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Two-dimensional spin-1/2 fermions with finite-range interactions are theoretically studied. Characterizing the
attractive interaction in terms of the scattering length and the effective range, we discuss the finite-range effects
on the ground-state properties in this system. The Brueckner G-matrix approach is employed to analyze the
finite-range effects on an attractive Fermi-polaron energy and the equation of state throughout the BEC-BCS
crossover in two dimensions, which can be realized in the population-imbalanced and -balanced cases between
two components, respectively. The analytical formulas for these ground states obtained in this study would be
useful for understanding many-body phenomena with finite-range interactions in low-dimensional systems.
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I. INTRODUCTION

Quantum many-body physics is one of the most excit-
ing and important concepts in various fields of modern
physics. The interparticle interaction leads to various quan-
tum phenomena such as superconductivity and superfluidity.
Moreover, the interaction effects become remarkably impor-
tant in low-dimensional quantum systems.

One of the fascinating phenomena associated with strong
interactions is the crossover from a molecular Bose-Einstein
condensate (BEC) to a Bardeen-Cooper-Schrieffer (BCS) su-
perfluid [1–5] with changing the attractive interaction by
utilizing the Feshbach resonance in cold atoms [6], where
tightly bound dimers gradually change into loosely bound
Cooper pairs without any phase transitions. In addition, BEC-
BCS crossover phenomena in two-dimensional (2D) Fermi
gases have also been realized by confining the gas in a 2D
trap potential [7–9]. Recently, such strongly interacting Fermi
gases are regarded as useful reference systems to study strong-
coupling phenomena in a systematic way [10,11]. Various
physical quantities such as the equation of state have been
measured precisely in the entire BEC-BCS crossover regime
in 2D [12–16].

Moreover, the BEC-BCS crossover has been realized
in low-dimensional superconductors [17–21] by tuning the
carrier density. As being anticipated in pioneering works
[22–24], several electron-hole systems such as graphene have
also recently provided another platform to study the BEC-
BCS crossover in low-dimensional systems [25–27]. While
interactions induced by the Feshbach resonance in cold atomic
systems can usually be characterized by a zero-range contact-
type interaction, other strongly correlated systems generally
involve nonlocal interactions. In semiconductor systems, a
finite-range interaction called the Rytova-Keldysh potential
has been considered [28,29]. In the slab phase of neutron
stars, dineutron pairing with a finite-range nucleon force under

quasi-two-dimensional confinement has been discussed [30].
In this regard, the finite-range correction is inevitably impor-
tant in these density-induced BEC-BCS crossovers [31,32]. In
addition, it is reported that the effective range plays a crucial
role for the reduced quantum anomaly in 2D [33] observed
in recent cold atomic experiments [34,35]. The optical con-
trol of the effective range and scattering length proposed in
Refs. [36,37] may enable us to study the finite-range effects
on cold atomic gases systematically in future experiments.
Incidentally, quantum Monte Carlo (QMC) simulations have
been performed in the presence of small but nonzero effective
ranges [38–40].

Another useful setup for examining many-body correla-
tions in cold atomic system is an atomic polaron, which can
be realized by preparing an atomic mixture with a population
imbalance. In particular, impurity (minority) atoms immersed
in a Fermi sea of majority atoms are referred to as Fermi po-
larons [41]. The realization of attractive and repulsive Fermi
polarons [42–44] leads to a comprehensive understanding
of the correlation effects in many-body fermionic systems
in a quantitative manner. In this regard, 2D Fermi polarons
with zero-range attraction have been studied by diagrammatic
QMC simulations [45,46].

The finite-range effects on unitary Fermi polarons in 3D
have been investigated by diffusion Monte Carlo simula-
tion [47]. In 2D, repulsive Fermi polarons with finite-range
corrections have been studied in Refs. [48–50]. Recently,
the properties of two-dimensional Fermi polarons have also
attracted much interest in layered electron-hole materials
[51,52]. The nonlocality, namely, the finite-range correction
of the interaction in these systems, would be important to
understand the similarities and differences from cold atomic
polarons.

