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O(1) benchmarking of precise rotation in a spin-squeezed Bose-Einstein condensate
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Benchmarking a high-precision quantum operation is a big challenge for many quantum systems in the
presence of various noises as well as control errors. Here we propose an O(1) benchmarking of a dynamically
corrected rotation by taking quantum advantage of a squeezed spin state in a spin-1 Bose-Einstein condensate
(BEC). Our analytical and numerical results show that tiny rotation infidelity, defined by 1 − F with F the
rotation fidelity, can be calibrated in the order of 1/N2 by only several measurements of the rotation error for N
atoms in an optimally squeezed spin state. Such an O(1) benchmarking is possible not only in a spin-1 BEC but
also in other many-spin or many-qubit systems if a squeezed or entangled state is available.
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I. INTRODUCTION

High-precision quantum operations are among the most
important building blocks for practical quantum comput-
ing and quantum information processing [1], as well as for
entanglement-enhanced quantum sensing beyond the standard
quantum limit [2–7]. Characterizing the precision of such
quantum operations remains challenging in various physi-
cal systems, such as trapped ions, nitrogen-vacancy centers
in diamond, quantum dots in semiconductors, superconduct-
ing quantum interference devices, Rydberg atoms in optical
tweezers, and ultracold atomic gases [8–12]. More efficient
and reliable calibrations and benchmarkings of a precise quan-
tum operation are still in demand, particularly for many-qubit
or many-particle systems.

A naive method to measure the precision of a quantum
operation, e.g., a quantum gate which is described by the gate
fidelity [13–15], is to repeat the operation N times and then
calculate the fidelity through quantum process tomography
[16]. The standard deviation of the fidelity average generally
reduces as 1/

√
N . To benchmark a precise quantum opera-

tion with a fidelity of 99.9%, 1 × 106 repetitions are usually
needed. This is extremely time and resource consuming. Im-
proved methods such as randomized benchmarking and its
variants were proposed and experimentally realized recently
in superconducting quantum interference devices, nitrogen-
vacancy centers, and Rydberg atoms, among others [8,17,18].
By performing N consecutive random but carefully designed
quantum operations, the standard deviation of the operation
fidelity may reduce as 1/N . For instance, Sheng et al. proved
that the gate fidelity is above 99.995% by performing roughly
103 random operations for a single qubit realized in neutral
atoms trapped in optical tweezers [19]. With this method, it
is demonstrated that at least N repeated quantum operations
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are demanded in order to confirm that the fidelity is above
1 − (1/N ).

To further reduce the repetition number of a precise quan-
tum operation, we propose in this paper a single precise
quantum operation to achieve the fidelity with a standard
deviation at the level of 1/N2 for N entangled particles. With
analytical method and numerical simulations, we illustrate
this idea by calibrating a precise dynamically corrected ro-
tation (DCR) in an atomic spin-1 Bose-Einstein condensate
(BEC) with N = 104 87Rb atoms. The rotation error, for a
single collective rotation of N atom spins, scales as ≈1/N
for a squeezed spin (entangled) state without noise. Impor-
tantly, the rotation infidelity is proportional to the square of
rotation error and thus scales as 1/N2. In the presence of
typical laboratory noise (≈0.1 mG) and control imperfection
(≈1%), the rotation infidelity is still in the order of 1/N2. This
efficient calibration method, with a single operation only, can
be straightforwardly extended to other many-qubit systems
with an entangled quantum state, besides its immediate ap-
plication in an atomic spin-1 BEC which has demonstrated
paramount potential in entanglement-enhanced quantum
sensing [20–24].

II. DYNAMICALLY CORRECTED ROTATION
OF A SPIN-1 BEC

We consider a precise rotation of the collective spin of a
spin-1 87Rb BEC [25]. The initial state is an optimal squeezed
spin state (SSS) with the optimal squeezing direction along
the z axis and the mean spin direction on the −y axis. We
adopt the total atom number N = 10 000 [26]. A strong bias
magnetic field B0 = 1 G along the z axis is applied to suppress
the stray magnetic-field noise in the x-y plane and to provide
a well-defined quantization axis of the system. For such a
strong bias field, the second-order Zeeman effect, which is
about 72 Hz at 1 G, must be well controlled. In fact, an
additional microwave field is usually employed to cancel the
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FIG. 1. Sequence of DCR. The driving field is �x (t ) =
�x f (t ) cos(ωt ), where the signs of f (t ) denote a clockwise and
counterclockwise rotation, respectively. The spin is rotated by π

in the periods [0, τ ], [τ, 2τ ], and [4τ, 6τ ] (τ = 2π/�x) under the
rotating wave approximation, but by 2π in the period [2τ, 4τ ].

