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Distributed vorticity model for vortex molecule dynamics
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We analyze the effect of a hard wall trapping potential on the dynamics of a vortex molecule in a two-
component Bose-Einstein condensate with linear coherent coupling. A vortex molecule consists of a vortex of the
same charge in each component condensate connected by a domain wall of the relative phase. In a previous paper
[S. Choudhury and J. Brand, Phys. Rev. A 106, 043319 (2022)] we described the interaction of a vortex molecule
with the boundary using the method of images by separately treating each component vortex as a point vortex,
in addition to a Magnus force effect from the surface tension of the domain wall. Here we extend the model by
considering a continuous distribution of image vorticity reflecting the effect of the domain wall on the vortex
molecule phase structure. In the case of a precessing centered vortex molecule in an isotropic trap, distributing
the image vorticity weakens its contribution to the precession frequency. We test the model predictions against
numerical simulations of the coupled Gross-Pitaevskii equations in a two-dimensional circular disk and find
support for the improved model.
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I. INTRODUCTION

The quantization of vortex lines is a striking feature of
superfluids that appears as a consequence of Bose-Einstein
condensation [1]. The dynamics of superfluid vortices still
poses many open questions and is actively pursued [2–5].
Shortly after the first observation of quantized vortices in a
dilute gas Bose-Einstein condensate (BEC) [6], experiments
introduced coherent coupling in multicomponent BECs by
applying a radio-frequency electromagnetic field that drives
a Rabi transition between internal (hyperfine) states in the
constituent atomic gas [7], with more refined experiments
becoming available recently [8–10]. Theoretical work then
examined the peculiar structure of vortices in such a two-
component BEC under the continuous influence of coherent
coupling [11,12]. Due to the coherent coupling, the phases of
the component condensates align in equilibrium. As a conse-
quence, vortices in the component BECs have to be connected
by a vortex line that extends between the two BECs as a
domain wall of the relative phase, also known as a Josephson
vortex. Analytic solutions for stationary Josephson vortices
were first found by Kaurov and Kuklov [13,14], and families
of moving Josephson vortices were characterized in Ref. [15].

Domain walls have an energy content, or surface tension,
which is approximately linear in their extent, i.e., length in
two dimensions and area in three dimensions. This makes
them susceptible to breaking up into smaller fragments. Their
dynamical stability is determined by the sign of their effective
mass, which depends on the competition between the Rabi
coupling and the nonlinear mean-field energy in the BECs
[15–17]. Interesting analogies to axions and quark confine-
ment were first pointed out by Son and Stephanov [11] (see
also Refs. [18–20]).

In two-dimensional BECs, a domain wall can either ter-
minate at a boundary of the superfluid domain, or at an

appropriately charged vortex in either of the component
BECs. A configuration with same-charge vortices in each
component connected by a domain wall is known as a vortex
molecule [21]. Sometimes it is referred to as a fractional
vortex molecule to highlight the fact that the quantized vor-
tex charge can be thought of as being split into fractional
charges residing in separate locations at the vortices in each
component BEC [22]. Theoretical studies of equilibrium con-
figurations were extended to vortex molecule lattices [23].
Topological defects analogous to vortex molecules are being
investigated experimentally in superfluid 3He [24].

The dynamics of vortex molecules was first considered
by Tylutki et al. [25] in the context of a two-dimensional
coupled BEC in an isotropic harmonic trap. In this scenario,
a symmetrically centered vortex molecule rotated with a con-
stant angular frequency around the trap axis, referred to as
precession. The vortex molecule dynamics was described by
the superposition of three separate velocity components: One
derived from the influence of the harmonic trapping potential
on the individual (point) vortices in a Thomas Fermi approxi-
mation and two contributions from the Magnus effect related
to a short-range core repulsion and an attractive force due to
the surface tension of the domain wall. A generalized Magnus
force on a quantized vortex gives rise to a transverse velocity
component according to F = 2πn0h̄κ̂ × V, where n0 is the
superfluid density, κ̂ is the circulation unit vector, and V is
the velocity of the vortex relative to that of the background
superfluid [26,27]. Calderaro et al. [28] then developed a
Lagrangian variational formalism focusing on the effect of the
domain wall on the vortex dynamics. They obtained analytic
results in two different regimes: The attractive Magnus force
was linear in the molecular distance d (the length of the
domain wall) in the regime of weak Rabi coupling where
ξJ � d � ξ , and ξJ was the Josephson vortex length scale
(width of the domain wall), and ξ was the condensate healing
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FIG. 1. Vortex molecule in a disk. Numerical solution of the GPE
(1) with a centered vortex molecule with molecular length d = 20ξ

in a disk-like trap described by Eq. (5). (a) Density of condensate
1, n1 = |ψ1|2. (b) Density of condensate 2, n2 = |ψ2|2. (c) Relative
phase arg(ψ1ψ

∗
2 ). (d) Total phase arg(ψ1ψ2). The black dotted circles

in panels (c) and (d) denote the trap boundary at the disk diameter of
2L = 70ξ . Other parameters are ν = 2 × 10−3μ, g12 = 0.

length. In this regime, the Magnus force contribution to the
precession frequency was constant. The other regime of strong
Rabi coupling where d � ξJ � ξ was the one considered by
Tylutki et al. [25] where the Magnus force was constant and
provided by the surface tension of an infinite domain wall.