In this paper, we discuss the finite-range effects on
strongly interacting two-component Fermi gases in 2D. We
characterize finite-range attractive interactions in terms of
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scattering length and effective range and employ the Brueck-
ner Hartree-Fock approach with the G-matrix [53] established
in many-body nuclear physics. The ladder-type diagrams in
the particle-particle scattering are summed to give the renor-
malized self-energy shift on the thermodynamic ground-state
quantities such as the chemical potential and internal energy
[54–56]. For contact interactions, the analytical formula of
the ground-state energy obtained from the G-matrix approach
shows a good agreement with the QMC results of the BEC-
BCS crossover [38] and the experimental results of attractive
Fermi polarons [43] in 2D [57,58]. In this paper, we generalize
these approaches to the case with finite-range interactions
and apply them to the BEC-BCS crossover and the attractive
Fermi polarons in 2D. We briefly note that we consider the
positive effective range being possibly relevant to condensed-
matter systems [31,32], in contrast to previous work on the
negative effective range associated with a narrow Feshbach
resonance [59].

This paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian of spin-1/2 fermions with finite-range
attractive interactions. We show the relation between the in-
teraction parameter in the Hamiltonian and the low-energy
constants (i.e., the scattering length and the effective range)
by considering a two-body T matrix. In Sec. III, we present
the Brueckner G-matrix approach and show the results in the
BEC-BCS crossover and in the attractive Fermi polaron in 2D.
Finally, we summarize this paper in Sec. IV. For simplicity,
we take h̄ = kB = 1 and the area A is taken to be unity in the
thermodynamic limit.

II. MODEL

We consider two-component fermions with finite-range in-
teractions described by the Hamiltonian in momentum space,
i.e.,

Ĥ =
∑
k,σ

(εk − μσ )c†
k,σ

ck,σ

+
∑

k,k′,P

U (k, k′)c†
k+ P

2 ,↑c†
−k+ P

2 ,↓c−k′+ P
2 ,↓ck′+ P

2 ,↑, (1)

where εk = k2

2m is the kinetic energy of a fermion with a
momentum k and a mass m. μσ is the chemical potential for
the state with spin σ =↑,↓. ck,σ and c†

k,σ
are the fermionic

annihilation and creation operators, respectively.
The second term in Eq. (1) denotes the interaction. We

introduce the separable s-wave interaction

U (k, k′) = U0γkγk′ , (2)

where U0 and γk are the momentum-independent coupling
constant and the form factor, respectively. Since we are in-
terested in the attractive interaction, we take U0 < 0. In this
study, we employ

γk = 1√
1 + (k/�)2

, (3)

which reproduces the relative momentum dependence of the
scattering phase shift δk up to O(k2) [32,60,61]. � is the cutoff
scale and it may be associated with the inverse of screening
length in semiconductor systems [62]. A similar form factor

γk = 1/[1 + (k/�)2] j ( j is an integer) has been employed in
the study of semiconductor systems [63].

To see the relation between the low-energy constants (i.e.,
the scattering length a and the effective range R) and the
model parameters (i.e., the coupling constant U0 and the cutoff
�), we examine the two-body T -matrix given by

T (k, k′; ω) = U (k, k′) +
∑

p

U (k, p)T (p, k′; ω)

ω+ − 2εp
, (4)

where ω+ = ω + iδ is the two-body energy with an infinitesi-
mally small imaginary part iδ. Once the separable interaction
in Eq. (2) is considered, the separable form of the T -matrix is
obtained as

T (k, k′; ω) = γkt (ω)γk′ . (5)

Accordingly, we obtain

t (ω) = U0

⎡
⎣1 − U0

∑
p

γ 2
p

ω+ − p2/m

⎤
⎦

−1

≡ U0[1 − U0�(ω)]−1. (6)

The momentum integration in the in-vacuum pair propagator
�(ω) can be evaluated analytically as

�(ω) = − m�2

4π (mω + �2)
ln

(
− �2

mω+

)
. (7)

The scattering length and the effective range can be expressed
in terms of the on-shell T matrix as [64]

T (k, k; 2εk) = 4π

m
[−2 ln(ka) − R2k2 + iπ ]−1. (8)

Using Eqs. (6) and (7), we obtain

a = 1

�
exp

(
− 2π

mU0

)
, (9)

R2 = − 4π

mU0�2
> 0. (10)

In this regard, we find the dimensionless quantity

R2

a2
= − 4π

mU0
exp

(
4π

mU0

)
. (11)

In the present case, there are no higher-order coefficients
O(k4) such as shape parameters [32]. In this paper, we
consider the positive R2 while the negative R2 has been in-
vestigated in Ref. [65]. To generalize the present result with
both positive and negative R2 cases, it is necessary to use the
two-channel model with the form factor [61], which is beyond
the present scope.