second-order Zeeman term in precise spin rotation. To rotate
the condensate spin, a driving field Bx(t ), which oscillates at a
frequency close to the Larmor frequency, is applied along the
x axis for a certain period τ . As shown in Figs. 1(a) and 1(b),
the condensate spin of the SSS rotates an angle of π around
the x axis, and the mean spin changes from −y to y direction.

The time-dependent Hamiltonian governing the above ro-
tation is

H (t ) = c2J2 + ω0Jz + �x cos(ωt )Jx

where c2 < 0 is the ferromagnetic spin-exchange coupling
strength, ω0 = γ B0 = 2π × 0.7 MHz at B0 = 1 G is the Lar-
mor frequency with γ the gyromagnetic ratio of a 87Rb atom,
�x = ω/40 is the Rabi frequency of a rf field coupled to
the condensate atoms, and Jα = ∑N

i=1 siα (α = x, y, z) is the
collective spin of the condensate with siα the atomic spin-1
matrix for the ith atom and N the total atom number. We have
set h̄ = 1. To obtain this many-body Hamiltonian, we have
adopted the single-mode approximation which assumes three
spin components share the same spatial wave function [22,23].
We have also neglected the weak magnetic dipole-dipole in-
teraction between atoms since the corresponding time scale
is far longer than a spin rotation time τ ≈ 2π/�x (or the
trapping potential is spherical). Here we employ the one-axis
rotation, instead of the two-axis one, in order to simplify
the experimental apparatus and avoid the fine tuning of these
driving fields simultaneously perpendicular to each other and
to the bias magnetic field.

Adopting the one-axis rotation has two important conse-
quences. One is that the effective Rabi frequency is halved
and thus π pulse duration is doubled, due to the relation
�x cos(ωt )e−iωt ≈ (�x/2) if we drop the fast oscillating term
with a frequency 2ω. The other is the introduction of the
Bloch-Siegert shift, which takes into account the second-order
correction of the fast oscillation term and effectively reduces
the resonant frequency from ω = ω0 to ω0 − �BS with �BS ≈
�2

x/(16ω) [27]. Although it is usually ignored in many driving
two-level quantum systems, the �BS must be explicitly in-

cluded here because of the required high precision of the spin
rotation. Given �x/ω = 1/40, it is easy to check that the rela-
tive error of rotation direction is roughly �x/(16ω) ≈ 0.16%
which is already larger than the rotation accuracy 0.1%. After
taking into account these two effects, the on-resonance Hamil-
tonian becomes He = (�x/2)Jx in a rotating reference frame
defined by UR = exp[−it (c2J2 + ωJz )]. A π pulse is realized
if �xt = 2π , i.e., t = τ .

Once we consider a real situation in a BEC experiment, the
Hamiltonian for our model must include various noise sources
in the laboratory and becomes

Hn(t ) = c2J2 + ω0Jz + (�x + ε) cos(ωt )Jx

+ γ (bxJx + byJy + bzJz ). (1)

where ω = ω0 − �BS to satisfy the resonant condition, and
bx,y,z are the three components of a stray magnetic field in
the laboratory. We also include explicitly the control error ε

caused by the fluctuation of the radio-frequency or microwave
power and the finite bandwidth of the control field. We note
that the magnetic-field noise and the control error are modeled
as ensemble white noise, which implies that the stray mag-
netic field bx,y,z and the control error ε are fixed for a single
experiment run but distribute randomly and uniformly from
run to run, i.e., bx,y,z ∈ [−bc, bc] and ε ∈ [−εc, εc] with bc and
εc the respective cutoff.

