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Quench-induced nonequilibrium dynamics of spinor gases in a moving lattice
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The isolation and control of disparate degrees of freedom underpins quantum simulators. We advance the
programmability of cold atom quantum simulators with a realization of the dynamic coupling of spatial and spin
degrees of freedom. We experimentally demonstrate that violent spatial evolutions tune long-lived coherent spin
dynamics and develop a model of quantum spin mixing incorporating the spatial evolution via time-dependent
spin-spin interactions. Our results may open new paths towards the simulation of quantum spin models with
tunable interactions via tailored spatial dynamics.
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I. INTRODUCTION

Ultracold quantum gases that feature spatial and spin de-
grees of freedom offer a powerful platform for simulating
quantum magnetism in controlled, isolated settings [1–5].
When combined with optical lattices, these simulation ca-
pabilities are exemplified by experimental studies featuring
tunable dimensionality and filling factors [6–9]. Possessing
long coherence times, these systems also provide an ideal
platform for studying out-of-equilibrium phenomena such as
spin mixing [10–13], transport [14,15], dynamical phases
of matter [16], and critical dynamics across quantum phase
transitions [7,8,17]. Simultaneously, advances in spin- and
spatially-resolved probes [7,9,18,19] and the control of time-
and spin-dependent lattice potentials are opening up new op-
portunities, including the study of multistate tunneling physics
[20] and driven-dissipative phases [21], in the presence of the
spin degree of freedom.

Typically, the energy scales of the spin and spatial de-
grees of freedom are disparate. This has been exploited to
obtain a reduced description of the spin dynamics governed
by a spin-spin interaction coefficient c2 that depends only
on a spatial profile that remains frozen due to, e.g., a strong
confining potential [11,16,22–28]. In the context of spinor
Bose-Einstein condensates (BECs), this decoupled regime has
received significant attention [29–31] and, amongst other ap-
plications, has been utilized to generate entangled states in the
highly controllable spin degree of freedom [32–37], which can
also be mapped to the motional degrees of freedom [38–40].

In contrast, the interplay of spatial and spin degrees of
freedom remains largely unexplored and, although typically
weak, can provide a powerful avenue for controlling the
spin dynamics through tailored dynamical manipulation of
the spatial properties of the gas [41–45]. We provide an
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example of how spatial degrees of freedom can be utilized
to manipulate the spin dynamics. We experimentally ob-
serve that a one-dimensional (1D) moving lattice, combined
with a skew optical dipole trap (ODT), induces violent tran-
sient spatial motion, which is nevertheless accompanied by
long-lived spin-mixing dynamics. We develop a theoretical
understanding of these observations based on a dynamical
single spatial-mode approximation (dSMA), which leads to an
effective spin model with a time-dependent spin-spin interac-
tion coefficient that depends on the temporal evolution of the
BEC density profile. Experimental observations—including a
robust critical regime featuring divergent timescales for the
spin dynamics, which is tuned by the applied moving op-
tical lattice and associated spatial motion—are qualitatively
described by our model.

Our results open the way for the exploitation of classi-
cal spatial dynamics for simulating many-body quantum spin
dynamics with highly tunable, time-dependent interactions
[46,47], thereby enhancing the class of quantum spin models
accessible in spinor BECs. In addition, our findings imply
that spatial dynamics can provide new control knobs for the
nonequilibrium generation of entangled spin states for, e.g.,
quantum-enhanced sensing [38].

The remainder of this paper is organized as follows. Sec-
tion II discusses the experimental setup, the observed spin
dynamics, and a first interpretation within a static single
spatial-mode approximation (sSMA). Section III introduces
the dSMA, which provides a more rigorous description of
the observed spin dynamics. Section IV presents a combined
experiment-theory analysis of the spatial dynamics, which
are critical to understanding the spin dynamics. Finally, we
conclude in Sec. V.