Moreover, it is known that the two-body bound state is
present even for an arbitrary attractive short-range interaction
strength in 2D. The two-body binding energy Eb is obtained
from a pole of the T matrix as

1 − U0�(ω = −Eb) = 0. (12)
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FIG. 1. Two-body binding energy Eb as a function of the ratio
between the effective range R and the scattering length a. Eb,0 =
1/(ma2) is the binding energy at R = 0. The inset shows R/a as
a function of the inverse coupling constant 2π

mU0
. The red solid line

corresponds to the parameter regime Eb � �2

m , which we consider in
this paper. We also plot the region where a deep bound state is found
(Eb > �2

m ) with the black dashed line.

More explicitly, one gets

4π

mU0
= 1

1 − mEb
�2

ln

(
mEb

�2

)
. (13)

We note that Eb,0 = 1/(ma2) is obtained in the zero-range
limit (R → 0, corresponding to � → ∞) [66].

To examine the finite-range correction on the binding en-
ergy, in Fig. 1 we plot

Eb

Eb,0
= mEb

�2
exp

(
− 4π

mU0

)
. (14)

If one increases R, Eb becomes larger compared to the zero-
range result Eb,0 for a given scattering length a. On the one
hand, a similar dimensionless quantity has been shown in
Ref. [40] and the behavior of the binding energy with increas-
ing the effective range is consistent with the present result.
On the other hand, two solutions of Eb/Eb,0 can be found
at the strong-coupling side (i.e., 2π

mU0
� − 1

2 and Eb � �2

m ).
Such a situation can also be found in the case with a positive
scattering length and nonzero effective range [67], which is
also known as a spurious pole [68]. In this paper, we focus
on the weak-coupling parameter region, where 2π

mU0
< − 1

2 and
R/a < e−1/2 � 0.607 (i.e., the red solid line in Fig. 1).

III. BRUECKNER G-MATRIX APPROACH

In this section, we derive the effective interaction based
on the Brueckner G-matrix approach developed in many-body
nuclear physics [53]. For in-medium two-body scattering, we
introduce the Pauli-blocking projection Q(p, P) in the mo-
mentum integral of the G matrix,

G(k, k′; P, ω) =U (k, k′)

+
∑

p

U (k, p)Q(p, P)G(p, k′; P, ω)

ω+ − p2/m − P2/(4m)
, (15)

where the intermediate state is restricted by the Pauli-blocking
effect. Similar to the two-body T matrix with a separable
interaction in Eq. (5), we obtain the separable form of the G
matrix G(k, k′; P, ω) = γkg(P, ω)γk′ , where

g(P, ω) =
⎡
⎣ 1

U0
−

∑
p

γ 2
p Q(p, P)

ω+ − p2/m − P2/(4m)

⎤
⎦

−1

. (16)

The explicit form of Q(p, P) within the Tamm-Dancoff
approximation (TDA) [53] is given by

Q(p, P) = θ (|P/2 + p| − kF)θ (|P/2 − p| − kF), (17)