In a previous work we developed an extended point vortex
model to analyze the dynamics of a vortex molecule in a flat-
bottom trap realizing a channel geometry with parallel hard
walls [29]. The model includes the Magnus-force effects of
the domain wall and possible core repulsion by parametrizing
a numerically obtained vortex-vortex interaction energy in the
absence of domain boundaries. The effects of the hard-wall
boundaries were separately taken into account by the method
of images applied on the individual component vortices. This
theory was able to predict all the qualitative features in the
pendulum-like phase space of the vortex molecule dynamics
in the channel geometry of Ref. [29].

In this work we aim for a more accurate description of
the vortex-molecule dynamics in the presence of hard-wall
trapping potentials. Instead of treating the component vortices
as localized point vortices, we consider the vorticity to be
distributed along the domain wall connecting the component
vortices for the purpose of generating image vorticity. This
is motivated by the fact that over length scales larger than
the molecular separation and the Josephson length scale, the
phase of both condensate components aligns in numerical
simulations.

Figure 1 shows the density and phase features of a vortex
molecule from a numerical solution of the Gross-Pitaevskii
equation (GPE). The component vortices are clearly distin-
guished by their low-density cores (dark dots) in Figs. 1(a)
and 1(b). They also give rise to phase singularities (all colors

of the rainbow meeting in a single point) in the phase plots in
Figs. 1(c) and 1(d). The domain wall is clearly visible as a re-
gion of large phase gradients in Fig. 1(c), showing the relative
phase between the two condensates. The fact that the relative
phase nearly vanishes outside of the localised domain wall
indicates that both condensates have the same phase structure.
This observation is inconsistent with the assumptions of the
extended point vortex model of Refs. [25,29], where the point
vortices were located at different positions in the component
condensates, namely, at either end of the vortex molecule,
which led to a global misalignment of the component phase
fields. In addition to the numerical observations, it also makes
sense to assume that the phases of the component condensates
align outside of the immediate vicinity of the domain wall, as
this will minimiae the local energy density [30].

Modeling instead the component vortices by a vorticity
distribution that is equal in each component condensate and
distributed along the domain wall, the phase of the two con-
densates are identical everywhere outside the domain wall.
For the purpose of the distributed vorticity model we will
assume a uniform vorticity distribution along the domain
wall, which is modeled as a (narrow) straight line extending
over the size of the molecule. The uniform distribution is
the simplest assumption that can be made, and is further-
more consistent with a constant total phase of the component
condensates, as it is observed in the GPE simulation, see
Fig. 1(d). In essence, the assumption of a distributed vorticity
along the molecular axis represents the action of the domain
wall on the relative phase, but shrunken to a line of zero
width.

The assumed distributed vorticity is relevant for the vortex
molecule dynamics by generating a continuous distribution
of image vortices from the boundaries of the trap. In the
following we consider a flat-bottom trap, which is modeled
as a container with hard wall boundaries. The concept of a
distributed vorticity is thus used in a very different context
than in Ref. [31], where distributed image vorticity was found
useful in modeling the vortex motion in a single condensate
while dealing with a Thomas-Fermi parabolic density profile
(or soft boundaries).

Additional Magnus-force contributions to the dynamics
originating from the domain-wall surface tension and core-
interaction are obtained from the numerically generated
vortex-molecule interaction energy as in our previous work
[29]. For the current work we use a more accurate represen-
tation of the numerical data compared to the parametrization
used in Ref. [29], combining interpolation and extrapolation,
which we found necessary to obtain quantitative agreement
with fully numerical simulations of the vortex molecule dy-
namics. The new parametrization is now consistent with the
regimes of weak and strong Rabi coupling examined analyti-
cally in Ref. [28].

We derive and solve the equations of motion for the
distributed vorticity model for the case of a single vortex
molecule in a disk-shaped domain with hard wall boundary
conditions. This situation could be achieved in BEC ex-
periments with a flat-bottom trap. The model solutions are
compared with fully numerical solutions of the GPE. We also
compare with the simpler method of images for point vortices
and a simplified description of the surface tension that is linear
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in the domain wall size and find that the refined model gives
the best agreement with the GPE data.

The paper is structured as follows. Section II introduces the
coupled GPE governing the system of coherently coupled con-
densates. Section III introduces the point vortex formulation
and reviews the extended point vortex model before defining
the distributed vorticity model. The general formulations are
applied to the dynamics of a vortex molecule in a flat-bottom
trap in Sec. IV before concluding in Sec. V. Appendix A
provides relevant details for the parametrization of the inter-
action energy and Appendix B discusses the calculation of the
general integrals of the charge distribution model.

