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Correlation functions and polaron-molecule crossover in one-dimensional attractive Fermi gases
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We study the correlation functions in a one-dimensional attractive Fermi polaron system of spin-1/2 Fermi gas
with one flipped spin as an impurity immersed in the fully polarized spin-up media. By means of the exact Bethe
ansatz wave function with string solutions for the momentum, we manage to explicitly deduce the asymptotic
form of the correlation functions in the infinite attractive limit and show that the system undergoes a polaron-
molecule crossover when the attraction grows. The correlation functions in the infinite attractive limit can be
decomposed into the free fermion term with the number of particles reduced by one and the molecular term
indicated by the emergence of a sharp peak or dip in the central area of the correlation. These analytical results
are checked by the numerical Monte Carlo methods for multiple integrals. The calculation is further extended
to the excited states, i.e., the super-Tonks-Girardeau gas, and there is no peak or dip found in the vicinity of the
correlation center. Tan contact is found to be proportional to the cubic of the interaction strength and the total
energy is verified to satisfy the Tan adiabatic theorem in the strong attraction regime.
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I. INTRODUCTION

In the past few decades, the ultracold Fermi gas has been
used as a superb experimental platform for understanding
many-body physics due to its high manipulability [1–4]. In
particular, the experiments in a three-dimensional (3D) tun-
able Fermi liquid of ultracold atoms [5–7] give an opportunity
to realize the Fermi polaron, a new form of quasi-particle
induced by the mobile impurity, and the impurity systems
attract more and more attention. Polarons are realized by
means of atomic gases with population imbalance, the mi-
nority atoms playing the role of impurities while the majority
one playing the role of background or medium. This system
was realized experimentally with both bosonic [8–14] and
fermionic [5,7,15,16] atoms. The experimental observation of
nonequilibrium dynamics of a quantum impurity immersed
in a bosonic environment [17] offers a systematic picture of
polaron formation from weak to strong impurity interactions.
A smooth polaron-molecule transition was observed in a spin-
imbalanced ultracold Fermi gas with tunable interactions [18].
The Fermi polaron, on the other hand, could be attractive
[5,16] or repulsive [7,15,19], which is a dressed spin-down
impurity immersed in a polarized spin-up Fermi sea and the
interaction between the impurity and the majority Fermi sea
can be tuned precisely, from infinite repulsive to infinite at-
tractive, with the help of Feshbach resonances [20].
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However, most of the studies on the Fermi polaron prob-
lem, for example, the polaron-molecule transition in a 3D
fermionic medium [16,21,22], are more or less involved with
approximations based on variational methods or numerical
techniques such as the renormalization group [23] or quan-
tum Monte Carlo [24]. In contrast, many one-dimensional
(1D) systems can be treated in exact ways, for instance, the
Bethe ansatz, Bose-Fermi mapping, nonperturbative quan-
tum field theory, and so on, which offers a test bench to
understand the quasiparticle physics phenomena-like quan-
tum criticality, quantum correlation, and so on. This model
as a one-dimensional Fermi gas with Delta-function interac-
tion was first treated by McGuire [25] for one flipped spin
and later developed into the 1D many-body Fermi model by
Yang [26] and Gaudin [27] in 1967. Using the Bethe ansatz
hypothesis, 1D Fermi gases with arbitrary spin population
imbalance are determined by a set of transcendental equa-
tions, which are known as the Bethe ansatz (BA) equations. In
the unitary spin-1/2 Fermi gas close to the s-wave resonance
various microscopic and thermodynamic properties depend
universally on a key quality called the contact [28,29]. The
analytical calculation with BA equations not only offers a
benchmark to the 1D polaron problem, but also sheds light on
exploring equilibrium and nonequilibrium many-body physics
such as quantum phase transitions [30], Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO)-like pairing [31], and Tonks-Girardeau
(TG) gases [32,33]. The time-dependent correlation functions
of an impurity in 1D Fermi and Tonks-Girardeau gases with
arbitrary temperature and arbitrary impurity-gas δ-function
interactions were investigated in Fredholm determinant
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representation, which includes, as particular cases, the case
for zero temperature and arbitrary repulsion, and for arbitrary
temperature and infinite repulsion [34]. Recently a non-
Gaussian state approach was developed to solve the ground-
state and the out-of-equilibrium dynamics efficiently [35].
The variational approach showed that the polaron-molecule
transition in the 3D fermion system can be reinterpreted as
a first-order transition between single impurity systems with
different total momenta [36]. These two states can coexist in a
realistic system within a certain interaction window near their
transition. It was further confirmed that the presence of a finite
impurity concentration and low temperature directly lead to
a smooth polaron-molecule transition as observed in recent
experiments of 3D ultracold Fermi gases [18]. In one dimen-
sion, the system underwent a crossover from a mean-field
polaron state into a mixture of excess fermions and a bosonic
molecule as the attraction changed from weak to strong [37].
Finite concentration and low temperature would not change
this picture and the polaron-molecule problem in one di-
mension was definitely a crossover. However, the asymptotic
behavior of the correlation in the crossover between a po-
laron and molecule in one dimension still requires careful
study.

At weak coupling, it is easy to find a good quantita-
tive agreement with the experimental data. However, close
to the Feshbach resonance the agreement becomes worse
[18,38,39]. To understand the experimental data on RF spec-
troscopy and the Ramsey spectrum at finite temperature
[19,40] it is essential to know the behavior of Fermi gases
in the strongly interacting regime. In this work, we study
the 1D Fermi polaron in the strongly attractive regime and
provide an asymptotic form for the correlation functions.
In the case of attractive interaction, there exist string so-
lutions to the Bethe Ansatz equations, i.e., there is a pair
of momentum always taking the imaginary values in the
momentum set, which enables us to derive the analytical
results of some important observables such as the cor-
relation functions. However, one-body and density-density
correlation functions show very different behaviors for
weak and strong interaction and the impurity in the system
tends to bind tightly to one of the background fermions,
forming a molecule as the attraction grows. The system
thus goes through a crossover between the polaron state
and a mixture of one molecule and free fermions. Our
analytical results are further checked by numerically calcu-
lating the correlation functions based on the Monte Carlo
method.