where fermions below EF are suppressed due to the
Pauli-blocking effect. In more detail, Eq. (17) represents
the two-particle distributions above the Fermi sea in the
intermediate state as Q(p, P) = [1 − f (εp+P/2 − μ↑)][1 −
f (ε−p+P/2 − μ↓)], where f (x) = θ (−x) is the Fermi distri-
bution function at T = 0. However, the two-hole distributions
below the Fermi sea − f (εp+P/2 − μ↑) f (ε−p+P/2 − μ↓) are
neglected, while the many-body T -matrix approach [5]
includes both effects as Q(p, P) = [1 − f (εp+P/2 − μ↑)][1 −
f (ε−p+P/2 − μ↓)] − f (εp+P/2 − μ↑) f (ε−p+P/2 − μ↓) ≡
1 − f (εp+P/2 − μ↑) − f (ε−p+P/2 − μ↓). In the context
of the variational calculations, TDA corresponds to the
Cooper problem and is qualitatively valid in the BEC-BCS
crossover regime [69,70]. Moreover, compared to the
BEC-BCS crossover in population-balanced Fermi gases,
TDA gives a better description of the many-body effects in
the Fermi-polaron problem where the minority distribution
f (ε−p+P/2 − μ↓) is taken to be zero and hence the two-hole
distribution vanishes.

A. Equation of state in 2D BEC-BCS crossover

First, we examine the equation of state in the 2D BEC-BCS
crossover in population-balanced Fermi gases, where μ↑ =
μ↓ ≡ μ and N↑ = N↓ (Nσ is the number of the state σ ). The
ground-state energy E is given by the expectation value of the
canonical Hamiltonian,

E = 〈Ĥ〉 + μN ≡ EFG + 〈V̂ 〉, (18)

where we decomposed E into the free-gas part EFG = 1
2 NEF

and the interaction energy 〈V̂ 〉 by following the procedure in

Ref. [58]. Here, N = ∑
σ Nσ = k2

F
2π

and EF = k2
F

2m are the total
fermion number and the Fermi energy, respectively, where
kF is the corresponding Fermi momentum. Assuming that the
momentum- and energy-dependent effective interaction in the
medium is dominated by the component at the zero center-
of-mass momentum (P � 0) and at the bound-state energy
(ω = −Eb) [58], we evaluate 〈V̂ 〉 approximately by using the
G matrix as

〈V̂ 〉 ≡
∑

k,k′,P

U (k, k′)〈c†
k+P/2,↑c†

−k+P/2,↓c−k′+P/2,↓ck′+P/2,↑〉

�
∑
k,k′

G(k, k′, P � 0, ω � −Eb)〈c†
k,↑ck,↑〉〈c†

k′,↓ck′,↓〉

=
∑
k,k′

g(0,−Eb)γkγk′θ (kF − k)θ (kF − k′), (19)
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where we took the Fermi-Dirac distribution 〈c†
k,σ

ck,σ 〉 �
θ (kF − k). In the second line of Eq. (19), the four-point corre-
lation is evaluated as 〈c†

k+P/2,↑c†
−k+P/2,↓c−k′+P/2,↓ck′+P/2,↑〉 �

〈c†
k,↑ck,↑〉〈c†

k′,↓ck′,↓〉, which enables us to evaluate the interac-
tion energy in an analytical way. Moreover, the bare coupling
constant U (k, k′) is replaced by the G matrix G(k, k′, P �
0, ω � −Eb) in the low-energy limit to include strong-
coupling effects associated with the bound-state formation.
Although this approximation may lack several important mi-
croscopic properties, such as the effects of the pairing gap
and the dimer-dimer interaction, it is still useful to understand
the macroscopic ground-state properties of the system in an
analytical way. Indeed, the analytical form of the equation of
state based on this approach [58] shows a good agreement
with the QMC results in 2D Fermi gases with a small effective
range [38]. The momentum summation in Eq. (19) can be
performed analytically as

〈V̂ 〉 �
∫ kF

0

d2k
(2π )2

∫ kF

0

d2k′

(2π )2
g(0,−Eb)γkγk′

= g(0,−Eb)�2

4π2

(√
�2 + k2

F − �
)2

. (20)

Moreover, taking P = 0 and ω = −Eb in Eq. (16), we obtain

g(0,−Eb) =
⎡
⎣ 1

U0
−

∑
p

θ (p − kF)γ 2
p

−Eb − p2/m

⎤
⎦

−1

= 4π

m

1 − mEb
�2

ln
(
1 + k2

F
�2

) − ln
(
1 + k2

F
mEb

) . (21)

In this way, the interaction energy is given by

〈V̂ 〉 = �2

πm

(√
�2 + k2

F − �
)2(

1 − mEb
�2

)
ln

(
1 + k2

F
�2

) − ln
(
1 + k2

F
mEb

) . (22)