It is straightforward to obtain the effective Hamiltonian
[28] with the stray magnetic field and the control error in the
rotating reference frame defined by UR:

Hn ≈ �x

2
Jx +

[
ε

2
+

(
�x

4ω

)(
γ bz + �2

x

32ω

)]
Jx

+
[
γ bz − ε

2

(
�x

4ω

)]
Jz, (2)

under the conditions {γ bc/�x, εc/�x,�x/ω} � 1. We fur-
ther write down the evolution operator Un = exp (−iτHn) ≈
exp [−iπ (1 + ε/�x )Jn] where Jn ≈ Jx + 2γ bz/�xJz. It is ob-
vious that the relative error of rotation angle is θ‖ ≈ ε/�x and
the relative error of rotation direction θ⊥ ≈ 2γ bz/�x. Clearly,
this imperfect naive rotation (NR) deviates linearly from an
ideal π pulse, due to the control error ε and the stray magnetic
field bz. The rotation error exceeds 1% if εc/�x ≈ 1% or
γ bc/�x ≈ 1%.

To realize a more precise π rotation, we adopt the DCR,
which is inspired by the dynamically corrected gate originally
designed to suppress static noises, e.g., bx,y,z [29–37]. It is
straightforward to prove that the time-dependent control error
is canceled as well by the specific DCR pulse sequence shown
in Fig. 1. In fact, the evolution operator for the DCR cycle
is UDCR ≈ exp {−iπ [1 + θ‖]J ′

n} with θ‖ ≈ 7�2
x/(256ω2) +

γ bz/(2ω) − 4π (γ bz/�x )2 and J ′
n = Jx − (4πγ bzε/�

2
x )Jy +

[4πγ bzε/�
2
x − ε/(4ω)]Jz. One immediately finds θ‖ and θ⊥

are smaller than those in the NR, indicating the DCR is more
accurate (see Appendix A).

To verify the above analytical results from the Magnus
expansion theory, we carry out numerical simulations with the
time-dependent Hamiltonian Eq. (1). For the DCR, the driv-
ing amplitude �x (and the corresponding Bloch-Siegert shift
�BS) becomes time dependent as shown in Fig. 1. Since the
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FIG. 2. Rotation of the SSS. (a) The initial state with the average
spin along the −y axis and the optimal squeezing in the z direction
is rotated around the x axis. (b) The SSS is rotated to the final y
direction. (c) Comparison of the ideal SSS and the evolved final state
with error. (d) Dependence of the average spin direction deviation
on the magnetic-field noise bz. (e) Spin fluctuation. Panels (d) and
(e) show numerical results after NR (blue triangles) and DCR (red
circles), and analytical results after NR (blue solid line) and DCR
(red dashed line). Other parameters are N = 104, ω0 = γ B0 with
B0 = 1 G, bx,y = 0, ε = 0, and J0 ≈ 0.58N .

relative fluctuation |�J⊥/〈J〉| = 1/
√

N = 1% for a coherent
spin state with N = 104, it is impossible to justify the high
accuracy of the DCR. We thus employ an SSS whose relative
fluctuation is in the order of 1/N = 0.01% [4,38,39]. Initially,
we set the average spin J0 = 〈J〉 along the −y axis and the
optimal squeezing direction along the z direction. Once the
NR or DCR pulses are finished, we calculate the observables
〈Jz〉 and �Jz = √〈J2

z 〉 − 〈Jz〉2. The rotation error (precision)
is measured by the ratio of the two experimental observables
to the average spin J0 which should point along the y axis
after the rotation. 〈Jz〉/J0 denotes the deviation of the spin
direction from the ideal one, and �Jz/J0 denotes the quantum
fluctuation of the spin. We note that the spin fluctuation along
the x direction, �Jx, is very large (in the order of N) and not
useful in quantum sensing.

We compare the NR and DCR of the condensate spin at
different stray field bz in Fig. 2. We have set bx,y = 0 and
ε = 0 for a clear comparison. For the spin average, 〈Jz〉/J0,
we observe that the deviation from the ideal direction is below
0.1% if the magnetic-field noise is within 0.2 mG, either for
the NR or the DCR. For the spin fluctuation �Jz/J0, the min-
ima of both the NR and the DCR are close to the initial value
of 1/N . However, the DCR performs more robustly against the
field noise than the NR in general. To reach the precision of
0.1%, the DCR requires the magnetic noise below 0.2 mG but
the NR requires much smaller noise. As shown also in Fig. 2
the numerical results are in good agreement with the analytical
ones. It is lengthy but straightforward to obtain the analytical
results for 〈Jz〉/J0 and �Jz/J0 (details of the derivation are in
Appendix A).