II. MEAN-FIELD FORMULATION

We characterize two coherently coupled atomic Bose-
Einstein condensates with complex order parameters, ψ1(r, t )
and ψ2(r, t ) in the mean-field description of coupled GPEs

ih̄
dψ1

dt
= (ĥ − μ + g1|ψ1|2 + g12|ψ2|2)ψ1 − νψ2, (1a)

ih̄
dψ2

dt
= (ĥ − μ + g2|ψ2|2 + g12|ψ1|2)ψ2 − νψ1, (1b)

where ĥ = − h̄2

2m ∇2 + Vext is the single-particle Hamiltonian
for bosons of mass m. The chemical potential μ controls the
number of particles in numerical simulations. The spatially
homogeneous coherent (Rabi) coupling ν can be realized by a
two photon microwave field or a driving radio frequency. The
atoms are assumed to be strongly confined along the z spatial
dimension to realize a quasi-two-dimensional quantum gas
with a positional coordinate denoted as r = (x, y)t. Additional
box-like confinement in the two-dimensional plane is pro-
vided by the external potential Vext (r), which we take to vanish
inside the superfluid domain and rising sharply at the domain
boundaries. This will create a uniform quasi-two-dimensional
Bose-Einstein condensate with rigid (hard-wall) boundaries as
realized, e.g., in Ref. [32].

Our zero-temperature theory is applicable to the low
temperature and high particle-number-density regime of ex-
periments [32]. The free energy associated with the GPE (1)
is given by the integral

W =
∫ [

2∑
i=1

(
ψ∗

i ĥψi + gi

2
|ψi|4 − μ|ψi|2

)

+ g12|ψ1|2|ψ2|2 − ν(ψ∗
1 ψ2 + ψ1ψ

∗
2 )

]
d2r. (2)

To reduce the number of parameters, we choose equal
intracomponent interactions g1 = g2 ≡ g. The homogeneous
and time-independent ground-state solution of Eq. (1) for
Vext = 0 is given by equal and constant density n1/2 ≡
|ψ1/2|2 = (μ + ν)/(g + g12) ≡ n0 in the component conden-
sates. We are interested in the miscible regime where g +
|ν|/n0 > g12 [33]. The homogeneous solution n0 serves as
the background bulk density for localized vortex or nonlin-
ear wave solutions. The linear coupling ν > 0 ensures that
component condensates phases align and thus ψ1 = ψ2 in
equilibrium [34], but a global phase factor remains undeter-
mined due to a global U (1) symmetry of the coupled BECs.

The healing length

ξ = h̄√
m(g + g12)n0

= h̄√
m(μ + ν)

(3)

provides the length scale on which a homogeneous solution
is recovered away from forced local inhomogeneities due to
vortex cores or boundary conditions [35].

A point vortex model, nominally applicable to an incom-
pressible fluid, requires that the healing length is smaller than
other relevant length scales like the separation of vortices,
or the distance of vortices from the boundaries [36,37]. The
authors of Ref. [38] showed how to relax the incompressibility
condition of the point vortex model and obtain correction
terms for vortex dynamics as a series expansion in ξ 2/D2,
where D is a length scale of the superfluid domain. Vortex
molecules introduce two additional length scales on top of the
healing length. The molecular size d is the separation between
the vortex singularities in the component vortices and also
determines the length of the domain wall in the relative phase
in situations where the domain wall extends along a straight
line connecting the component vortices. The third length scale

ξJ = h̄√
4mν

, (4)

is called the Josephson vortex length scale and determines the
width of the domain wall connecting the two component vor-
tices. Exact solutions for a stationary and moving Josephson
vortex were characterized in Refs. [13,15], respectively.

In the numerical example shown in Fig. 1 the molecular
size d = 20ξ is slightly larger than that Josephson length
scale ξJ ≈ 11.2ξ . The domain wall of the relative phase is
clearly seen as a feature with large phase gradients in the
relative phase in Fig. 1(c). We can understand the domain
wall to be centered around the line of constant relative phase
arg(ψ1ψ

∗
2 ) = ±π and extending over a width of ξJ. In the

distributed vorticity model proposed in this work the domain
wall is reduced to a straight line of zero width along which
the vorticity of the vortex molecule is distributed. The model
thus assumes that both the healing length ξ and the Joseph-
son length ξJ are small compared to any other length scale,
including the domain size D and the molecular size d .

The numerical vortex-molecule solution of the coupled
GPE (1) show in Fig. 1 models a disk-shaped two-component
BEC. The disk-shaped radially symmetric external potential
of radius L is described by

Vext (r) = (μ + ν)

(
1 + tanh

|r| − L

ξ

)
. (5)

The solution shown in Fig. 1 was obtained by first imprinting
a single vortex in each condensate component at the desired
locations R1, R2. A low-energy solution is then obtained by
evolving Eq. (1) in imaginary time, i.e., replacing t → −iτ ,
which corresponds to minimizing the energy functional W by
gradient flow. Imaginary time evolution quickly removes most
density and nontopological phase excitations. On a slower
timescale, the location of vortex phase singularities move
towards lower-energy configurations, which eventually moves
them outside the trap. To avoid this, Gaussian pinning poten-
tials are used to pin the vortices in a particular configuration
for each vortex while only having minimal effect on the phase
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and density structure. While the obtained solutions are sta-
tionary only in the presence of the pinning potential, they also
serve as suitable initial conditions for studying vortex dynam-
ics under real-time evolution of the coupled GPE (1) after
the pinning potentials are removed. Under the assumptions of
the point vortex model, the vortex dynamics only depends on
the instantaneous position of the vortex singularities by evolv-
ing through minimal energy configurations. This neglects, in
particular, the effects of sound emission or reabsorption. We
test the predictions of the point vortex model by comparing
with fully time-dependent GPE dynamics. Vortex positions
are tracked by accurately locating the phase singularities using
the software library VortexDistributions.jl [39].