At � → ∞, we find

〈V̂ 〉 � −EFN
1

ln
(
1 + 2EF

Eb,0

) , (23)

which reproduces the zero-range result in Ref. [58]. Moreover,
in the zero-range weak-coupling limit (EF � Eb,0, corre-
sponding to 2EF

Eb,0
≡ k2

Fa2 � 1), we recover the weak-coupling

formula E � 1
2 EFN[1 − 1

ln(kFa) ] [71,72]. In the deep BEC

limit where Eb,0 � EF, one can also obtain E � −NEb,0

2 ,
corresponding to the binding energy of N/2 molecules as
expected. Accordingly, the dimensionless form of the ground-
state energy E/EFG is given by

E

EFG
= 1 + 8�2

k2
F

(√
1 + �2

k2
F

− �
kF

)2(
1 − Eb

2EF

k2
F

�2

)
ln

(
1 + k2

F
�2

) − ln
(
1 + 2EF

Eb

) . (24)

Figure 2 shows E/EFG in the BEC-BCS crossover with
different R/a. First, one can confirm that the zero-range re-
sult (R/a = 0) well reproduces the QMC result [38]. While
this QMC result involves the finite-range correction with
kFR = 0.0025, this value gives a sufficiently small ratio
0.000 33 < R/a < 0.0025 in the range of 0 � ln(kFa) � 2.

FIG. 2. Internal energy E/EFG in the 2D BEC-BCS crossover
with different effective ranges, R/a = 0, 0.12, 0.27, and 0.52. EFG =
1
2 NEF is the ground-state energy in an ideal Fermi gas. The inset
shows the energy per particle E/N normalized by Eb,0, where Eb,0 =
1/(ma2) is the two-body binding energy at the zero-range limit. For
comparison, the QMC results with kFR = 0.0025 [38] are shown
(square). Note that the definition of a is different from Ref. [38].

In the high-density weak-coupling regime [i.e., ln(kFa) � 1],
the effective-range correction (in other words, the finite-cutoff
correction) reduces the magnitude of the interaction energy
〈V̂ 〉 as

〈V̂ 〉 � g(0,−Eb)k4
F

16π2

(
1 − k2

F

2�2

)
+ O

(
k4

F/�
4
)
, (25)

regardless of the enhanced effective coupling g(0,−Eb) �
− 4π

m
1

ln(kFa)− k2
F

�2

in the weak-coupling limit. We note that the

expansion with respect to kF/� is equivalent to that of

kFR
√

m|U0|
4π

based on Eq. (10). Since kFR → 0 is realized in
the low-density limit, the correction proportional kF/� is
negligible in this regime. However, in the low-density strong-
coupling regime [i.e., ln(kFa) � 1], E becomes negative and
is strongly reduced by the effective-range correction. This is
due to the enlargement of Eb as shown in Fig. 1. To see this, it
is useful to see the energy per particle E/N scaled by a fixed
energy scale (where Eb,0 is adopted in this paper) as

E

NEb,0
≡ E

EFG

EFG

NEb,0
≡ E

EFG

k2
Fa2

4
, (26)

which is shown in the inset of Fig. 2. The flat region of
E/NEb,0 in the density dependence can be found at ln(kFa) �
0, indicating that the energy per particle is describe as E/N =
− 1

2 Eb. Indeed, the zero-range result approaches E/NEb,0 =
−1/2 as expected. In the presence of nonzero R, E/NEb,0 ap-
proaches − 1

2
Eb

Eb,0
� − 1

2 . In this way, one can see the reduction
of E due to the larger Eb with increasing R/a in the low-
density regime. We also note that E/NEb,0 shown in the inset
of Fig. 2 is useful to see the stability of the system towards the
density collapse. Even in the presence of a nonzero effective
range, the system is found to be stable within the present
approach in contrast to the previous work in 3D [73], which
studied a larger effective-range regime than that of Ref. [74].
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B. 2D attractive Fermi polaron

In this section, we calculate the attractive Fermi-polaron
energy within the Bruckner G-matrix approach. The Fermi-
polaron system can be realized in a two-component mixture
with a large population imbalance N↓