The paper is organized as follows. In Sec. II we describe
our model and write the wave function for one spin-down
impurity explicitly. The one-body and density-density cor-
relation functions are defined in Sec. III. We first illustrate
the correlation of noninteracting free fermions in Sec. IV
and present our key results in the strongly attractive limit in
Sec. V. Furthermore, we obtain results for the excited states,
i.e., the super-Tonks-Girardeau gas in Sec. VI. In comparison
with other studies, Tan contact is also studied in the strong
attraction limit in Sec. VII, which is closely related to the pair
correlation function. We conclude our findings in Sec. VIII.
The calculation details of the key integral are explained in the
Appendix.

II. MODEL AND WAVE FUNCTION

We mainly focus on the system of one fermion with flipped
spin immersed in a one-dimensional fully polarized Fermi gas,
which is a special case of the famous Gaudin-Yang model
[26,27] with the flipped spin serving as the single impurity.
Its Hamiltonian takes the form

H =
∑

σ=↑,↓

∫
dxψ†

σ (x)

(
− h̄2

2m

d2

dx2

)
ψσ (x)

+ g

2

∫
dxψ†

↑(x)ψ†
↓(x)ψ↓(x)ψ↑(x), (1)

where m is the atomic mass, g = −2h̄2/ma1D is the interaction
strength between different spins, a1D is the effective 1D scat-
tering length, and the field operator ψσ (x) [ψ†

σ (x)] annihilates
(creates) a particle of spin σ at the spatial position x. For
simplicity, we consider the system in a configuration of one
spin-down and N − 1 spin-up particles. By setting c = mg/h̄2,
the Hamiltonian (1) can be reduced into the first quantization
form

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i< j

δ(xi − x j ), (2)

which describes N fermions via δ-function interaction in one
dimension.

The model (2) was first solved by Gaudin [27] and Yang
[26] in 1967. Due to the fact that the interaction only oc-
curs when two fermions with opposite spins get in contact
with each other, the wave function ψ can be divided into
N different regions according to the relative position of the
spin-down particle with respect to the background spin-up
particles. For example, xN < x1, x2, . . . , xN−1 is denoted as
region 1, xi < xN < x1, x2, . . . , xi−1, xi+1, . . . , xN−1 with i =
1, 2, . . . , N − 1 as region 2, and so on, where we label the co-
ordinates of the spin-down particle as xN . Following the Bethe
ansatz, the wave function in each region can be expressed as
the superposition of N! plane waves, respectively. In region 1,
for instance, the wave function is

φ =
∑

P

(−1)PαN

N∏
n=1

eikPn xn , (3)

where αN = 1 − eikN L with L the length of the 1D sys-
tem and P refers to any possible permutation of quasi-
momentum k′s. Using the periodic boundary condition
ψ (x1, . . . , xi, . . . , xN ) = ψ (x1, . . . , xi + L, . . . , xN ), the wave
function in region i: x1, x2, . . . , xi−1 < xN < xi, . . . , xN−1 can
be expressed through the wave function in region 1 and the
sum of all regions is equivalent to the wave function in the
full region. Thus

ψ (x1, x2, . . . , xN )

= �(xN < x1, . . . , xN−1)φ(x1, x2, . . . , xN )

+
N∑

i=2

�(x1, . . . , xi−1 < xN < xi, . . . , xN−1)

× φ(x1 + L, x2 + L, . . . , xi−1 + L, xi, . . . , xN ), (4)
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where the Heaviside step function �(x) is used to select the
region wherein the wave function lies.

The quasi-momenta of the system are determined by the
Bethe ansatz (BA) equations

kn − λ + ic′

kn − λ − ic′ = eiknL, (5)

with n = 1, 2, . . . , N and

N∏
n=1

kn − λ + ic′

kn − λ − ic′ = 1, (6)

where c′ = c/2 and λ is the rapidity. Utilizing these equations,
we can obtain a general expression for the wave function in the
full region

ψ (x1, x2, . . . , xN )

= A
∑

P

(−1)PeikPN xN

N−1∏
n=1

[
kPn − λ + ic′sgn(xN −xn)

]
eikPn xn ,

(7)

where A = −2ic′∏N
l=1(kl −λ−ic′ )

. Note that here the influence of the

region is absorbed into the sign function sgn(xN − xn). The
wave function and BA equations are valid in the full in-
teraction regime, either the repulsive or attractive one. For
c′ = 0, the wave function naturally reduces to that of free
fermions, which is described by the Slater determinant. BA
equations yield the exact values of all momenta of free
fermions as well. In this paper, we only focus on the case
of the attractive interaction, i.e., c′ < 0, for which the roots
of the BA equations k’s contain a complex conjugate pair
while the other (N − 2) are real. We assume the particle
number N is even for simplicity.