In Fig. 3 we present numerical results of the deviation
of the spin direction and the spin fluctuation after the DCR
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FIG. 3. (a) Deviation of the spin direction log10(|〈Jz〉|/J0 ) and
(b) spin fluctuation log10(�Jz/J0 ) after the DCR with an initial SSS.
Panels (c) and (d) are the same but after the NR. Obviously, the DCR
performs more robustly against the stray field noise and the control
error than the NR, both for the deviation of the spin direction and
for the spin fluctuation. Under realistic experiment conditions bc ≈
0.1 mG (i.e., γ bc/ω0 ≈ 10−4) and ε/�x ≈ 0.01, the precision of the
DCR is well below 0.1%. Each datum is averaged over 106 random
realizations.

for various cutoff noise strength bc and control error εc. For
comparison, we also show the same results after the NR.
As illustrated in Figs. 3(a) and 3(b), the deviations of the
spin direction and the spin fluctuation are small with the
stray field noise and the control error. In particular, they are
both below 0.1% if the control error is smaller than 0.01�x

and the stray field is within 0.1 mG. However, the NR er-
rors shown in Figs. 3(c) and 3(d) are rather large, making it
impossible with the NR to estimate the fidelity beyond the
standard quantum limit. This is why we adopt the DCR to
take quantum-entanglement advantage of the SSS. We note
that the numerical results agree well with the analytical ones
which are detailed in Appendix A.

III. O(1) BENCHMARKING OF A PRECISE ROTATION

With such a robust and high-precision DCR at hand, we
compare it with other single-particle quantum operations. The
precision of most quantum operations is usually characterized
by the operation infidelity, 1 − F , with F the fidelity between
the ideal operation and the realized one. After an analytical
derivation, we find the rotation infidelity

1 − F = 1 −
∣∣∣∣∣
sin

(
3θ
2

)
3 sin θ

2

∣∣∣∣∣ (3)

where the fidelity F = |Tr(U†X)|/
√

Tr(U†U)Tr(X†X) with
U the evolution operator, X the ideal π -rotation operator,
and the rotation error θ defined by exp(−iθJn) = U †X . The
rotation infidelity 1 − F ≈ θ2/3 if θ � 1. One immediately
obtains the rotation infidelity once one knows θ which may be
calculated theoretically, simulated numerically, or estimated
(measured) experimentally (more details are in Appendix B).
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FIG. 4. Dependence of the rotation infidelity 1 − F on the cutoff
of the stray magnetic field for (a) εc = 0 and (b) εc/�x = 0.01. In
(a) and (b), the analytical results (solid lines) agree well with the
numerical ones (circles with error bars) for DCR (lower) and NR (up-
per). The dashed lines denote the estimated rotation infidelity by θz

for DCR (lower) and NR (upper). Each numerical datum is averaged
over five runs of random fields and the standard deviation is denoted
by error bars. The vertical and the horizontal boundaries mark the
reported bc = 0.01 mG and the infidelity 1 − F = 5 × 10−5, respec-
tively [40].

We present the rotation infidelity after the DCR (and the
NR) in Fig. 4. The numerical results are simulated by evolving
the system under the time-dependent Hamiltonian Eq. (1).
The analytical ones are straightforwardly calculated with the
time-independent effective Hamiltonian Eq. (2) and the appli-
cation of the DCR pulse sequence. As shown in Fig. 4, the
numerical and the analytical results agree well, implying that
the effective Hamiltonian is an excellent approximation to the
real one if the stray magnetic field and the control error are
small. As the stray field decreases from ≈1 mG, the rotation
infidelity decreases sharply in the form of (γ bc/ω0)2 for the
NR and (γ bc/ω0)4 for the DCR. At an extremely small stray
field, the infidelity reaches a plateau which stems from the
high-order terms beyond the Bloch-Siegert shift. Compared to
the NR, the rotation infidelity after the DCR is several orders
of magnitude smaller if the stray magnetic field lies in the
range bc ∈ [0.01, 1] mG. In fact, the DCR infidelity at the
most stable laboratory field bc ≈ 0.01 mG is roughly 0.001 of
the reported lowest gate infidelity in nitrogen-vacancy centers
in diamond [40], indicating the great potential of the spinor
BEC systems in precise quantum operations.