N↑
� 1. While many Fermi

polarons exist (i.e., 1 � N↓ � N↑) in actual experiments, we
take N↓ = 1 for convenience. This assumption works rela-
tively well in the Fermi-polaron problem [75–77]. Moreover,
one can examine the validity of the present approach on the
self-energy shift without concerning the existence of the pair-
ing gap. As shown in Ref. [57], the attractive Fermi-polaron
energy EP is given by the Brueckner Hartree-Fock self-energy
at zero momentum as

EP = �↓(p = 0) ≡
∑

k

G(k, k; 0,−Eb)θ (kF,↑ − k), (27)

where kF,↑ = √
4πN↑ is the Fermi momentum of the majority

component. We note that in this section μ↑ = EF,↑ and μ↓ =
EP are taken, where EF,↑ = k2

F,↑
2m is the Fermi energy of the

majority component. Performing the momentum summation
in Eq. (27) with Q(p, 0) = θ (p − kF) in Eq. (21), one can
obtain an analytical expression of EP as

EP =
(

�2

m − Eb
)

ln
(
1 + k2

F,↑
�2

)
ln

(
1 + k2

F,↑
�2

) − ln
(
1 + k2

F,↑
mEb

) . (28)

Indeed, in the limit of � → ∞, we obtain

EP � − 2EF,↑
ln

(
1 + 2EF,↑

Eb,0

) . (29)

Equation (29) reproduces the zero-range result in
Ref. [57]. The zero-range weak-coupling limit EP �
−2EF,↑/ ln(2EF,↑/Eb) also agrees with that obtained by
the variational method [78], while EP � −Eb + EF,↑ is found
in the zero-range strong-coupling limit. The dimensionless
form with the nonzero effective range reads

EP

EF,↑
=

(
2�2

k2
F,↑

− Eb
EF,↑

)
ln

(
1 + k2

F,↑
�2

)

ln
(
1 + k2

F,↑
�2

) − ln
(
1 + 2EF,↑

Eb

) . (30)

Figure 3 shows the calculated EP/EF,↑ as a function of
ln(kFa) with different R/a. A smooth crossover from the
weakly attractive polaron regime to the strong-coupling one
can be found for each R/a. Similar to the result of the internal
energy in the 2D BEC-BCS crossover, the substantial reduc-
tion of EP associated with nonzero R can be found in the low-
density strong-coupling regime [i.e., ln(kF,↑a) � 1], where
Eb is enlarged by the effective-range correction. Also, EP

slightly increases in the high-density weak-coupling regime
[i.e., ln(kF,↑a) � 1] as E/EFG increases at ln(kF,↑a) with
increasing R/a in Fig. 2. Again such a tendency can be un-

derstood from Eq. (27) where EP = g(0,−Eb )�2

4π
ln(1 + k2

F,↑
�2 ) =

−|g(0,−Eb )|k2
F,↑

4π
(1 − k2

F,↑
2�2 ) + O(k4

F,↑/�4) is found after the mo-
mentum summation. In this regard, the finite cutoff suppresses
the interaction near the Fermi surface at high density.

For a comparison, the experimental results of the attrac-
tive polaron energy [43] are shown in Fig. 3, which can be

FIG. 3. Attractive Fermi-polaron energy as a function of
ln(kF,↑a) at different effective ranges, R/a = 0, 0.12, 0.27, and 0.52.
The gray dots show the experimental results [43], which can be
regarded as the zero-range case.

regarded as the zero-range results. While the importance of
the quasi-2D nature has been pointed out in Ref. [79], the good
agreement between the experiment and our zero-range result
indicates that our G-matrix approach is sufficiently useful to
discuss qualitative features of 2D attractive Fermi polarons.

IV. SUMMARY

In this paper, the effects of finite-range attractive inter-
actions have been investigated in two-dimensional spin-1/2
Fermi gases. We have employed the separable finite-range
interaction, which reproduces the 2D s-wave scattering phase
shift within the effective-range expansion. It has been applied
to study the finite-range effects on the BEC-BCS crossover
and the Fermi polarons in 2D.