III. CORRELATION FUNCTIONS

A. One-body correlation function

The one-body correlation function for the spin-up fermions
is defined as the relative probability of creating a particle at
position x while annihilating one with the same spin at x′
simultaneously

g(1)
↑↑(N, c′; x, x′) = 〈a†

↑(x)a↑(x′)〉

= (N − 1)L

G

∫ L

0
dx2· · ·

∫ L

0
dxN

× ψ∗(x, x2, . . . , xN )ψ (x′, x2, . . . , xN ),
(8)

where

G =
∫ L

0
dx1· · ·

∫ L

0
dxN |ψ (x1, x2, . . . , xN )|2 (9)

is the normalization factor. The factor N − 1 in Eq. (8)
accounts for the fact that correlation for spin-up fermions
actually occurs with N − 1 possibilities, with x and x′ replac-
ing any one of the coordinates x1, x2, . . . , xN−1, respectively.
Because of the conservation of spins, the one-body correlation
function in different spin states, g(1)

↑↓(N, c′; x, x′), must vanish,

which means one can not annihilate a fermion with spin-up
and create one with spin-down.

B. Density-density correlation functions

The density-density correlation function between up spins
is defined as

g(2)
↑↑(N, c′; x, x′)

= 〈a†
↑(x)a†

↑(x′)a↑(x′)a↑(x)〉
= 〈a†

↑(x)a↑(x)a†
↑(x′)a↑(x′)〉 − δ(x − x′)〈a†

↑(x)a↑(x′)〉

= (N − 1)(N − 2)L2

G

∫ L

0
dx3· · ·

∫ L

0
dxN

× ψ∗(x, x′, x3, . . . , xN )ψ (x, x′, x3, . . . , xN ), (10)

and that between the opposite spins, also known as the pair
correlation function [22], is given by

g(2)
↑↓(N, c′; x, x′)

= 〈a†
↑(x)a†

↓(x′)a↓(x′)a↑(x)〉
= 〈a†

↑(x)a↑(x)a†
↓(x′)a↓(x′)〉

= (N − 1)L2

G

∫ L

0
dx3· · ·

∫ L

0
dxN−1

× ψ∗(x, x2, . . . , xN−1, x′)ψ (x, x2, . . . , xN−1, x′). (11)

Since there is only one impurity with opposite spin in the
system, the density-density correlation between down spins
vanishes, i.e., g(2)

↓↓(N, c′; x, x′) = 0. The factor (N − 1)(N −
2) appears in Eq. (10) results from the fact that x and x′ could
replace any two coordinates in x1, x2, . . . , xN−1, leading to
C2

N−1 possibilities. Due to the impurity being labeled as xN , the
coordinate x′ for the spin-down fermion in the up-down corre-
lation function (11) can only replace xN , while the coordinate
x for spin-up fermions can replace any one in x1, x2, . . . , xN−1,
which contributes to the factor N − 1 in Eq. (11). The density-
density correlation functions represent the probability to find
a spin-up fermion at x when there is a fermion with spin-up
or spin-down at x′. We intentionally include two parameters,
that is, the particle number N and interaction strength c′, in
the definition of the correlation function, as we shall see later
the analytical results of the correlation function for different
particle number and interaction strength are related to each
other.

IV. GROUND STATE FOR FREE FERMIONS

We first consider the limit of the noninteracting case, i.e.,
the free fermion with c′ = 0. The analytical results in this limit
were already obtained in [39]. The wave function of N free
fermions is straightforwardly expressed as a superposition of
plane waves

ψ (x1, x2, . . . , xN ) =
∑

P

(−1)PeikN xN

N−1∏
n=1

eikPn xn , (12)

which is consistent with our result (7) under condition c′ = 0,
where the momentum of the spin-down fermion is denoted
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FIG. 1. One-body correlation functions for the ground states of
N = 8 fermions with the interaction strength c′ = −0.1, −10, −100,
−1000, as well as the exact results for the free fermion gas and
molecular state in the strong attraction limit c′ = −∞. The dashed
lines with markers are numerical results from Monte Carlo integra-
tion methods, while the solid lines are analytical results. The inset
shows the enlargement of the central peak, where the red dashed line
is numerical result for c′ = −103, the brown solid line and black
solid line are analytical results for c′ = −103 and −1010, respec-
tively. The unit of c′ is L−1.

as kN . In this section, we present the calculation of one-body
and density-density correlations of free fermions in the ground
state, thus the momentum for spin-down fermion is kN = 0. It
is also easy to obtain the momentum values of other N − 1
spin-up fermions from BA equations (5) and (6) due to the
absence of interaction, i.e., kn = 0, ±2π/L, ±4π/L, . . . ,
±(N − 2)π/L.

It is easy to calculate the one-body correlation function of
N free fermions as

g(1)
↑↑(N, 0; x, x′) = sin

( (N−1)π
L (x′ − x)

)
sin

(
π
L (x′ − x)

) (13)

for spin-up fermions, which exhibits oscillation with the dis-
tance of the particles as shown in Fig. 1. The density-density
correlation function between up spins reads as

g(2)
↑↑(N, 0; x, x′) = (N − 1)2 −

(
sin

( (N−1)π
L (x′ − x)

)
sin

(
π
L (x′ − x)

)
)2

,

(14)

which is shown in Fig. 2. The density-density correlations be-
tween up-down spins, on the other hand, gives the probability
of finding a spin-up fermion at x while there is a spin-down
one at x′. Due to the absence of interaction, the presence of
a spin-down fermion does not affect the density of spin-up
fermions. Thus this density-density correlation proves to be a
constant, i.e.,

g(2)
↑↓(N, 0; x, x′) = N − 1. (15)
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FIG. 2. Up-up correlation functions for the ground states of N =
8 fermions with the interaction strength c′ = −0.1, −10, −100,
−1000, as well as the exact results for free fermion gas and in
the strong attraction limit. The dashed lines with markers are the
Monte Carlo numerical results, while the solid lines are analytical
results. The inset shows the enlargement of the central dip, where
the red dashed lines are numerical result for c′ = −103, the brown
and black solid lines are analytical results for c′ = −103 and −1010,
respectively. The unit of c′ is L−1.