III. POINT VORTEX FORMULATION

The idea of the point vortex model is that the dynamics of
vortices is fully determined by the positions of all vortices in
the system together with the boundary conditions. The model
strictly applies to ideal inviscid and incompressible fluids
[36,40] and can be applied to the GPE in situations where the
healing length ξ can be considered a small parameter [37,38].
For an ideal fluid in two dimensions one can define a scalar
stream function whose contours are colinear with the local
fluid velocity u(r). The velocity of a point vortex at position R
can be found from the stream function after the singular con-
tribution of the vortex itself has been removed [40]. While the
stream function cannot be used for multicomponent coupled
BECs, an alternative approach based on energy conservation
is still applicable.

The idea is to find the point vortex trajectories as the
contours of a conserved energy function, which only depends
on the vortex coordinates after the boundary conditions are
defined. This leads to a Hamiltonian formulation where the
vortex x and y coordinates play the role of canonically con-
jugate variables. In this formulation additive contributions to
the total energy provide additive contributions to the vortex
velocity.

A. Extended point vortex model for the vortex molecule

In the extended point vortex model, first presented in
Ref. [29], the total energy of the vortex molecule is given by

Evm(R1, R2) = Ebound(R1, R2) + V (|R1 − R2|), (6)

where R j = (Xj,Yj )t is the coordinate vector of the jth com-
ponent vortex, Ebound(R1, R2) is an energy contribution from
the boundary-induced image vortices, and V (d ) is an inter-
nal energy of the vortex molecule that only depends on the
separation of the component vortices, or the molecular size,
d = |R1 − R2|. The trajectories of the component vortices are
then obtained from the equation of motion

Ṙ j = ∇⊥
j

Evm(R1, R2)

2πn0 h̄κ
, (7)

here κ = ±1 is the integer vortex charge and

∇⊥
j =

⎛
⎝ ∂

∂Yj

− ∂
∂Xj

⎞
⎠ (8)

is the projection of the curl onto the x-y plane. The equation of
motion (7) has the structure of Hamilton’s equations of mo-
tion common to the Hamiltonian formulation of point vortex
dynamics [40]. As a consequence of the two energy contribu-
tions of Eq. (6) the equation of motion has two contributions
to the point vortex velocity

Ṙ j = Vbound
j + Vint

j . (9)

The authors of Ref. [29] made specific assumptions for the
two terms in Eq. (6): The boundary term was provided by the
method of images for each component vortex separately

Ebound(R1, R2) = Esv(R1) + Esv(R2), (10)

where Esv(R) is the energy contribution of a single vortex in
the superfluid within the given boundaries, i.e., incorporating
the contributions from image vortices. As a consequence, the
point vortex velocity contributions in the equation of motion
become

Vbound
j = Vsv

j ≡ (2πn0 h̄κ )−1∇⊥E sv(R)|R=R j , (11)

Vint
j = (2πn0h̄κ )−1 dV (d )

dd
∇⊥

j |R1 − R2|. (12)

The interaction energy V (d ) was parameterized from a numer-
ical calculation of the vortex-molecule energy in the absence
of boundaries. This model provided an adequate description
of the dynamics of the vortex molecule in a channel with
parallel side walls and was able to reproduce all qualitative
phase space structures in Ref. [29].

We note, however, that this model is too simplistic for a
fully quantitative description of vortex-molecule dynamics. In
particular, the velocity contribution of the boundary term Vsv

j
originates from the image vortices of the component vortex at
position R j only. We know, however, that the phase structure
of the component condensates is not independent of each other
but rather strongly influenced by the Rabi coupling. A domain
wall of the relative phase extends between the component
vortices roughly along the molecular axis. At distances larger
than ξJ away from the domain wall, the relative phase drops
to zero and the phases of each component BECs align, see
Fig. 1.

This observation motivates us to modify the extended
point vortex model by considering an image vortex distri-
bution extended along the image of the domain wall of the
relative phase. For this work we retain the formulation of
the extended point vortex model of Eqs. (6) and (7), but
improve the approximate representation of the two energy
terms. For the interaction energy V (d ) we use a more accu-
rate numerical representation based on the same numerical
calculation as detailed in Appendix A. An improved represen-
tation of the boundary contributions to the vortex molecule
equation of motion is the subject of the distributed vorticity
model.