Using the Brueckner G-matrix approach involving the
particle-particle scattering process with the Pauli-blocking ef-
fect, we have derived an analytical formula of the equation of
state in the BEC-BCS crossover and the attractive Fermi-
polaron energy in the presence of a nonzero effective range.
It is found that, while a substantial reduction of the internal
energy is found in the low-density BEC regime due to
the enhanced two-body binding energy with finite-range
corrections, the finite cutoff associated with the effective
range suppresses the pairing energy gain in the high-density
BCS regime. A similar effective-range dependence can be
found in the attractive Fermi-polaron energy with increasing
the dimensionless coupling parameter [i.e., ln(kF,↑a)].

For future work, it would be important to systematically
examine the pairing properties with finite-range corrections by
using the Brueckner Hartree-Fock-Bogoliubov theory, where
both the pairing and density mean fields are taken into ac-
count. The present approach can be extended to other systems
such as mass-imbalanced mixtures, repulsive gases on the
upper branch of the Feshbach resonance, and electron-hole
systems. Furthermore, the study on the finite-temperature
properties and the Berezinskii-Kosterlitz-Thouless transition
[80–82] would be an important future direction.

053313-5



SAKAKIBARA, TAJIMA, AND LIANG PHYSICAL REVIEW A 107, 053313 (2023)

ACKNOWLEDGMENTS

H.S. was supported by RIKEN Junior Research Asso-
ciate Program. H.T. acknowledges the JSPS Grants-in-Aid for
Scientific Research under Grants No. 18H05406, No.

22K13981, and No. 22H01158. H.L. acknowledges the JSPS
Grant-in-Aid for Early-Career Scientists under Grant No.
18K13549, the JSPS Grant-in-Aid for Scientific Research
(S) under Grant No. 20H05648, and the RIKEN Pioneering
Project: Evolution of Matter in the Universe.

[1] Q. Chen, J. Stajic, S. Tan, and K. Levin, Phys. Rep. 412, 1
(2005).

[2] W. Zwerger, The BCS-BEC Crossover and the Unitary Fermi
Gas (Springer, Berlin, 2011), Vol. 836.

[3] M. Randeria and E. Taylor, Annu. Rev. Condens. Matter Phys.
5, 209 (2014).

[4] G. C. Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Urban,
Phys. Rep. 738, 1 (2018).

[5] Y. Ohashi, H. Tajima, and P. van Wyk, Prog. Part. Nucl. Phys.
111, 103739 (2020).

[6] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[7] K. Martiyanov, V. Makhalov, and A. Turlapov, Phys. Rev. Lett.
105, 030404 (2010).

[8] M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D.
Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim, Phys.
Rev. Lett. 114, 230401 (2015).

[9] K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, and H.
Moritz, Phys. Rev. Lett. 120, 060402 (2018).

[10] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[11] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[12] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger,
and M. Köhl, Phys. Rev. Lett. 106, 105301 (2011).

[13] K. Fenech, P. Dyke, T. Peppler, M. G. Lingham, S. Hoinka, H.
Hu, and C. J. Vale, Phys. Rev. Lett. 116, 045302 (2016).

[14] M. Holten, L. Bayha, K. Subramanian, S. Brandstetter, C.
Heintze, P. Lunt, P. M. Preiss, and S. Jochim, Nature (London)
606, 287 (2022).

[15] L. Sobirey, N. Luick, M. Bohlen, H. Biss, H. Moritz, and T.
Lompe, Science 372, 844 (2021).

[16] H. Biss, L. Sobirey, N. Luick, M. Bohlen, J. J. Kinnunen, G. M.
Bruun, T. Lompe, and H. Moritz, Phys. Rev. Lett. 128, 100401
(2022).

[17] S. Kasahara, T. Watashige, T. Hanaguri, Y. Kohsaka, T.
Yamashita, Y. Shimoyama, Y. Mizukami, R. Endo, H. Ikeda,
K. Aoyama, T. Terashima, S. Uji, T. Wolf, H. von Löhneysen,
T. Shibauchi, and Y. Matsuda, Proc. Natl. Acad. Sci. USA 111,
16309 (2014).