II. EXPERIMENTAL SETUP AND SPIN DYNAMICS

Each experimental cycle begins with a sodium spin-1 BEC
at quadratic Zeeman energy q in an ODT (see Appendix A).
A key feature of spinor BECs is their spin degree of freedom,
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FIG. 1. (a)–(f) Exemplary time traces of ρ0 for spinor BECs. Panels (a)–(c) show experimental results for ρ0 (red markers) at q/h = 15 Hz
(a), 25 Hz (b), and 65 Hz (c) as well as sSMA predictions (dotted lines) with c2,fit/h = 23.7(1)Hz extracted from Fig. 1(g). Panel (a) compares
static (black) and moving (red) lattice results. Solid lines are sinusoidal fits to guide the eye. Panels (d)–(f) compare predicted ρ0 for q/h =
15 Hz (d), 22 Hz (e), and 65 Hz (f) from 1D GP simulations (solid lines) to sSMA (dotted lines) with c2 obtained through fits to the GP data (see
Appendix D), and dSMA (dashed lines) with c2(t ) obtained from GP data. The chosen q values exemplify the interaction dominated (q < q∗)
and Zeeman (q > q∗) regimes separated by the critical region q ≈ q∗. (g) Observed T (markers) vs q fit by analytical sSMA expressions (solid
line) with the fitting parameter c2,fit/h = 23.7(1)Hz (see Appendix D). (h) Red (black) lines are evolution of c2(t )/c2(0) for q/h = 15 Hz
obtained from 1D GP simulations of the moving (static) lattice. All moving lattice data use a lattice depth uL = 2.3ER, t1 = 1.43ms, and fixed
� f = 4.6ER/h. (i) Timeline of the lattice depth (lower panel) and moving lattice speed (upper panel).

which is characterized by the spin-dependent interaction coef-
ficient c2. Spin mixing and other nonequilibrium phenomena
driven by a static c2 have been studied in various contexts
[7,8,11,23,24,28,31]. Here, in contrast, we demonstrate that
c2 can be tuned dynamically by utilizing a moving lattice
to change the BEC’s spatial density profile. We construct a
1D moving lattice with two nearly orthogonal optical beams
whose frequency difference � f determines the moving lattice
speed (see Appendix A). The lattice geometry is skewed to
gravity and the ODT, as elaborated upon in Appendix B.
Our initial BEC has a fractional population ρ0 ≈ 0.5 of
atoms in the |S = 1, m = 0〉 state and zero magnetization
(equal populations in the |S = 1, m = ±1〉 states). The BEC
is then adiabatically loaded into the lattice, which is static
for time t < t1 and quenched to the desired speed at t = t1
[see Fig. 1(i)]. Here, a “static” lattice is a lattice with time-
independent frequency difference, i.e., � f = 0, regardless of
whether or not the lattice depth uL is time dependent. We study
the ensuing nontrivial spin (Fig. 1) and spatial (Fig. 2) dynam-
ics of the atoms by holding them in the moving lattice until
a time tF . Similar to our previous works, we employ a two-
stage microwave imaging method to obtain a spin-resolved
measurement with resonant microwave pulses after releasing
atoms and letting them ballistically expand for a certain time
of flight (TOF) [7–9].

We first study the nonequilibrium spin dynamics generated
by experimental sequences [Fig. 1(i), � f = 4.6ER/h], which
near-resonantly couple the initial stationary p = 0 BEC with
the p = 2h̄kL momentum state. Here, ER is the recoil energy, h
(h̄) is the (reduced) Planck constant, and kL is the lattice vector
(see Appendix A) [6]. Spin-mixing oscillations, arising from
coherent interconversions among two m = 0 atoms and a pair
of atoms in the m = ±1 Zeeman states [3], constitute a useful
tool in understanding the spin dynamics. The periods T of
these oscillations are determined by the competition between

c2 and q, illustrated by typical examples of the interaction
dominated region [Fig. 1(a)] and Zeeman dominated region
[Fig. 1(c)]. We also see convincing experimental signatures
of a critical separatrix regime near q = q∗ where T diverges
[see Fig. 1(b)]. Here, q∗ represents the critical quadratic Zee-
man energy that separates the interaction-dominated and the
Zeeman-dominated regimes. A similar phenomenon has also
been observed in free space (i.e., without lattice) where the
established sSMA model, which assumes c2(t ) is time in-
dependent, predicts q∗ to be approximately equal to c2 for
our initial state [3,11,23,24,28,31]. Our moving lattice data
in Fig. 1(g) display periods that are consistent with the sSMA
expectations, which can be used to estimate the effective static
spin-spin interaction c2,fit = h × 23.7(1) Hz ≈ q∗.