B. Distributed vorticity model

Due to the effect of the boundaries each vortex obtains
a velocity component that can be thought of as the linear
superposition of velocity fields induced by all image vortices
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FIG. 2. Concept diagram of the vorticity distribution model for
a centered vortex molecule in a disk trap. The image vortices are
formed at locations R̃ = L2

|R|2 R where R is the position of the original
charge. The distance of the image vortices from the center of the
condensate is inversely proportional to the distance of its original
vortex from the center. Hence, even though the charge distribution is
evenly spaced the image charges are not and reach out to infinity as
|R| → 0.

at the position of that vortex. Let

κuim(r; R) (13)

denote the velocity field induced by the images of a vortex
at position R with charge κ . The boundary-induced velocity
contribution in the extended point vortex model of Sec. III A
of vortex j then becomes

Vsv
j = κuim(R j ; R j ). (14)

For the distributed vorticity model we take the source of
image vorticity to be distributed along the domain wall of the
relative phase extending between the two component vortices
of the vortex molecule, i.e., along the molecular axis. Thus
the velocity component of vortex j originating from the image
vorticity becomes a superposition of velocity contributions

Vdv
j = κ

∫ 1

0
uim[R j ; (1 − t )R1 + tR2]dt . (15)

Figure 2 is a concept diagram that shows how the distributed
vorticity of the vortex molecule can be thought of as being
composed of individual vortices of fractional charge, giving
rise to a distribution of image vortices in turn. The placement
of image vortices is chosen such that the no-flow boundary
condition for flow perpendicular to the disk boundary is sat-
isfied. In the following we will apply these ideas to the disk
geometry.

IV. VORTEX MOLECULE DYNAMICS
IN A FLAT-BOTTOM DISK TRAP

A. Velocity of a simple vortex in a disk

The simple vortex solution in the two-component conden-
sate can be understood as a special case of a vortex molecule
where the two vortices are at the same location. In this case the
phases of the two component condensates can align perfectly
and thus no domain wall of the relative phase is present. The
velocity of the simple vortex in a disk is thus completely deter-
mined by the contribution from the boundaries. Moreover, the
predictions from the extended point vortex model and from
the distributed vorticity model trivially agree and become
equivalent to the point vortex model for a single-component
superfluid.

In the point vortex model we ignore the compressibility of
the superfluid, formally taking ξ → 0, and assume a constant
condensate density. The phase of the GP order parameter of a
single vortex at position R = (X,Y )t is given by arg[ψ (r)] =
κ arctan y−Y

x−X in the absence of boundaries (up to a constant),
and the corresponding velocity field is

u(r) = h̄

m
∇ arg(ψ ) = h̄κ

m

ẑ × (r − R)

|r − R|2 . (16)

The influence of the box-like trapping potential is to create a
no-flow boundary condition, i.e., a condition that prohibits a
perpendicular component of the superfluid velocity distribu-
tion at the boundary. For a circular disk centered at the origin
with radius L this boundary condition is met by adding an
image vortex with charge −κ at the position [40]

R̃ = L2R
|R|2 . (17)

The velocity field induced by the image of a vortex with
charge κ at position R is thus

κuim(r; R) = − h̄κ

m

ẑ × (r − R̃)

|r − R̃|2 . (18)

The boundary contributions to the velocities of the com-
ponent vortices in a vortex molecule can now be obtained by
substituting Eq. (18) into Eqs. (14) and (15) for the extended
point-vortex model and the distributed vorticity models, re-
spectively. The full equation of motion for the vortex molecule
is then given by Eq. (9) in combination with Eq. (12).

B. Precession of a centered vortex molecule

To quantitatively compare between the different models,
we now focus on the situation where the vortex molecule is lo-
cated symmetrically in the center of the disk with R1 = −R2

and |R j | = d/2. In this case the symmetry is preserved during
the vortex motion. The point vortex velocity is perpendicular
to the molecular axis and the vortex molecule rotates with a
constant precession frequency around the axis of the disk trap

	vm ẑ = R j × V j

|R j |2 = (	bound + 	int )ẑ, (19)

which breaks up into components originating from the
boundary and interactions as per Eq. (9). The interaction con-
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FIG. 3. Components of the vortex molecule precession fre-
quency according to various models as a function of the molecular
size d . The negative-valued boundary contributions 	bound are la-
beled “dv” for the distributed velocity contribution 	dv of Eq. (22)
and “sv” for the single vortex contribution 	sv of Eq. (21). The
interaction components 	int follow Eq. (20) and bring positive
contributions. The one labeled “lin” follows from a purely linear in-
teraction potential with the surface tension of the idealized Josephson
vortex. The contribution from the parameterized numerically ob-
tained interaction energy is labeled “pm.” The frequency is expressed
in units of 	0 = (μ + ν )/h̄. Parameters are the same as Fig. 1.

tribution to the precession frequency becomes, from Eq. (12)

	int = κ

πn0 h̄d

dV (d )

dd
. (20)

In a situation where the domain wall energy is purely linear
in d , as derived for d � ξJ in Ref. [28], the gradient term
is constant and the interaction contribution to the precession
frequency becomes inversely proportional to the molecular
length scale d . This term is divergent for small d .

For the boundary contribution 	bound we consider the
single vortex contribution from the extended point vortex
model and the distributed vorticity model. The precession fre-
quency from the extended point vortex model becomes [from
Eqs. (14) and (18)]

	sv(d ) = − h̄κ

m

4

4L2 − d2
. (21)

This is the result of Ref. [29]. Obtaining the precession fre-
quency of the distributed vorticity model requires evaluating
the integral in Eq. (15). A closed form solution can be found
and leads to

	dv(d ) = h̄κ

m

4

d4

[
d2 − 2L2 ln

(
4L2 + d2

4L2 − d2

)]
. (22)

Expanding in powers of d in the vicinity of d = 0 we obtain

	dv(d ) = − h̄κ

m

d2

12L4
+ O(d6), (23)

where the leading term is of second order in d . Thus, the
boundary contribution to the precession frequency from the
distributed vorticity model vanishes at small molecular size.
This is in contrast to the single-vortex contribution from the
extended point vortex model of Eq. (21), which has the finite
limit 	sv(0) = −h̄κ/mL. A comparison of the different con-
tributions to the precession frequency is shown in Fig. 3.