Benchmarking such a small rotation infidelity is a big chal-
lenge. However, by noticing the independence of the small
rotation error θ on the atom number N for the DCR, we
may make full use of the advantages of many-body entangle-
ment states, e.g., spin-squeezed states, to estimate (measure)
θ precisely and calculate the single-particle rotation infidelity
1 − F with Eq. (3). To estimate efficiently the small rotation
error θ , we suggest θ ≈ θz = Jz/J0 where Jz after the DCR
is measured experimentally for an initial SSS with optimal
squeezing along the z axis. As illustrated in Fig. 4, the ro-
tation infidelity derived from θz agrees well with that from

θ , except the region with extremely tiny rotation infidelity
1 − F < 10−8. Such a limitation originates from the spin-
squeezing limit of the quantum state, which is in the order
of 1/(3N2) ≈ 10−8 for N = 104 [38]. This limitation may be
lower than 10−8 by increasing the atom number in a spin-1
BEC.

We remark that only several measurements of the rotation
error are enough to obtain a pretty good estimation of the
rotation infidelity with the spin-squeezed quantum state, as
shown in Fig. 4. This O(1) measurement requirement greatly
relieves the experimental efforts and contrasts sharply with
the quantum process tomography and the randomized bench-
marking, which require O[1/(1 − F )2] and O[1/(1 − F )]
(equivalent) measurements, respectively [16,40]. Such a huge
benefit comes from the accurate estimation of the rotation
error and thus the rotation infidelity with the spin-squeezed
quantum state, manifesting the quantum supremacy of entan-
gled quantum states over the separable ones. Of course, one
may carry out more experimental measurements with the spin-
squeezed state to benchmark even lower rotation infidelity
beyond the spin-squeezing limit 1/(3N2).

IV. CONCLUSION AND DISCUSSION

In conclusion, we propose an O(1) benchmarking method
for a precise single-spin rotation with the error derived from
the precisely measured rotation error by utilizing a squeezed
spin state. With analytical calculations and numerical simula-
tions, we show that a DCR decouples almost perfectly a spin-1
BEC from its magnetic noise environment when performing
a π rotation. The rotation infidelity after a DCR approaches
10−8 for 104 atoms at the lowest laboratory magnetic-field
noise of ≈0.01 mG and a relative control error of ≈1%. For
such a high-precision rotation, it is viable to benchmark it
by only several measurements with a squeezed spin state in
a spin-1 BEC. Although our example focuses on a precise π

rotation, the O(1) benchmarking is in principle applicable to
an arbitrary rotation with a squeezed spin state, which may be
prepared in a spin-1 BEC or a many-qubit system like trapped
ions, superconducting qubits, nitrogen-vacancy centers, and
neutral atoms in optical tweezers [38,41,42].

The preparation of a spin-squeezed state under current
experimental conditions has been discussed theoretically
[25,43]. We notice two recent advances in spinor BECs.

(i) Zou et al. demonstrated spin squeezing in 104 atoms
18 dB below the standard quantum limit (SQL) which is the
limit for a coherent spin state [44].

(ii) Single-atom level counting was reported via a combi-
nation of Stern-Gerlach separation and fluorescence imaging
[45].

By adopting both techniques, it is possible to implement
the O(1) benchmarking in spinor BEC experiments, at least
at the level of 1 − F ≈ 10−6 since the spin squeezing has not
reached perfectly the Heisenberg limit (which is 40 dB below
the SQL). In addition, entanglement states were generated
and high-fidelity rotations realized in nitrogen-vacancy center
experiments [25,40,46–48], indicating that our method may
also be applicable in these many-qubit systems in principle,
though the size of qubits is quite limited.
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APPENDIX A: THE AVERAGE HAMILTONIAN

The spin-1 BEC Hamiltonian under the single mode ap-
proximation is

Hn(t ) = c2J2 + ω0Jz + (�x + ε) cos(ωt )Jx

+ γ (bxJx + byJy + bzJz ), (A1)

where c2 < 0 is the ferromagnetic spin-exchange coupling
strength, ω0 = γ B0 is the Larmor frequency in a magnetic
field B0 with γ the gyromagnetic ratio, �x is the Rabi fre-
quency of a rf field (carrier frequency ω) coupled to the
condensate atoms, and Jα = ∑N

i=1 siα (α = x, y, z) is the col-
lective spin of the condensate with siα the atomic spin-1 matrix
for the ith atom and N the total atom number. The control
error ε and the magnetic-field noise bx,y,z are fixed for a single
experiment run, but they change for the next. In a typical
spin-1 BEC experiment, {γ bx,y,z/�x, ε/�x,�x/ω} � 1.