However, direct comparisons to the sSMA predicted time
traces [dotted lines in Figs. 1(a)–1(c)] demonstrate that the
model fails to capture experimentally observed features such
as the damping of the oscillation amplitude and the drift of
the oscillations. Another notable observation that cannot be
explained by the sSMA is the shift of the separatrix location
induced by the moving lattice, as shown by a comparison be-
tween static (� f = 0) and moving lattice results in Fig. 1(a).
This comparison indicates that for static lattices at an identical
q in the interaction dominated regime T is smaller and thus,
using the same sSMA interpretation, would lie on a curve
shifted to higher q (indicating a larger characteristic c2) rel-
ative to the moving lattice data shown in Fig. 1(g). These
experimental observations suggest that the sSMA provides an
incomplete description of our system.

III. THEORETICAL MODEL: DYNAMICAL SINGLE
SPATIAL-MODE APPROXIMATION

To explain the sSMA’s shortcomings, we develop the more
versatile dSMA model, which assumes that c2 varies with time
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and describes our N-particle system with the spin Hamiltonian
(see Appendix D) [6,22,39]:

Ĥeff (t ) = c2(t )

2N
Ŝ · Ŝ + q(n̂1 + n̂−1). (1)

Here, Ŝ = ∑N
i=1 ŝi where ŝi denotes the spin-1 operator for the

ith atom and n̂m is the number operator for the Zeeman state m.
The time-dependent c2(t ) arises from the temporal evolution
of the BEC’s spatial density profile and, in turn, modulation
of the effective interaction strength of the spin model, driven
by the moving lattice. Formally, c2(t ) emerges from the time
dependence of the Gross-Pitaevskii (GP) orbitals ψm(r, t ) that
describe the spatial dynamics of the mth Zeeman component.

We assume that the spatial density profile of each Zeeman
component is the same but time dependent, i.e., |ψm(r, t )|2 ∝
|φ(r, t )|2, to obtain c2(t ) ∝ (N − 1)

∫
d3r |φ(r, t )|4 (see

Appendix D). This assumption is motivated by experimen-
tal observations (see Appendix E) and further justified by
the qualitative agreement between theory and experiment as
shown in Sec. IV. The replacement of the spatial density
profiles |ψm(r, t )|2 with a common m-independent function
implies that, within the dSMA, the spatial degree of free-
dom may contribute to the spin dynamics through c2(t ) but
that the spin degree of freedom does not feed back onto the
evolution of the spatial profile as it is explicitly assumed to
be identical for all three Zeeman components. Specifically,
the common m-independent mean-field wave function φ(r, t )
evolves according to a spin-independent single-component
GP equation that involves contributions only from the ex-
ternal potentials and the spin-independent density-density
interactions, which are much larger than the spin-dependent
interactions (see Appendix D). A key result of the presented
experiment-theory work is that the dSMA enables a transpar-
ent understanding of the nontrivial spin dynamics triggered
by violent spatial evolution of the BEC that occurs on faster
characteristic timescales than the spin dynamics.

IV. SPATIAL DYNAMICS

To illustrate the typical spatial dynamics driving the spin
mixing observed in Fig. 1, we show experimental BEC mo-
mentum distributions in Figs. 2(a)–2(c), which capture the
emergence of violent spatial motion due to momentum kicks
generated by the moving lattice and the shallow ODT har-
monic confinement on a timescale significantly shorter than
the observed spin dynamics. The rapid appearance of many
discrete momentum peaks and associated spatial dynamics
shown in Fig. 2 simultaneously suggests that the deviations
from sSMA predictions in Figs. 1(a)–1(c) are to be expected
but also entices us to reconcile elements of the good qual-
itative agreement between the experimental data and sSMA
calculations in Fig. 1(g). We note that the creation of the
discrete momentum peaks is a coherent process and does
not conflict with the assumption of the single spatial-mode
approximation. In fact, Fig. S1 of the Supplemental Material
[48] shows that Figs. 1(a)–1(c) are very similar if different
momentum components are used to construct ρ0, thereby pro-
viding experimental support for dSMA.