FIG. 4. Precession frequency of a centered vortex molecule in a
disk trap as a function of the molecular size d . The orange crosses
represent real time evolution data from the GPE of Eq. (1). The
curves are model predictions according to Eq. (19) with different
combinations of the contributions for 	bound and 	int shown in Fig. 3.
The blue solid line marked “dv + pm” combines the distributed
vorticity variant of the boundary contribution with the parametrized
interaction energy and provides the best explanation of the numeri-
cal GPE data within the available models. The red dot-dashed line
marked “sv + lin” represents single vortex boundary contribution
from Eq. (21) along with the linear interaction energy contribution
from Eq. (24). The brown dashed line marked “sv + pm” represents
single vortex boundary contribution along with parametrized inter-
action energy contribution. The frequency is expressed in units of
	0 = (μ + ν )/h̄. Parameters are the same as Fig. 1.

Figure 3 also shows two different curves for 	int according
to different models for the interaction energy of the vortex
molecule. The simplest choice with a linear d dependence is

Vlin(d ) = d σ, (24)

where

σ = 8h̄
√

ν

3
√

m

3μ − ν

g + g12
, (25)

is the energy (line density) of a Josephson vortex [13], the
exact solution for a nonmoving domain wall of the relative
phase. The authors of Ref. [25] used this model with an
approximate domain wall energy density from Ref. [11] valid
for small ν, which was also derived for d � ξJ in Ref. [28].

As an alternative we parameterized the numerically
computed vortex molecule interaction energy Vpm(d ). The nu-
merical calculation of the interaction energy was first reported
in Ref. [29]. For the current work we reparameterized the
numerical data to obtain increased accuracy as detailed in
Appendix A. As an alternative we parameterized the numer-
ically computed vortex molecule interaction energy Vpm(d ).
The numerical calculation of the interaction energy was first
reported in Ref. [29]. We find that the parameterized nu-
merical interaction energy as well as the derived frequency
contribution 	pm are significantly smaller than the linear
model and deviate from it quite strongly for small and moder-
ate values of d while it asymptotically agrees at large d , as is
expected.

In Fig. 4 we show numerical results for the vortex molecule
precession frequency from GPE simulations in comparison
with model predictions combining different components for
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FIG. 5. Numerical solution of the GPE with a centered vortex
molecule with molecular length d = 60ξ . The component vortices
are separated less than ξJ from the trap boundaries and the as-
sumption of a localized domain wall breaks down. (a) Density of
condensate 1 n1 = |ψ1|2. (b) Density of condensate 2 n2 = |ψ2|2.
(c) Relative phase arg(ψ1ψ

∗
2 ). (d) Total phase arg(ψ1ψ2). Parameters

as in Fig. 1.

the boundary and interaction contributions. For small molecu-
lar size d the values of the precession frequency are dominated
by the interaction contributions. The linear interaction energy
model leads here to a divergent contribution, which is un-
physical. The parameterized interaction contribution however,
captures the numerically observed finite precession frequency
at small molecular sizes rather nicely. Up to intermediate
molecular sizes compared to the disk radius of L = 35ξ the
distributed vorticity and the single-vortex contributions differ
by an approximately constant shift with the gap widening
for larger d . Over a wide range of molecular distances, the
distributed vorticity model provides a better match with the
GPE simulation data compared to the single vortex image
model.

At large molecular size, where d becomes comparable to
the disk diameter 2L, the otherwise favored model “dv +
pm” develops discrepancies from the GPE simulations seen
in Fig. 4. To rationalize the failure of the model in this regime
we visualize the numerical solution of the GPE for a large
vortex molecule in Fig. 5. The component vortices are close to
the boundaries of the disk trap in this case. While the relative
phase in Fig. 5(c) clearly shows a strong feature reminiscent
of a domain wall in the relative phase, it can also be seen
that the relative phase does not return to values close to zero
outside a localized region but rather differs from zero for most
of the superfluid domain. Thus a crucial assumption of our
model, i.e., the existence of a localized domain wall of the
relative phase is violated for this case. The nonzero relative
phase in the coupled BECs indicates that tunnel currents are
present throughout the trap due to the Josephson-like relation
between current and phase in linearly coupled Bose-Einstein
condensates [41]. One of the consequences is that the continu-

ity equation for each individual component, which underlies
the point-vortex model, is now violated throughout the trap.
The proximity of the component vortices to the trap boundary
thus invalidated the assumptions of the distributed vorticity
model and explains the discrepancies between the GPE data
and model predictions for the precession frequencies seen in
Fig. 4 for d � 40ξ .