By employing a rotating reference frame defined by UR =
exp {−it (ωJz + c2J2), the Hamiltonian becomes

HR(t ) = γ bzJz + [(�x + ε) cos(ωt ) + γ bx]

× [cos(ωt )Jx + sin(ωt )Jy]

+ γ by[− sin(ωt )Jx + cos(ωt )Jy]. (A2)

The average Hamiltonian with Magnus expansion to the sec-
ond order in a period of τ0 = 2π/ω is [28]

Hn ≈
(

�x

2
+ ε

2
+ γ bz�x

4ω
+ �3

x

128ω2

)
Jx +

(
γ bz − ε�x

8ω

)
Jz,

(A3)

which is nothing but Eq. (2). Note that the Bloch-Siegert shift
has been included and the third- and higher-order terms are
neglected.

Next we consider the effective evolution operator for the
pulse sequence, DCR. The effective Hamiltonians Hk during
[k − 1, k]τ (k = 1, 2, . . . , 6) are

H1 = Hn,

H2 ≈ −
(

�x

2
+ ε

2
+ γ bz�x

4ω
+ �3

x

128ω2

)
Jx

+
(

γ bz − ε�x

8ω

)
Jz,

H3,4 = Hn,

H5,6 ≈ −
(

�x

4
+ ε

2
+ γ bz�x

8ω
+ �3

x

1024ω2

)
Jx

+
(

γ bz − ε�x

16ω

)
Jz. (A4)
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FIG. 5. Same as Fig. 3 except for analytical results.

It is straightforward to calculate the effective evolution opera-
tor for the DCR:

UDCR = e(−i2τH5 )e(−i2τH1 )e(−iτH2 )e(−iτH1 )

≈ e[−iπ (1+θ‖ )Jn], (A5)

with

θ‖ = 7�2
x

256ω2
+ γ bz

2ω
− 4π (γ bz )2

�2
x

,

Jn = Jx − 4πγ bzε

�2
x

Jy +
(

4πγ bzε

�2
x

− ε

4ω

)
Jz.

Again we have neglected the third- and higher-order terms.
With the evolution operator above, one can straight-

forwardly calculate experimental observables, such as the
spin average 〈Ji〉 = Tr(ρ0U †JiU ) and its fluctuation �Ji =√

Tr(ρ0U †J2
i U ) − 〈Ji〉2 with i = x, y, z for an initial spin state

ρ0. The results with ε = 0 are shown in Fig. 2, which agree
well with the numerical ones. The results with ε �= 0 are
shown in Fig. 5, which are also close to the numerical ones
shown in Fig. 3.

APPENDIX B: ROTATION INFIDELITY

Same as a quantum gate fidelity [14], the rotation fidelity
for a spin-1 BEC is defined as

FN = |Tr(U †X )|
2N + 1

=
∣∣∣∣∣

sin
(
(2N + 1) θ

2

)
(2N + 1) sin

(
θ
2

)
∣∣∣∣∣ (B1)

where U = UNR = exp (−iτHn) for the NR, U = UDCR for
the DCR, and X = exp (−iπJx ) for an ideal π rotation op-
erator around the x axis. We have used that the product of
two rotation operators is also a rotation operator, i.e., U †X =
exp(−iθJn) with Jn and θ given by

Jn = 1

sin(θ/2)

(
cos

φ

2
Jx − c sin

φ

2
Jy + b sin

φ

2
Jz

)
,

cos

(
θ

2

)
= a sin

(
φ

2

)
,
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FIG. 6. The minimum spin moments of 〈J2
z 〉 and 〈J4

z 〉 as a func-
tion of particle number N for an optimal two-axis spin-squeezed
state.

for a rotation operator U = exp(−iφJφ ) and Jφ = aJx + bJy +
cJz with a2 + b2 + c2 = 1.