To gain further insight, we use numerical GP calculations
(see Appendix C), which provide a mean-field description
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FIG. 2. Time-of-flight snapshots of 2D integrated momentum
distribution with � f = 4.6ER/h, uL = 1.2ER, t1 = 0.72 ms, and
tF = 1.22 ms (a), 2.22 ms (b), and 3.72 ms (c) in a shallow ODT with
LODT,z = 20 µm (see Appendix B) at q/h = 42Hz. (d)–(f) Analogous
theoretical results of in situ momentum distributions based on 2D
GP simulations (see Appendix C). The colorbar scale indicates the
optical density of the images for each row.

of the full spinor BEC dynamics including both spatial and
spin degrees of freedom. The complexity of the experimental
system, in particular the disparate timescales of spin and spa-
tial dynamics, precludes a full quantitative three-dimensional
(3D) GP treatment. Instead, we use a reduced dimensionality
1D spinor GP calculation with parameters tuned to capture es-
sential aspects of the experimental 3D system. This simplified
treatment enables us to develop a qualitative understanding
of the experimental results (see Appendix C). The GP sim-
ulations [solid lines in Figs. 1(d)–1(f)] qualitatively replicate
the coherent spin dynamics, including a diverging oscillation
period for q ≈ q∗ [Fig. 1(e)] and robust harmonic oscillations
for q < q∗ [Fig. 1(d)] and q > q∗ [Fig. 1(f)] with damped
amplitude and drifting mean value, respectively. We note that
the upward drifting mean value in the experimental data for
q > q∗ [Fig. 1(c)], notably not captured by the 1D GP theory,
may be induced by a subtle resonance mechanism between
the spin and spatial dynamics [31] that depends sensitively
on the dimensionality of the system. Higher dimensionality
calculations will be presented elsewhere [49].

We use GP calculations to make a more fine-grained theo-
retical investigation of the relationship between the spatial and
spin dynamics and, in particular, certify that while the BEC
undergoes violent motion on fast time-scales (i) all Zeeman
components are described by a common spatial density profile
|φ(r, t )|2 and (ii) the combination of the moving lattice and
ODT drives complex dynamics of c2(t ). These observations
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lead us to self-consistently compare the 1D GP results to
dSMA predictions, i.e., mean-field dynamics based on Eq. (1)
with c2(t ) computed via the GP density |φ(r, t )|2 (see Ap-
pendix D). The GP and dSMA time traces in Figs. 1(d)–1(f)
show excellent agreement with each other.

GP calculations of the spatial dynamics in the presence of
a moving lattice lead to appreciable variation of c2(t ) [red
line in Fig. 1(h)] at t � 3 ms. Over longer timescales, c2(t )
features an overall decrease, which we understand as being
driven by the relaxation of the spatial density profile as the
BEC fractures into many momentum components. This be-
havior is in stark contrast with predictions for a static lattice
[black line in Fig. 1(h)] that indicate c2(t ) instead fluctuates
around a well-defined time-averaged value with small oscilla-
tions due to excitations created during the loading phase. After
the initial transient behavior in the moving lattice, our results
[Fig. 1(h)] indicate that the decay of c2(t ) is slow relative
to the characteristic time of the spin dynamics, and therefore
observables such as the spin oscillation period are captured by
the sSMA (see Appendix D). Our calculations show that the
precise details of the spin dynamics [e.g., qualitative features
including damping of the spin oscillations in Fig. 1(a)] can
depend greatly on the temporal variation of c2(t ) and hence a
more rigorous description is provided by the GP and dSMA
models.