V. GROUND STATE IN THE STRONGLY
ATTRACTIVE LIMIT

Another topic of interest is the strongly attractive limit
c′ → −∞, the analytical results of which will serve as
a benchmark for comparison in the attractive interaction
regime, just as the free fermion case c′ → 0 is another
limit in the study of the asymptotic behavior of correla-
tion functions. As long as the attractive interaction is on,
the BA equations (5) and (6) have solutions with complex
quasi-momentum in addition to the real ones, which are
purely imaginary for the ground state with periodic bound-
ary conditions. This pair of complex momenta, known as
string solutions, was first introduced in [41] so that the BA
equations can be solved analytically for the attractive case of
bosons.

In this section we present the calculation of ground-state
correlation functions in the strong attraction limit c′ → −∞.
With the two-string solution assumption, a complex momen-
tum pair k± = ±ic′ belongs to a pair of spin-up and spin-down
particles even in the very strong attractive regime, i.e., two
particles with opposite spins form a molecule due to the
attraction and the BA equation (5) of the other N − 2 real
momentum can be derived as

eiknL = −1 (16)

since they are negligibly small compared to c′. Since the
coordinate of the spin-down particle is labeled as xN and its
momentum can be either kN = k+ or k−, the momentum of
spin-up particles can be any permutation of the remaining
N − 1 momentum, i.e., kQn = ±π/L, ±3π/L, . . . , ±(N −
3)π/L, k− or k+, where Q is the permutation of N − 1 mo-
mentum and its elements depend on the value of kN . Then the
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wave function with spin-down particle located at xN can be
simplified as

ψ (x1, x2, . . . , xN )

=
∑

kN =k±

∑
Q

(−1)Q(1 − eikN L )eikN xN

N−1∏
n=1

eikQn [xn+L�(xN −xn )]

(17)

from which the asymptotic behavior of the correlation func-
tions are calculated.

A. One-body correlation function

Define Xn = xn + L�(xN − xn), which means

Xn =
{

xn + L, xn < xN ,

xn, xn > xN .
(18)

Inserting the exact Bethe ansatz wave function into the corre-
lation function (8), we have

g(1)
↑↑(N, c′; x, x′) = (N − 1)L

G
I, (19)

with the integral

I =
∑
Q,Q′

∫ L

0
dXN

(
eikQ1 X

)∗
e

ikQ′
1

X ′
A

×
N−1∏
n=2

(∫ xN +L

xN

dXn
(
eikQn Xn

)∗
eikQ′

n
Xn

)
. (20)

Note that the factor A = |(1 − eikN L )eikN xN |2 is XN dependent
and X, X ′ are defined in similar way to Xn. We need take
to into consideration the factor A, as kN will determine the
imaginary momentum in Q and Q′. The leading terms of A
take the form of

A ≈
{

e−2c′Le−2c′xN , kN = k+,

e2c′xN , kN = k−.
(21)

The integral is calculated step by step: first do the (N − 2)-
multiple integrals over X2, . . . , XN−1, then extract the primary
contribution in the integration of XN , and finally do the sum-
mation over Q and Q′. It is shown that the leading-order
contribution to the integral I up to 1/c′ occurs when the
permutations Q and Q′ are identical (see the Appendix).
The up-up one-body correlation function takes the following
asymptotic behavior when c′ → −∞:

g(1)
↑↑(N, c′; x, x′)

=
(

1 − 2|x′ − x|
L

)
sin

( (N−2)π
L (x′ − x)

)
sin

(
π
L (x′ − x)

) + ec′|x′−x|. (22)

The first term accounts for the case that the correlated particles
at x and x′ are not involved in the pairing with the impurity,
such that the momenta kQ1 and kQ′

1
are real. The momentum

of correlated particle, however, may indeed take imaginary
values and we specifically calculate the corresponding con-
tribution, i.e., the second term, which decays exponentially.
In the summation over Q, the contribution of this term is
negligibly small compared with the case of real kQ1 in almost

the entire space, except in the vicinity of the point x′ = x. This
means the up-spin particle paired with the impurity hardly
contributes to the up-up correlation function or there is little
possibility to annihilate one particle paired with the impurity
and create it somewhere else, which is consistent with the
constraint of infinite attraction.

In addition, according to our free fermion results (13), the
correlation function (22) can be rewritten into the addition of
two parts, i.e.,

g(1)
↑↑(N, c′; x, x′)

=
(

1 − 2|x′ − x|
L

)
g(1)

↑↑(N − 1, 0; x, x′) + ec′|x′−x|, (23)

where g(1)
↑↑(N − 1, 0; x, x′) is exactly the one-body correlation

function of N − 1 free fermions. The second exponential term,
on the other hand, vanishes in the entire range 0 � x < L ex-
cept at x = x′, which represents a sharp peak in the correlation
function in the vicinity of x′ = x. It can be understood that
in the limit of very strong attraction, the limit of g(1)

↑↑(N −
1, 0; x, x′) is N − 2, while the limit of the second term is
1, resulting g(1)

↑↑(N, c′; x, x′) = N − 1 at x = x′. The inset of
Fig. 1 demonstrates this behavior clearly as c′ increases to
very large negative values.