C. Off-centered vortex molecule

In addition to the centered vortex molecule, our models can
also predict the trajectories of noncentered vortex molecules
using the more general equation of motion (7) with details
worked out in Appendix B. Figure 6 shows the trajectory
of one component vortex of a noncentered vortex molecule
with d = 16ξ . The fact that trajectories do not overlap for the
different models as seen in Fig. 6(a) indicates that the model
predictions differ by more than just the precession frequency.
Comparing the GPE trajectory with the model solution we find
that the model combining a single vortex image with the linear
assumption for the interaction energy (marked “sv + lin”) not
only severely overestimates the angular rotation frequency,
but also produces deviations from the correct trajectory.
Figure 6(b) further visualizes the deviations of the point-
vortex model from the GPE trajectory by plotting the
instantaneous distance of vortex 1 between the point-vortex
model and the GPE trajectory as a function of time. In compar-
ison, the model based on distributed image vorticity combined
with the parameterized interaction energy compares much
more favorably to the GPE trajectories.

V. CONCLUSION

In conclusion, we presented a distributed vorticity model
for the dynamics of vortex molecules in a two-component
Bose-Einstein condensate with linear coherent coupling. Our
model extends previous work by considering a continuous
distribution of image vorticity reflecting the effect of the do-
main wall on the vortex molecule phase structure. Specifically,
the distributed vorticity model predicts a quadratic depen-
dence for the image-induced contribution to the precession
frequency on the length of the domain wall for small vortex
molecules [Eq. (23)], while previous extended point vortex
models predicted a constant angular frequency in the small
molecule limit [Eq. (21)]. A second major finding is that the
assumption of a linear interaction energy made in Ref. [25]
leads to an unphysical divergence in the precession frequency
that is inconsistent with the GPE data, while our model with
the improved parametrization of the interaction energy avoids
this unphysical divergence, and is consistent with the findings
of Ref. [28]. We tested our model predictions over a range
of molecule sizes against numerical simulations in a two-
dimensional circular disk and found support for the improved
model.

The main benefit of the distributed vorticity model com-
pared to full GPE simulations is that it provides conceptual
insights into the dynamics of vortex molecules. An extension
to the dynamics of multiple vortex molecules and their inter-
actions should be possible and can be expected to work well
as long as the vortex molecules are well separated. This can
be assured in a low-density and low-energy regime due to the
linear-in-length energy content of the domain wall. Such a
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FIG. 6. Trajectories predicted for an off-centered vortex
molecule by different models and their deviations. An off-centered
vortex molecule moves in a disk-shaped trap (L = 30ξ ) with initial
positions R1(t = 0) = (3.95ξ, 7.83ξ ) [black dot in panel (a)], and
R2(t = 0) = (2.07ξ, −7.71ξ ) (not shown). (a) Trajectories. The
trajectory of vortex 1 is represented by colored lines showing the
predictions from different models as in Fig. 4. The dashed line
“GPE” denotes the numerical solution of the full Eq. (1). The
dash-dotted line “sv + lin” shows the trajectory for the model with a
single image vortex contribution of Eq. (21) combined with a linear
interaction contribution based on Eq. (24). The full line “dv + pm”
is obtained from combining the distributed vorticity contribution
of Eq. (21) with the parameterized interaction contribution from
Appendix A. The colored dots mark the endpoints of the respective
trajectories. (b) Deviations of the point vortex models from the
GPE time evolution shown in panel (a). The instantaneous distance
|Rpv

1 (t ) − RGPE
1 (t )| between the location of vortex 1 according to the

point vortex model and the GPE simulation is plotted as a function
of time. Results are shown for the two point vortex models of panel
(a) and labeled “sv + lin” and “dv + pm”, respectively. The unit of
time is 1/	0 = h̄/(μ + ν ).

model could be useful for the study of quantum turbulence
with a large number of vortex molecules in coupled BECs.

Solving the coupled ordinary differential equations for the
distributed vorticity model can be done with less computa-
tional effort than solving the full coupled GPEs. Moreover the
absence of domain wall reconnections and vortex anniliation
in the distributed vorticity model may provide key insights
into the importance of such features for macroscopic observ-
ables when comparing the results to GPE simulations where
all of this is included.

Our findings contribute to the ongoing research on the
dynamics of superfluid vortices, which still poses many open
questions. The peculiar structure of vortices in multicom-
ponent BECs, the competition between Rabi coupling and
nonlinear mean-field energy, and the analogies to axions and
quark confinement make this a rich and active area of research.

In this work we specifically considered the case of van-
ishing cross-component nolinearity in the GPE model, i.e.,
g12 = 0. In the more general case where g12 > 0 the cores
of the component vortices are partly filled by local density
maxima of the other component [25,29]. This leads to a more
complicated dynamics that could be modelled, at the point
vortex level, by including inertial effects as in Refs. [42,43].
Combining these ideas with the distributed vorticity model
presented here could lead to a more accurate description of
the dynamics of vortex molecules in a multicomponent BEC
with cross-component interactions.
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APPENDIX A: INTERACTION ENERGY

The interaction energy is found as a function of molecular
length d by creating a vortex molecule in a large compu-
tational domain of 180ξ × 180ξ and using imaginary time
evolution of the GPE in Eq. (1), i.e., replacing the time vari-
able t by −iτ , as described in Ref. [29]. The imaginary time
evolution continually deforms the solution towards lower en-
ergy. While locally adjusting the correct density and gradients
happens fairly quickly, on a slower time scale the position of
the component vortices and thereby the molecular length d
is altered. Under the assumption that the change in d hap-
pens while going through minimum energy configurations
nearly adiabatically, we can extract the interaction energy
V (d ) through a large range of values for d from a single
simulation. Twisted real projective plane boundary conditions
are applied as described in Ref. [29]. Here we detail the
procedure to more accurately fit the interaction energy data
than in [29] since small deviations in fitting result in large
deviations of the derivative and hence in Fig. 4. We plot
the raw data for the interaction energy V (d ) from imaginary
time evolution (orange dots, only representative data point are
shown) together with the parametrization used for the model
dynamics. The parametrization is a composite using three
different procedures.