The precise evolution of the spatial density profile, seen in
Figs. 2(a)–2(c) as a menagerie of seemingly irregularly dis-
tributed wave packets in momentum space, can be understood
with the aid of GP simulations [Figs. 2(d)–2(f)]. To more pre-
cisely capture the impact of gravity and the finite trap depth,
the simulations in Fig. 2 are performed using an axially sym-
metric two-dimensional (2D) setup. This numerical treatment
is feasible due to the relatively short timescales over which the
spatial dynamics are studied in detail. Two-dimensional simu-
lations also enable us to capture key details of the momentum
kicks that 1D simulations, such as those employed in Fig. 1,
miss. At short times, the lattice kicks atoms from the initial
BEC with momentum p = 0 to the near-resonant state with
momentum p = 2h̄kL [Figs. 2(a) and 2(d)]. Subsequently, an
additional momentum component, referred to as the lead peak
(L peak), splits from the p = 2h̄kL peak and decelerates as it
travels away from the minima of the relatively shallow ODT
potential. As the L peak slows, its momentum evolves until it
sweeps through the approximate resonance region centered on
the line pz ≈ 0.86px + 0.20h̄kL [see the gray shaded region
in Fig. 3(b)], where the lattice couples two nearly resonant
momentum states, corresponding to the L peak and a new
peak labeled R1, that are separated by another 2h̄kL momen-
tum kick [Figs. 2(b) and 2(e)]. Similarly, the R1 peak also
decelerates until it crosses the resonance region and the lattice
generates a new peak labeled R2 [Figs. 2(c) and 2(f)]. This
pattern continues and the BEC fractures into a multitude of
momentum states.

Figure 3 confirms our prior analysis, which suggests a
dependence on both the confining ODT potential and moving
lattice, by tracking the position of the L and R1 peaks in time
and momentum space in a compressed ODT. The position of
the L peak initially follows a trajectory consistent with a Lis-
sajous curve derived from a simplified classical treatment of
a single particle initially moving with momentum 2h̄kL in the
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FIG. 3. (a) Trajectories of the mean position of the L peak
(circles) and R1 peak (squares) in the pz − px plane taken in a
compressed ODT with LODT,z = 33 µm (see Appendix B), extracted
from experimental images similar to those shown in Figs. 2(a)–2(c) at
q/h = 42Hz. The gray shaded region encompasses an approximate
resonance region where decelerated atoms are kicked by the lat-
tice (to create, e.g., the R1 peak) (see Supplemental Material [48]).
(b) The top (bottom) panel represents time evolution of pz (px)
momentum of the L and R1 peaks shown in panel (a).

ODT (see Supplemental Material [48]). A sudden momentum
kick imparted by the lattice couples the L and R1 peaks as
the former crosses the approximate resonance region, shown
by the gray region in Fig. 3(a) (see Supplemental Material
[48]). As time increases (i.e., deeper into the trajectory of each
peak), the agreement between the experimentally observed
and the theoretically predicted trajectories for the L and R1
peaks deteriorates, as shown near the end of the time axis in
Fig. 3(b). The deterioration is most clearly seen when compar-
ing an ideal (effectively LODT,i = ∞) harmonic trap with our
typical shallow ODT depth that features a comparatively small
curvature (see Appendix E). In Fig. 3, we use a compressed
ODT instead of the shallow ODT, trading reduced visibility
and condensate fraction, to better illustrate the bending of the
trajectory in the px-pz plane (see Appendix E).

V. CONCLUSION

Our results may open a new direction for the exploitation
of spatial dynamics as a control knob for simulations of many-
body quantum spin models with tunable, time-dependent
interactions [46,47]. This is complementary to other estab-
lished experimental methods, for example using microwave
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dressing fields to tune the quadratic Zeeman energy q as
demonstrated in our prior work [11], and may be desirable
for situations in which high stability of q is required. Tailored
modulation of the spatial profile could be used to control
the precise time dependence of the spin-spin interactions and
realize Floquet-driven spin dynamics [50,51]. This can have
immediate applications for the dynamical generation of en-
tangled spin states for quantum-enhanced sensing [36,39,52–
54]. The observed short-time dynamics also raise intriguing
questions about equilibration of spinor BECs. For example,
future studies might utilize the time dependence of c2(t ) to
force these systems along different equilibration trajectories.
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APPENDIX A: EXPERIMENTAL SEQUENCE

