in Eq. (26) of the state |ψ0〉 =√

1

m

√
π

∑
m e− (m−m0 )2

2
m2 |m, ↑〉 in the basis states of Eq. (3) is plotted

as a function of m0. The red vertical lines are the predicted locations
of the topological boundaries from Eq. (20), which line up with
peaks in the IPR where the Gaussian strongly overlaps the bound
states located at the boundaries. The peaks match the locations of
the steps in the mean-field winding number and the jumps or dips
in the quantum winding number in Fig. 3. The parameter values are

m = 10, κ1 = 4.25π , κ2 = 0.5π , and j = 200.

Here, |εi〉 are the eigenstates of ÛT in Eq. (3) and |ψ0〉 is the
initial Gaussian state. The two extreme values are IPR = 1
and IPR = 1/[2(2 j + 1)] when |ψ0〉 is completely localized
and completely spread in the basis, respectively. In Fig. 5 the
IPR is plotted as a function of the center of the Gaussian m0

where the red vertical lines are the locations of the boundaries
predicted from Eq. (20). The peaks correspond to the initial
state being localized at the boundaries where it strongly over-
laps with the bound states. The relative height of the peaks,
including the peak at m = 0, are state dependent, so Gaus-
sians with different widths will produce different qualitative
results, however, the peak locations will remain the same.
Nevertheless, the chosen Gaussian does an excellent job at
picking out the boundary locations with the only discrepancy
being near the edge of the system at m = 200. There the dis-
tance between boundaries is similar to 
m = 10, so the initial
state lacks the resolution required to locate those boundaries
completely.

IV. SUMMARY AND DISCUSSIONS

We have shown that, like the spin-1/2 QDKR, the spin-1/2
QDKT has topological regions with large winding numbers.
However, the two models differ in the number of topological
regions for a given pair of kick strengths. Whereas the spin-
1/2 QDKR has a single region, different regions proliferate in
the Bloch sphere of the spin-1/2 QDKT as the kick strengths
increase. We quantify the topology of each region by compar-
ing local versions of the mean field, quantum and mean chiral
displacement winding numbers. We find that, away from the
edge of the system, they agree with the number of bound

states at the boundaries separating each region which sup-
ports the bulk-boundary correspondence. Finally, we used a
simple dynamical method to locate the boundaries by prepar-
ing a Gaussian initial state and evolving it. When the initial
state is centered on a boundary the state remained localized
due to the large overlap with the bound states exponentially
localized there.

The spin-1/2 QDKT is a rich topological system with
many possible avenues to explore. As previously mentioned, it
is related to quantum walks and can be used to investigate the
effects of multiple topological boundaries in the walk space.
A notable departure from former quantum walk studies is the
source of the boundaries. Usually they are implemented via
insertion of an inhomogeneity at a specific site, whereas here,
they come from the geometry of the Bloch sphere in which
the walk is taking place and can therefore be considered as
being built-in by nature. The positions of the boundaries are
controlled by the kick strengths which leads to some interest-
ing possibilities for using the topology of the spin-1/2 QDKT
as a tool to control the state of the system. One example of
this is in the creation of cat states. One can imagine initially
setting each kick strength close to some multiple of π , so that
a pair of boundaries just forms at the equator of the Bloch
sphere of the top (m = 0), then preparing the initial product
state |ψ0〉 = 1√

2
(|↑〉 + | ↓〉)|θ0 = π/2〉, where |θ0 = π/2〉 is

a coherent state centered on the equator. Provided the coherent
state has a strong overlap with the bound states at the bound-
ary it will remain clamped there as we showed in Fig. 4. If
one of the kick strengths is made to increase slowly in time,
then the coherent state is effectively pulled apart, with parts
of it moving toward opposite poles of the Bloch sphere as
the boundaries move away from the equator resulting in the
final state |ψ f 〉 = 1√

2
(| ↑, θ0 + θ〉 + | ↓, θ0 − θ〉). The final

state is often referred to as a Bell-cat state and is used to test
entanglement generation and efficient information extraction
beyond the original two-qubit Bell state [58]. The process
is possible due to the chiral symmetry of the system which
forces the bound states at the two newly formed boundaries to
have support in opposite spin-1/2 subspaces.

Another topic to explore is the connection between topol-
ogy and chaos. Some initial numerical results of the level
spacings of the quasienergies indicate that the spin-1/2 QDKT
displays chaotic behavior as the kick strengths increase. It
has been shown that nonlinear effects can lead to chaotic
behavior in the bulk of a system while the boundaries have
topological order [59]. However, the spin-1/2 QDKT is
unique in that the number of boundaries also increases as
the kick strengths increase. This raises the question as to
how a bulk can be chaotic when boundaries proliferate in the
system.

APPENDIX A: DERIVATION OF WINDING VECTOR

We can find ni by expanding the unitary operators in
Eqs. (16) and (17) in terms of trigonometric functions using
the identity

e−iab·σ̂ = cos (a) − ib · σ̂ sin (a), (A1)
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which gives

Û MF
T,1 = cos K1 cos K2 − i(sin K1 cos K2σ̂x + sin K2σ̂y),

Û MF
T,2 = cos K1 cos K2 − i(sin K1σ̂x + sin K2 cos K1σ̂y). (A2)

For Û MF
T,1 we define

cos ε = cos K1 cos K2,

sin ε =
√

sin2 K1 cos2 K2 + sin2 K2,

and similarly for Û MF
T,2 we define

cos ε = cos K1 cos K2,

sin ε =
√

sin2 K2 cos2 K1 + sin2 K1,

which allows us to write the Floquet operators as

Û MF
T,i = cos ε − i sin ε(nixσ̂x + niyσ̂y), (A3)

where the vector components are

n1x = sin K1 cos K2

sin ε
, n1y = sin K2

sin ε
, (A4)

n2x = sin K1

sin ε
, n2y = sin K2 cos K1

sin ε
. (A5)

It is clear from Eq. (A3) that the effective Hamilto-
nian mentioned in the main text takes the form ĤMF

eff,i =
εni · σ̂. We note that the derivation of the winding vec-
tor components is the same as the one for the spin-
1/2 QDKR in Ref. [23] with the only difference being
that here we have K1 = κ1[1 − (m/ j)2]1/2 cos φ and K2 =
κ2[1 − (m/ j)2]1/2 sin φ and they have m = 0.

FIG. 6. Comparison of short-time and long-time averages of
the chiral displacement. The solid orange and dashed blue curves
show time averages of the chiral displacement using Eq. (25) for
N = 10 and N = 1000, respectively. The long-time average has
less agreement with the mean-field prediction (solid black) than
the short-time average because important terms get washed out in the
averaging process. The parameter values are κ1 = 7.5π , κ2 = 0.5π

and j = 200.

APPENDIX B: SHORT- AND LONG-TIME AVERAGES
OF THE CHIRAL DISPLACEMENT

We find that the short-time average rather than the long-
time average of the chiral displacement in Eq. (23) captures
the winding number. Figure 6 explicitly shows the difference
between short- and long-time average calculations of wπ for
κ1 = 7.5π and κ2 = 0.5π . The solid orange and dashed blue
data are calculated with N = 10 and N = 1000, respectively,
and the solid black curve is the mean-field prediction. The
long-time average result has less fluctuations than the short-
time average, but has a larger disagreement with the mean-
field result over the range of states. This is because the
long-time average does not keep terms like 〈εk|Ĵzσ̂z|ε j〉, where
j �= k, which are necessary to accurately predict the winding
number from the chiral displacement. However, the long-time
average still exhibits the sudden jumps at the boundaries, so it
can still be used to locate the boundaries.
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