The imaginary-time simulation was seeded with phase-
imprinted component vortices at an initial distance of d = 60ξ

and then evolved to reduce the molecular distance d down
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FIG. 7. Fitting the interaction energy V (d ) as a function of
molecular length d . The orange dots show data from imaginary
time evolution of the GPE from Ref. [29] (only some representative
data points are shown here). The inset is a closeup showing data
for small values of d . The lines show the parametrization of V (d )
used for the model dynamics discussed in this paper consisting of
three different segments. The blue solid line shows a third-order
spline interpolation of the numerical data for 4ξ < d < 55ξ . The
green dot-dashed line is a linear extrapolation for large d > 55ξ .
The red dashed line shows the quartic extrapolation of Eq. (A1)
for d < 4ξ . Parameters are ν = 2 × 10−3μ, g12 = 0. W0 = h̄2(μ +
ν )/m(g + g12) = (μ + ν )2ξ 2/(g + g12) and an arbitrary offset was
added to the energy.

to values much smaller than a healing length. We disregard
data with d > 55ξ where the domain wall is formed and
imaginary-time evolution is not adiabatic. The raw data in the
interval 3ξ < d < 55ξ are considered reliable, were we use a
third order spline intepolation of the numerical data to obtain
a continuous representation for V (d ). This is shown as a full
blue line in Fig. 7. Since we expect the interaction energy
to be linear at length scales much larger than ξJ = 11.19ξ ,
we perform a linear extrapolation for d > 55ξ using the last
three spline points. The linear extrapolation is shown as a
dash-dotted green line.

The inset in Fig. 7 shows a closeup for small d < 5ξ . In
this regime the imaginary-time evolution in τ decreased the
molecular length d increasingly slowly while still reducing

the energy, presumably by making subtle adjustments to the
phase at large range. We thus consider the increasingly sharp
drop of the energy near d = 0 in the imaginary time data an
artifact. Instead we expect the true interaction energy to be an
analytic function of the component vortex coordinates and an
even function of d . Thus, it can be written as a power series in
even powers of d . We thus extrapolate the interaction energy
with a fourth-order polynomial for d < 4ξ

V (d ) = p1 + p2d2 + p3d4. (A1)

The fitting parameters p1 = 33.35W0, p2 = 0.0239W0/ξ
2, and

p3 = −0.000714W0/ξ
4 are obtained from a least-squares fit

of the imaginary-time evolution data in the interval 3ξ < d <

5ξ . The quadratic extrapolation is shown as a dashed red line.
In our numerical simulations we used dimensionless units

where 1 = μ̃ + ν̃ = ξ̃ = g̃ + g̃12 = ñ0. The correct unit for
the energy functional is thus W0 = h̄2(μ + ν)/m(g + g12) =
(μ + ν)2ξ 2/(g + g12).

APPENDIX B: GENERAL INTEGRALS OF THE CHARGE
DISTRIBUTION MODEL

The velocity of the vortex at R1 in the distributed vorticity
model in any arbitrary position of the vortex molecule is given
by Eq. (15) as

Vdv
1 (R1) = κ

∫ 1

0
uim[R1; (1 − t )R1 + tR2]dt, (B1)

= h̄κ̄

m
ẑ × [R1I1 − R2I2], (B2)

where I1 and I2 are

I1 =
∫ 1

0

(
1 − L2

R2
i

) + t L2

R2
i∣∣R1

(
1 − L2

R2
i

) − L2

R2
i
td

∣∣2 dt, (B3)

I2 =
∫ 1

0

L2

R2
i
t∣∣R1

(
1 − L2

R2
i

) − L2

R2
i
td

∣∣2 dt, (B4)

with d = R2 − R1 and R2
i = |R1 + td|2. The scalar integrals

come out as

I1 = 1

dR3
1

(
dR1 + L2

{[
arctan(cot θ ) − arctan

(
cot θ + dR1cosecθ

R2
1 − L2

)]
cos 2θcosecθ

+ cos θ ln
d2R2

1 + (
L2 − R2

1

)2 + 2dR1
(
R2

1 − L2
)

cos θ(
L2 − R2

1

)2

})
, (B5)

I2 = R2

2d2R2
1

{
2

[
arctan(cot θ ) − arctan

(
cot θ + dR1cosecθ

−L2 + R2
1

)]
cot θ + ln

d2R2
1 + (

L2 − R2
1

)2 + 2dR1
(
R2

1 − L2
)

cos θ(
L2 − R2

1

)2

}
, (B6)

with θ being the angle between R1 and d. I1 has a removable singularity at θ = 0.
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