Our experimental sequences start by creating a S =
1 spinor BEC of up to 105 sodium (23Na) atoms in a
crossed, anisotropic harmonic ODT at a particular quadratic
Zeeman shift q tuned by external magnetic fields, similar to
our previous work [6,9,11]. We apply a resonant rf pulse
to prepare an initial state with fractional population ρ0 =
〈n̂0〉/N ≈ 0.5 in the |S = 1, m = 0〉 state and zero magne-
tization, M = 〈n̂1 − n̂−1〉/N = 0. We then adiabatically load
the initial state into a one-dimensional moving optical lat-
tice. The lattice is constructed from two nearly orthogonal
lattice beams originating from a single-mode laser with wave-
length 1064 nm and characterized by the potential Vlat (r, t ) =
uL cos2[kL · r − 2π� f (t )t/4], with lattice vector kL oriented
at approximately 40◦ from the z axis defined by gravity.
The resulting standing-wave potential has a lattice spacing
of λL/2 = 0.81 µm. The time-dependent frequency difference
� f (t ) = | fH − fV |, where fH and fV are the corresponding
lattice beam frequencies, determines the velocity v of the
moving lattice, v = λL( fH − fV ). The velocity v is manipu-
lated via a linear ramping rate α = h[� f (t2 )−� f (t1 )]

t2−t1
such that

when v < 0 (v > 0) the atoms move in the p = 2h̄kL (p =
−2h̄kL) direction. The data in Fig. 1 were taken with positive
velocities, while the data in Figs. 2 and 3 were taken with
negative velocities. The value of � f is initially set to zero
and, after an adiabatic ramp of the lattice depth uL to its final
value at t = t1, is quenched to its final value. The total time
the atoms spend in the lattice is denoted by tF [for details see
Fig. 1(i)]. At the conclusion of each sequence, the trapping
potentials are turned off so that the atoms can ballistically
expand and be captured using a two-step microwave imaging
after a given TOF [9]. Each data point in this paper is an
average of at least eight repeated measurements and all error
bars reported are estimated one standard deviation.

APPENDIX B: OPTICAL DIPOLE TRAP

An essential element of our experimental setup is a har-
monic confinement potential skew to the moving lattice
potential. The interplay of these two potentials triggers the
nontrivial spatial dynamics that are key to our findings.
The harmonic confinement is provided by a crossed ODT
constructed by two orthogonal beams with wavelength λ =
1064 nm. One ODT beam (ODT1) is orthogonal to gravity
while the other (ODT2) is at a 76◦ angle relative to gravity
[see Figs. 4(a) and 4(b)]. ODT1 is along the xODT axis, while
the projection of ODT2 into the plane normal to gravity falls
along the yODT axis [see Figs. 4(a) and 4(b)]. The moving
lattice lies 72◦ horizontally from ODT1 and is tilted at a 40◦
angle relative to gravity. Due to experimental considerations,
our theoretical calculations therefore occur in three distinct
coordinate systems that share a common z axis defined by
gravity: the coordinate systems defined by the ODT potential,
the moving lattice, and the imaging plane, as illustrated in
Figs. 4(a) and 4(b).

The potential generated by our crossed ODT can be
parametrized to a good approximation by

V3D(xODT, yODT, z) = −V0

⎧⎪⎨
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where V0 = P0hαFSλ2λNa
2

2π3mec2ξ 2
0 (λ2−λNa

2 )
, ξ0 = 33 µm is the ODT beam

waist, z0 = πξ 2
0

λ
is the associated Rayleigh length, P0 is the

ODT power, λNa is the D2 line of sodium atoms, λ is the
wavelength of the ODT beam, me is the mass of an electron,
h (h̄) is the (reduced) Planck constant, αFS ≈ 1

137 is the fine-
structure constant, g is the gravitational acceleration, and c is
the speed of light [2,3]. The ODT power, P0, can be varied to
change the effective trap depth and size.