While BA equations can be solved analytically only for
c′ = 0 and in the limit of c′ → −∞, we resort to the numer-
ical approach to deal with the case of arbitrary intermediate
interaction. We adopt the classical Monte Carlo (MC) method
for standard calculation of the highly dimensional integral
in the correlation functions (8), (10), and (11). As a pow-
erful tool for high-dimensional integration, the MC method
treats the numerical integral as a statistical average and obtains
the averaged value by random sampling. This is exactly the
problem we have to deal with as the particle number N � 1.
Take the correlation function (8) as an example. Practically,
we sample NMC random points in the N − 1-dimensional co-
ordinate space x2, . . . , xN , and obtain the integral by averaging
the integrand on these points. Since the numerical error always
scales as 1/

√
NMC, NMC determines the truncation error of the

MC. Our practical calculations reveal that NMC = 107 can pro-
vide a sufficiently small error for N = 8 and |c′| � 1000, in
which case the numerical results are in fairly good agreement
with our analytical results. Nevertheless, further increasing
|c′| would exacerbate the singularity of the integrand near
x = x′, preventing the MC from convergence within our com-
putational capability.

The up-up correlation functions g(1)
↑↑(N = 8, c′; x, x′ =

L/2) for fixed x′ = L/2 are shown in Fig. 1 for sev-
eral interaction strengths from weak to strong c′ =
−0.1,−10,−100,−1000, in addition to the cases of the free
fermion c′ = 0 and the infinite attraction c′ = −∞. We com-
pare the numerical result for c′ = −103 with the analytical
results (22) for c′ = −103 and c′ = −1010 in the inset of
Fig. 1, showing that the peak value of the correlation func-
tion is indeed N − 1. For the number of samples NMC ∝ 107,
the standard errors of the correlation functions are less than
0.1, which thus can be neglected compared to the symbol
size in Fig. 1, as well as in the figures for other correla-
tion functions. We see that in the weak attraction regime the

053312-5



CHANG, YIN, CHEN, AND ZHANG PHYSICAL REVIEW A 107, 053312 (2023)

numerical results are quite similar to the free fermion gas,
which implies the impurity is only dressed by the spin-up
background as a polaron, and causes little influence on the
behavior of fermions. However, for the strong attraction case
the first term in g(1)

↑↑(N, c′; x, x′) dominates, the correlation
function is closely related to that of N − 1 free fermions
when x is far away from x′ = L/2, in addition to a position-
dependent amplitude factor. This reflects the fact that under
strong attraction one spin-up fermion is bound tightly with the
impurity forming a molecule, which has little contribution to
the overall feature of correlation. Only in the central position
x′ = L/2 does a sharp peak emerge to conserve both the parti-
cle number and spin. The emergence of the central peak in the
one-body correlation function can be treated as a symbol of
the crossover from polaron-like nature into a mixture of one
molecule with fermion media [37].

B. Density-density correlation functions

Now we turn to the density-density correlation functions.
The density-density correlation between up spins takes a sim-
ilar form to the one-body correlation as

g(2)
↑↑(N, c′; x, x′) = (N − 1)(N − 2)L2

G
J, (24)

with the integral

J =
∑
Q,Q′

∫ L

0
dXN

(
eikQ1 X eikQ2 X ′)∗

e
ikQ′

1
X

e
ikQ′

2
X ′

A

×
N−1∏
n=3

(∫ xN +L

xN

dXn
(
eikQn Xn

)∗
eikQ′

n
Xn

)
. (25)

Here the strategy is the same as in the calculation of integral
I in the one-body correlation: the N − 3 multiple integral
is done over X3, . . . , XN−1, while that of XN needs to be
treated separately as the factor A is XN dependent. Remember
we aim to extract the leading-order contribution only, which
means in the strong attraction limit c′ → −∞, the integral
with different momentum permutation Q and Q′ results in
a higher order of 1/c′, which can be ignored according to
the discussion in the Appendix. This gives the calculation of
density-density correlation functions as follows. The orthog-
onality of the plane waves for real momentum again assures
that the leading-order contribution to the integral occurs for
identical elements Q3, . . . , QN−1 in the permutations Q and
Q′. There are, however, two possible arrangements for the
first two elements in the permutations Q and Q′, i.e., Q′

1 =
Q1, Q′

2 = Q2 or Q′
1 = Q2, Q′

2 = Q1. The integral J is again
classified into J1 and J2 according to whether there exists an
imaginary value in kQ1 and kQ2 . Taking these two possibilities
into consideration, the correlation function can be derived as

g(2)
↑↑(N, c′; x, x′)

= N (N − 2) − sin
( (N−2)π

L (x′ − x)
)

sin
(

π
L (x′ − x)

)
×

(
sin

( (N−2)π
L (x′ − x)

)
sin

(
π
L (x′ − x)

) + 2ec′|x′−x|
)

. (26)

Similar to the one-body correlation function, we can decom-
pose the above expression into the free fermion term and the
molecular term

g(2)
↑↑(N, c′; x, x′)

= g(2)
↑↑(N − 1, 0; x, x′) + 2(N − 2)

− 2ec′|x′−x| sin
( (N−2)π

L (x′ − x)
)

sin
(

π
L (x′ − x)

) , (27)

where the exponential term plays an important role only in the
vicinity of x′ = x. As shown in Fig. 2, the exact result of up-up
correlation g(2)

↑↑(N = 8, c′; x, x′ = L/2) for c′ = −103,−1010

exhibits a sharp dip at x = L/2, which is consistent with our
numerical result for c′ = −103. In the central position x =
L/2 the density-density correlation approaches zero, while for
being x away from L/2 the correlation behaves much like
N − 1 noninteracting fermions.

From the numerical results for several typical interaction
strengths, we see that the density-density correlation between
up-spins behaves like free fermions for weak attraction. With a
spin-up particle already located at x′ = L/2, the probability to
find another one at the same position is zero due to the Pauli
exclusion principle no matter if it is for the weak or strong
interaction. The correlation function oscillates with distance
and becomes stable slowly away from the correlated particle.
In the strong attraction limit, a sharp dip emerges at x = L/2
while the correlation in the neighboring area is relatively low.
Note that our analytical result (27) can be divided into two
parts, the first line is the density-density correlation of N − 1
fermions with no interaction with a constant shift by 2(N −
2), and the second line contributes a dip at x = L/2 (note the
minus sign), showing the distinct feature of the correlation
between the fermions both in and outside the molecule.