To fairly compare with a single atom’s rotation fidelity in
other systems, it is easy to derive the rotation fidelity for a
single spin-1 atom from Eq. (B1), by setting N = 1:

F = 2 cos θ + 1

3
≈ 1 − θ2

3
(B2)

if θ is small. From the above function, one immediately ob-
tains the average and the fluctuation of the rotation fidelity:

Favg = 1 − θ2/3 = 1 − (�θ )2 + (θ̄ )2

3
, (B3)

(�F )2 = 1
9 [θ4 − (θ2)2]

= 1
9 {θ4 − [(�θ )2 + (θ̄ )2]2} (B4)

where x̄ is the average of x. To calibrate the infidelity to
an accuracy ε � 1, we need to guarantee that 1 − Favg < ε

and �F < ε. As shown in the above equation, 1 − Favg and
�F depend solely on the small error angle θ which can be
estimated experimentally.

To accurately measure the error angle θ , one may take
advantage of the SSS in a spin-1 BEC. A crude estimation
is θ ≈ θz = Jz/J0 for the designed initial SSS. Under this
approximation, we find

Favg = 1 − (�Jz )2 + 〈Jz〉2

3J2
0

,

�F = 1

3J2
0

√
〈J4

z 〉 − [(�Jz )2 + 〈Jz〉2]2
. (B5)

The spin moments above can be measured precisely in experi-
ments. It is well known that, for an optimal SSS with N atoms,
�Jz/J0 ≈ 1/N and 〈Jz〉 = 0 with optimal squeezing along the
z axis [38].

For the optimal SSS we employ, we calculate the moments
of the condensate spin Jz. As shown in Fig. 6, 〈Jz〉 = 0,
〈J2

z 〉 ≈ 0.5, and 〈J4
z 〉 ≈ 2 for N > 102. From Eq. (B5) one

immediately finds that 1 − Favg and �F are both in the order
of 1/N2, indicating that O(1) benchmarking at the level of

-4 -3 -2 1 0
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S
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FIG. 7. Dependence of infidelity on spin-squeezing parameters.
The horizontal dashed line denotes the value of 1 − F = 1/N2 with
N = 104.

1/N2 is possible if other noises, such as the stray magnetic
field and the control error, are well under control with the
DCR. In real experiments, the initial state often deviates from
the optimal SSS. According to Eq. (B5), the infidelity after a
perfect rotation is

1 − Favg = Nξ 2
S

6J2
0

, (B6)

in the case of zero stray magnetic noises (thus 〈Jz〉 = 0). The
spin-squeezing parameter ξ 2

S = (�Jz )2/(N/2) was originally
introduced by Kitagawa and Ueda [38]. The result is plotted
in Fig. 7. As shown clearly in the figure, the infidelity reaches
≈1/N2 when ξ 2

S is smaller than 10−3. With the presence of
magnetic noise and control error, numerical simulations of
initial states with various ξ 2

S are shown in Fig. 8. Obviously,

-6 -5 -4 -3
log

10
(  b

c
 / 

0
 )

-8

-6

-4
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g

1
0
(1

 -
 F

)

100

10-1

10-2

10-3

10-4

FIG. 8. Dependence of infidelity on stray magnetic noises with
relative control error εc/�x = 0.01 after DCR. The spin-squeezing
parameters of initial SSS are 1 (blue solid line), 10−1 (red dash-dotted
line), 10−2 (yellow dashed line with circles), 10−3 (purple solid line
with circles), and 10−4 (green dashed line with circles), from top to
bottom. Each datum is averaged over five random realizations and
the error bars are the standard deviation (halved for a clear view).
The vertical red dashed line marks the position bc = 0.01 mG.
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the infidelities at small noises agree well with the prediction
of Eq. (B6), indicating that O(1) benchmarking is possible if
the squeezing parameter is smaller than 10−3.

To estimate θ more accurately, one may repeat the exper-
iment to measure θn with the optimal squeezing axis of the
initial SSS along different directions. In this way, the rotation
fidelity becomes more accurate. However, it still scales as
1/N2.

To calibrate an arbitrary rotation R(α, k) with α the rota-
tion angle and k the rotation axis, one may prepare the initial
SSS under the conditions both n0 ⊥ k and s0 ⊥ k where n0

and s0 are the average spin direction and the optimal squeez-
ing direction of the initial state. Here R(α, k) stands for a
3 × 3 special orthogonal rotation matrix. Correspondingly,
the measurement direction becomes s f = R(α, k)s0 after
the rotation.
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