In Fig. 4(c) we utilize Eq. (B1) and take into account
the effects of gravity to generate cross-sectional cuts for the
compressed ODT trap (P0 ≈ 35 mW), which was utilized for
the experiments discussed in Figs. 3(a), 3(b) and 4(d), and the
shallow ODT trap (P0 ≈ 17 mW), which was utilized for all
other experimental figures and discussions. The effective trap
length LODT,i is defined as the difference between the values
for which V3D takes on a local maximum and local minimum
[see Fig. 4(c)] in the i-coordinate axis. Thus, the shallow trap
(red solid line) is characterized by a smaller effective trap
length LODT,i than the compressed trap (blue dashed line), i.e.,
atoms with high momentum exit the shallow trap more easily
than the compressed trap. Since the trapping extends over
a larger spatial region for the larger LODT,i, the compressed
trap extends the timescales over which the complex spatial
dynamics can occur. However, the extended trapping times
come at the cost of an increased average atom temperature,
which in turn tends to reduce the coherence and condensate
fractions. This is demonstrated in Fig. 4(d), which exhibits
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FIG. 4. (a) The three coordinate systems used in our theoretical calculations projected into the plane spanned by px and py. Blue (red)
[black] axes refer to the ODT (moving lattice, with associated lattice vector kL) [imaging plane, with associated momentum vector p] coordinate
system. (b) Similar to (a) but projected into the plane spanned by yODT and zODT. The green vector labeled by g indicates the direction of gravity.
The projections in this figure are to scale. (c) Cross-sectional cut of the ODT potential after accounting for gravity in the zODT direction at a
local minimum in the xODT and yODT directions. The effective length of the ODT along the zODT direction is LODT,z = 20 µm for the shallow
ODT (red solid line) and LODT,z = 33 µm for the compressed ODT (blue dashed line). Similar plots can be made for the ODT potential in the
yODT direction, giving an effective length of LODT,y = 31 µm (LODT,y = 40 µm) for the shallow (compressed) ODT. (d) Typical experimental
TOF images obtained with the compressed ODT (LODT,z = 33 µm, LODT,y = 40 µm) displayed in panel (c). Data are taken following the same
experimental sequence as in Fig. 2(c), which instead used the shallow ODT (LODT,z = 20 µm, LODT,y = 31 µm). The colorbar scale on the
right indicates the optical density of the image.

less coherent peaks than those shown in the analogous TOF
image in Fig. 2(c).

APPENDIX C: GROSS-PITAEVSKII TREATMENT
OF SPIN-1 CONDENSATES

We consider a spin-1 condensate of N sodium atoms of
mass MNa under external confinement in the presence of a
moving lattice. The two-body interactions are characterized
by the spin-independent and spin-dependent interaction coef-
ficients g0 and g2,

g0 = 4π h̄2(aS=0 + 2aS=2)

3MNa
(C1)

and

g2 = 4π h̄2(aS=2 − aS=0)

3MNa
, (C2)

where aS=0 = 48.9a0 and aS=2 = 54.5a0 are, respectively, the
s-wave scattering lengths for the S = 0 and 2 states with a0

the Bohr radius [9,55]. Our treatment includes the quadratic
Zeeman shift term (proportional to q) but not the linear
Zeeman shift, which does not play a role for the dynamics
since it is conserved.

At the mean-field level, the coupled dynamics of the spin
and spatial degrees of freedom is described by the time-
dependent spinor GP equation:

ih̄
∂

∂t

⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠ =

[
− h̄2∇2

2MNa
+ V (r, t ) + g0(N − 1)(|ψ−1|2 + |ψ0|2 + |ψ1|2)

]⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠ +

⎛
⎝q 0 0

0 0 0
0 0 q

⎞
⎠

⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠

+ g2(N − 1)

⎛
⎜⎝|ψ−1|2 + |ψ0|2 − |ψ1|2 ψ∗

1 ψ0 0
ψ1ψ

∗
0 |ψ1|2 + |ψ−1|2 ψ−1ψ

∗
0

0 ψ∗
−1ψ0 |ψ1|2 + |ψ0|2 − |ψ−1|2

⎞
⎟⎠

⎛
⎝ψ−1

ψ0

ψ1

⎞
⎠, (C3)

where V (r, t ) includes contributions from the moving optical
lattice Vlat (r, t ), the confining potential, and gravity. Within
the GP formalism, each Zeeman component of the BEC is
described by a mean-field wave function ψm(r, t ), such that
both spin and spatial degrees of freedom, and their interplay,
are simultaneously captured. The model ignores quantum
fluctuations, which are expected to contribute minimally for
the regimes in which the experiment operates.