The density-density correlation between opposite spins is
evaluated alongside with the result

g(2)
↑↓(N, c′; x, x′) = g(2)

↑↓(N − 1, 0; x, x′)

− c′L(e2c′|x′−x| + e2c′(L−|x′−x|) ). (28)

The results of finite interaction are also calculated nu-
merically, shown in Fig. 3. We see that a peak emerges
immediately as the attraction turns on, which implies the
spin-down impurity forming a polaron in the background of
spin-up fermions. From the analytical result (28), the height
of the peak is clearly proportional to c′L when the interaction
strength becomes large. It is easy to understand. Once the
spin-down impurity is located at x′ = L/2, it is highly possible
to find a spin-up particle there due to the strong attractive
interaction. As a result, the probability to find the spin-up
particle elsewhere tends to be a constant. Physically, this sig-
nature indicates that the system experiences a crossover from
a polaron-like behavior to a molecule state.

VI. EXCITED STATE: SUPER-TONKS-GIRARDEAU GAS

In this section, we study the correlation behavior of the
excited states in the strong attraction limit. The energy spec-
trum in the full interaction regime can be calculated with
the numerical solution of the BA equation. In the attractive
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FIG. 3. Up-down correlation for the ground state of N = 8
fermions with the interaction strength c′ = −0.1, −10, −100,
−1000, the exact results for free fermion gas and in the strong
attraction limit. The dashed line with markers are Monte Carlo nu-
merical results, while the solid lines are analytical results. The unit
of c′ is L−1.

regime (−1/c′ > 0) the energy spectrum are clearly classified
into two branches as shown in Fig. 4. The blue solid lines
are shown for the gas states [42] in which all momentum
k’s are real and the minimum energy is positive. Such a
state in the particular case c′ → −∞ is known as the super-
Tonks-Girardeau (STG) gas and was experimentally realized
in bosonic cesium atoms [43] by suddenly switching the in-
teraction from the strongly repulsive to attractive regime. The
real ground state we studied in the previous section, however,
belongs to the so-called bound states denoted by the red
dashed lines (in fact, the lowest state, bold curve), which do
not require real k’s and only exist for the attractive interaction.

With the existence of the string solution, the correlation
function of all bound states is quite similar to the ground state.

-2 -1

0

400

800

1200

0 1 2

FIG. 4. The energy spectrum of N = 4 fermions with one im-
purity in the full interacting regime. The red lines are bound states
while the blue ones refer to the gas states for attractive interaction.
The black lines on the left (−1/c′ < 0) are repulsive gas states. The
STG gas refers to the many-body excited state for the particular case
c′ → −∞. The unit of E is h̄2/2m and the unit of −1/c′ is L.
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FIG. 5. Exact results of one-body correlation functions of N = 8
fermions for the free fermion gas, the ground state of strong attrac-
tion, and the excited STG gas state of strong attraction with minimum
energy. For the ground state (red dashed line), the interaction strength
c′ is taken as −1010. The unit of c′ is L−1.

On the other hand, in the STG gas state, the BA equation takes
the same form as the bound states, i.e., Eq. (5), and can be
simplified to eiknL = −1 when c′ → −∞. Since the solutions
are all real, the momentum set for the lowest STG gas states
(bold blue curve in Fig. 4) are kn = ±π/L, ±3π/L, . . . ,
±(N − 1)π/L. This similarity of the momentum set of the
strong attractive gas state with that of free fermions makes the
calculation of the one-body correlation function much easier
and we obtain

g(1)
↑↑(N, c′; x, x′) = g(1)

↑↑(N, 0; x, x′) cos
π

L
(x′ − x). (29)

The amplitude of the one-body correlation is modulated by
a factor cos π

L (x′ − x). The oscillation for the excited state
is clearly suppressed in the entire 1D space. We compare
the exact one-body correlation for the free fermion ground
state, strongly attractive ground bound state, and the minimum
energy STG gas in Fig. 5. Notice that in the STG state there is
no peak in the vicinity of x′ = x as all momentum in the gas
states are real and the correlation of gas states behaves more
like the free fermion than the bound states.

For the same reason the up-up and up-down correlation
functions in the STG gas can also be expressed with the help
of free fermions and we find they are exactly identical

g(2)
↑↑(N, c′; x, x′) = g(2)

↑↑(N, 0; x, x′),

g(2)
↑↓(N, c′; x, x′) = g(2)

↑↓(N, 0; x, x′) = N − 1. (30)

This means that the spin-up fermions experience a mean-field
attraction as the impurity does not combine to form a molecule
with any other particles. We compare the three up-up correla-
tion functions in Fig. 6 and no dip is found in the vicinity of
the correlation center.