[18] T. Hashimoto, Y. Ota, A. Tsuzuki, T. Nagashima, A.
Fukushima, S. Kasahara, Y. Matsuda, K. Matsuura, Y.
Mizukami, T. Shibauchi et al., Sci. Adv. 6, eabb9052 (2020).

[19] T. Shibauchi, T. Hanaguri, and Y. Matsuda, J. Phys. Soc. Jpn.
89, 102002 (2020).

[20] Y. Nakagawa, Y. Kasahara, T. Nomoto, R. Arita, T. Nojima, and
Y. Iwasa, Science 372, 190 (2021).

[21] Y. Suzuki, K. Wakamatsu, J. Ibuka, H. Oike, T. Fujii, K.
Miyagawa, H. Taniguchi, and K. Kanoda, Phys. Rev. X 12,
011016 (2022).

[22] D. M. Eagles, Phys. Rev. 186, 456 (1969).

[23] P. Noziöres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195
(1985).

[24] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, Phys.
Rev. Lett. 71, 3202 (1993).

[25] A. Perali, D. Neilson, and A. R. Hamilton, Phys. Rev. Lett. 110,
146803 (2013).

[26] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nature (London) 590, 249 (2021).

[27] X. Liu, J. Li, K. Watanabe, T. Taniguchi, J. Hone, B. I. Halperin,
P. Kim, and C. R. Dean, Science 375, 205 (2022).

[28] N. S. Rytova, Moscow Univ. Phys. Bull. 3, 18 (1967).
[29] L. Keldysh, Sov. J. Exp. Theor. Phys. Lett. 29, 658 (1979).
[30] Y. Kanada-En’yo, N. Hinohara, T. Suhara, and P. Schuck, Phys.

Rev. C 79, 054305 (2009).
[31] T. Shi, W. Zhang, and C. S. de Melo, Europhys. Lett. 139, 36003

(2022).
[32] H. Tajima and H. Liang, Phys. Rev. A 106, 043308 (2022).
[33] H. Hu, B. C. Mulkerin, U. Toniolo, L. He, and X.-J. Liu, Phys.

Rev. Lett. 122, 070401 (2019).
[34] M. Holten, L. Bayha, A. C. Klein, P. A. Murthy, P. M. Preiss,

and S. Jochim, Phys. Rev. Lett. 121, 120401 (2018).
[35] T. Peppler, P. Dyke, M. Zamorano, I. Herrera, S. Hoinka, and

C. J. Vale, Phys. Rev. Lett. 121, 120402 (2018).
[36] H. Wu and J. E. Thomas, Phys. Rev. Lett. 108, 010401 (2012).
[37] H. Wu and J. E. Thomas, Phys. Rev. A 86, 063625 (2012).
[38] G. Bertaina and S. Giorgini, Phys. Rev. Lett. 106, 110403

(2011).
[39] A. Galea, H. Dawkins, S. Gandolfi, and A. Gezerlis, Phys. Rev.

A 93, 023602 (2016).
[40] T. Zielinski, B. Ross, and A. Gezerlis, Phys. Rev. A 101, 033601

(2020).
[41] P. Massignan, M. Zaccanti, and G. M. Bruun, Rep. Prog. Phys.

77, 034401 (2014).
[42] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,

Phys. Rev. Lett. 102, 230402 (2009).
[43] M. Koschorreck, D. Pertot, E. Vogt, B. Fröhlich, M. Feld, and

M. Köhl, Nature (London) 485, 619 (2012).
[44] F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Amico, A.

Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G. Roati,
Phys. Rev. Lett. 118, 083602 (2017).

[45] J. Vlietinck, J. Ryckebusch, and K. Van Houcke, Phys. Rev. B
89, 085119 (2014).

[46] P. Kroiss and L. Pollet, Phys. Rev. B 90, 104510 (2014).
[47] R. Pessoa, S. A. Vitiello, and L. A. Pena Ardila, Phys. Rev. A

104, 043313 (2021).
[48] R. Bombín, T. Comparin, G. Bertaina, F. Mazzanti, S. Giorgini,

and J. Boronat, Phys. Rev. A 100, 023608 (2019).
[49] S. Pilati, G. Orso, and G. Bertaina, Phys. Rev. A 103, 063314

(2021).
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