VII. TAN CONTACT

The energy of the two-component Fermi gas with the s-
wave contact interaction is a simple linear functional of its
momentum distribution. This momentum distribution has a
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FIG. 6. Exact results of up-up correlation functions of N = 8
fermions for the free fermion gas, the ground state of strong attrac-
tion, and the excited STG gas state of strong attraction with minimum
energy. For the ground state (red dashed line), the interaction strength
c′ is taken as −1010. The unit of c′ is L−1.

tail proportional to 1/k4 at large k for large scattering length,
the coefficient C of which is known as the Tan’s contact [28].
For 1D systems, exact relations were derived to connect the
universal C/k4-decay of the momentum distribution at large
k with the correlation functions. Specifically, the contact C
is defined as an extensive variable, i.e., the integral of the
probability density for two fermions with opposite spin to be
at the same position in space and related to the pair correlation
function as [44]

C = g2m2
∫

dx〈a†
↑(x)a†

↓(x)a↓(x)a↑(x)〉

= g2m2

L2

∫
dxg(2)

↑↓(N, c′; x, x), (31)

which is basically the expectation value of the interaction part
of the Hamiltonian. The pair correlation function at short dis-
tances and the contact were calculated in the limit of infinite
repulsion in Ref. [44]. Here we consider the limit of strong
attraction, and find that the up-down spin correlation function
is proportional to the interaction strength c′ as

g(2)
↑↓(N, c′; x, x) = −c′L, (32)

which results in

C = −4h̄4c′3. (33)

In the strong attraction regime, contact C is proportional to c′3,
which agrees with a previous study with numerical methods
[45].

This extensive variable also determines the derivative of
total energy E with respect to the 1D scattering length a1D,
which is known as the Tan adiabatic theorem [46]

h̄2 dE

da1D
= C

2m
, (34)

where a1D = −2h̄2/mg. According to BA equations, the total
energy E of the system depends on the summation of the

momentum set kn of all quasi-particles

E =
∑

n

(h̄kn)2

2m

= h̄2

2m

[
2

3

(π

L

)2
(4N3 − 12N2 + 11N − 3) − 2c′2

]
, (35)

with a1D = −1/c′, thus

dE

da1D
= c′2 dE

dc′ = −2h̄2

m
c′3 = C

2mh̄2 , (36)

which satisfies the Tan adiabatic theorem [44].

VIII. CONCLUSION

In conclusion, by means of the exact Bethe ansatz method,
we studied the correlation function of 1D attractively interact-
ing Fermions with one spin flipped, focusing on the crossover
from polaron to molecule state with the increase of the inter-
action strength. We obtained exact analytical results for the
correlation functions in the strong attraction limit. It showed
that when the interaction strength c′ → −∞, the correlation
functions behaved very distinctly compared with the polaron
in the weak attraction case, i.e., they all exhibited smooth os-
cillation in the 1D space when c′ was small, while a sharp peak
or dip emerged in the strong attraction limit. We numerically
verified the calculation of the correlation functions in the full
attraction regime with the help of the Monte Carlo method for
multi-dimensional integration. These results confirmed that
the system underwent a crossover from the polaron to the
molecule state, and the emergence of the peak or dip char-
acterized the crossover. We further studied the correlations in
the excited STG states and found the crossover only occurs
for the bound states with negative lowest energy. In addition,
we provided the asymptotic behavior for the Tan’s contact at
short distances in the limit of infinite attraction. It was shown
that some properties of the polaron depended on the range of
the potential [47], and hence it should be interesting to further
explore correlators of fermions with finite-range interaction.
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APPENDIX: CALCULATION OF THE INTEGRAL I

Here we show the calculation details of the integral I in
Eq. (20) which can be rewritten as

I =
∑
Q,Q′

∫ L

0
dXN

(
eikQ1 X

)∗
e

ikQ′
1

X ′
AI ′, (A1)

with

I ′ =
N−1∏
n=2

( ∫ xN +L

xN

dXn
(
eikQn Xn

)∗
eikQ′

n
Xn

)
. (A2)
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The value of kQ1 may be real or imaginary and the integral
(A1) is classified into I1 and I2, respectively, such that I =
I1 + I2.

First let us calculate I1 by doing the (N − 2)-multiple in-
tegral I ′ over Xn for n = 2, 3, . . . , N − 1. As kN = k+ or k−,
there is one and only one imaginary momentum in kQn , as well
as in kQ′

n
, taking the value of −kN . For the integral over Xn, in

most cases, we will meet the situation in which both momenta
kQn and kQ′

n
are real; it is ready to use the orthogonality of the

plane waves just as in the case of the free Fermi gas, i.e.,∫ xN +L

xN

(
eikQn Xn

)∗
eikQ′

n
Xn dXn = LδQnQ′

n
. (A3)

The imaginary momentum, however, may appear either at
different positions in the permutation Q and Q′ (Case A), and
thereafter one of them is the real momentum and the other
imaginary, or at the same positions (Case B), in which case
both kQn and kQ′

n
are purely imaginary in the integral. The

integral is then calculated for these two cases, respectively.
Case A. When one of them, say kQn , is imaginary, and kQ′

n
is

real, the key step here is to calculate the integral of the string
solution. The leading-order contribution to the integral over
Xn proves to be∫ xN +L

xN

(eik+Xn )∗eikQ′
n

Xn dXn ≈ − 1

c′ e
−c′(xN +L) (A4)

for kQn = k+ and∫ xN +L

xN

(eik−Xn )∗eikQ′
n

Xn dXn ≈ − 1

c′ e
c′xN (A5)

for kQn = k−, where we use ec′L → 0 as c′ is large and nega-
tive.

We adopt (L − 4) times the orthogonality relation (A3) and
twice the Case A integrals (A4) or (A5) for Xn and Xn′ in the
integral I ′, which gives

I ′ = LN−4
∫ xN +L

xN

(eik±Xn )∗eikQ′
n

Xn dXn

×
∫ xN +L

xN

(
eikQn′ Xn′ )∗

eik±Xn′ dXn′ . (A6)

For kN = k+, we know kQn = kQ′
n′ = k−, thus

AI ′ ≈ e−2c′Le−2c′xN LN−4

(
− 1

c′ e
c′xN

)2

= LN−4

c′2 e−2c′L, (A7)

otherwise for kN = k−, we have kQn = kQ′
n′ = k+, and

AI ′ ≈ e2c′xN LN−4

(
1

−c′ e
−c′(xN +L)

)2

= LN−4

c′2 e−2c′L. (A8)

Clearly we arrive at the same result AI ′ for either kN = k+ or
kN = k−.

Case B. When both kQn and kQ′
n

are purely imaginary, the
integral of Xn becomes∫ xN +L

xN

(eik+Xn )∗eik+Xn dXn ≈ − 1

2c′ e
−2c′(xN +L) (A9)

for kQn = kQ′
n
= k+ and∫ xN +L

xN

(eik−Xn )∗eik−Xn dXn ≈ − 1

2c′ e
2c′xN (A10)

for kQn = kQ′
n
= k−.

We adopt (L − 3) times the orthogonality relation (A3) and
once the Case B integral (A9) or (A10) for Xn in the integral
I ′, which gives

I ′ = LN−3
∫ xN +L

xN

(eik±Xn )∗eik±Xn dXn. (A11)

For kN = k+, we know kQn = kQ′
n
= k−, thus

AI ′ ≈ e−2c′Le−2c′xN LN−3 1

−2c′ e
2c′xN

= − LN−3

2c′ e−2c′L, (A12)

otherwise for kN = k−, we have kQn = kQ′
n
= k+, and

AI ′ ≈ e2c′xN LN−3 1

−2c′ e
−2c′(xN +L)

= − LN−3

2c′ e−2c′L. (A13)

Again we arrive the same result AI ′ for either kN = k+ or
kN = k−.

We see that the leading-order terms in AI ′ are independent
of XN , and Case A is of order 1/c′2 while Case B is 1/c′
besides the exponential factor e−2c′L. It is thus justified to omit
the contribution from case A.

The next step is the integral of XN . Inserting back the
definition of X and X ′, we find∫ L

0

(
eikQ1 X

)∗
e

ikQ′
1

X ′
dXN = (

eikQ1 x
)∗

e
ikQ′

1
x′

IN , (A14)

where the integration IN can be split into three regions: (0, x),
(x, x′), and (x′, L) for x < x′ and the step functions only take
values in the middle region

IN =
∫ L

0
eikQ1 L[�(xN −x′ )−�(xN −x)]dxN

=
∫ x

0
e0dxN +

∫ x′

x
e−ikQ1 LdxN +

∫ L

x′
e0dxN

= L − 2(x′ − x). (A15)

Notice that kQ1 is real and can only take values of odd multi-
ples of π/L. For x > x′, we simply interchange x and x′. We
thus have ∫ L

0

(
eikQ1 X

)∗
e

ikQ′
1

X ′
dXN

= (
eikQ1 x

)∗
e

ikQ′
1

x′
(L − 2|x′ − x|). (A16)
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Keeping the leading-order terms in Case B means that in
the summation

∑
Q,Q′ we only need to take into account the

case when the two imaginary momenta occur at the same
position, i.e., kQn = kQ′

n
. Together with the orthogonality (A3)

for real momentum, this simplifies the summation into
∑

Q,
i.e., Q = Q′. The integral I1 is now

I1 = −LN−2

c′ e−2c′L
(

1 − 2|x′ − x|
L

) ∑
Q

eikQ1 (x′−x). (A17)

Now we do the summation of Q. Note that the sum of
Q2, . . . , QN−1 results in a factor (N − 2)! and that of all real
kQ1 gives

N−2∑
Q1=1

eikQ1 (x′−x) = sin
( (N−2)π

L (x′ − x)
)

sin
(

π
L (x′ − x)

) . (A18)

The final result for I1 is

I1 = − (N − 2)!
LN−2

c′ e−2c′L

×
(

1 − 2|x′ − x|
L

)
sin

( (N−2)π
L (x′ − x)

)
sin

(
π
L (x′ − x)

) . (A19)

Now we calculate I2 when kQ1 is imaginary. In this case
all other kQn with n = 2, . . . , N − 1 are real, and by means of
the orthogonality (A3) and the leading-order terms in A, it is
shown that

I2 = (N − 2)!
∑
Q1

∫ L

0
dXN eikQ1 (X+X ′ )ALN−2, (A20)

where the terms from Case A are omitted just as before. For
kN = k+, kQ1 = k−, the integral for XN

LN−2e−2c′L
∫ L

0
e−2c′xN ec′(X+X ′ )dxN (A21)

is again split into three regions for x < x′

LN−2e−2c′Lec′(x+x′ )
[∫ x

0
e−2c′xN dxN

+ ec′L
∫ x′

x
e−2c′xN dxN + e2c′L

∫ L

x′
e−2c′xN dxN

]
(A22)

with a quite simple result as

LN−2e−2c′Lec′(x+x′ ) 1

−2c′ [(e
−2c′x − 1)

+ ec′L(e−2c′x′ − e−2c′x ) + e2c′L(e−2c′L − e−2c′x′
)]

≈ −LN−2

2c′ e−2c′Lec′(x′−x). (A23)

Note that the step functions here gives 0, 1, 2 in the three re-
gions due to the addition (X + X ′) in the exponential function
and among the six terms the first one proves to be the leading
term. Similarly, for kN = k−, kQ1 = k+, we get exactly the
same result. For x > x′, we again simply interchange x and
x′. The combination of these results gives

I2 = −(N − 2)!
LN−2

c′ e−2c′Lec′|x′−x|. (A24)

Following the same procedure, the normalization factor G can
be evaluated to the leading order as

G = −(N − 1)!
LN−1

c′ e−2c′L. (A25)

By collecting the integral I , i.e., the sum of Eqs. (A19) and
(A24) and the normalization factor G into the expression of
the up-up correlation function (19), we see that all terms are
canceled perfectly, leading to the result of the up-up correla-
tion function (22) in the main text.
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