For the scenarios reported, solution of the GP equation for
the full 3D system by direct numerical integration is not
feasible. This is due to both the disparate timescales for the
spin and spatial degrees of freedom as well as the large
spatial region occupied by the BEC when it is kicked by
the lattice. Specifically, the repeated momentum kicks im-
parted by the moving optical lattice on the fractured BEC lead

to intricate spatial structure as well as a rapidly expanding
cloud that must be tracked over comparatively long timescales
(36 ms in Fig. 1), requiring a large simulation box with good
spatial resolution. Thus, the GP results presented are from
numerical simulations of reduced dimensionality 1D (Fig. 1)
or 2D (Fig. 2) models, wherein the interaction coefficients
g0 and g2, mean spatial density of the BEC, and trapping
potential V (r, t ) are adjusted to capture the features of the
experimental setup. The GP results presented are generated
by numerically integrating the coupled GP equations using the
XMDS2 software package [56].

The dynamics shown in Figs. 2 and 3 are restricted to a few
ms, i.e., much shorter times than those on which the spin os-
cillation dynamics occurs (see Fig. 1). These dynamics out to
3 ms are amenable to 2D GP equations. To this end, we define
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FIG. 5. (a) Spin oscillation period T as a function of Zeeman shift q. The black markers show T extracted from 1D spinor GP calculations
that account for the spin-independent and spin-dependent interactions. The spin oscillation period diverges around q∗/h = 22 Hz. Emulating the
analysis of the experimental data shown in Fig. 1(g), the solid line is obtained by fitting the 1D GP data using the analytical sSMA expressions
and treating the spin-spin interaction as a fitting parameter (namely, c2,fit). (b) Time evolution of the overlap of the Zeeman states [see Eq. (D5)]
as a function of the Zeeman shift q. An overlap F of 1 indicates that all Zeeman states share a common spatial density profile, consistent with
the dSMA. The only significant deviation from unity is observed for relatively long times (t � 20 ms) when q ≈ q∗. (c) Parameter calibration
of the reduced dimensionality 1D GP equation. The black and red solid horizontal lines show the interaction energy c2 (left axis) and chemical
potential μ (right axis), respectively, for a 3D scalar BEC in the presence of a static lattice with uL = 2.3 ER for N = 80 000 and angular
trapping frequencies ωx = 125 Hz, ωy = 125 Hz, and ωz = 155 Hz. The red and black dashed lines show c2 and μ, obtained by solving the 1D
scalar GP equation as a function of the 1D coupling constant geff

1D. The 1D calculations use ωz = 197 Hz and uL = 2.3 ER.

a “2D simulation plane” by the direction of the px-pz imaging
plane. The reduced dimensionality trap V2D is obtained by
projecting the 3D trap V3D onto the 2D simulation plane. Our
simulations capture the role of the ODT trap (including, e.g.,
nonharmonic corrections to the confining potential) and its
interplay with gravity. Approximating the azimuthal and polar
angles introduced in Appendix B by 30◦ and 76◦, respectively,
the 2D trap is given by

V2D(y, z) = V3D[cos(76◦) cos(30◦)y,− sin(30◦)y, sin(76◦)z].

(C4)

The projection of the moving lattice in the px-py plane is
described by kL,x [see Figs. 4(a) and 4(b)]. Neglecting the 12◦
angle between the kL,x axis and the negative px axis, the mov-
ing lattice is in the px-pz plane. Given the fact that the lattice
has a 40◦ angle relative to the pz axis [see the discussion above
Figs. 4(a) and 4(b)], the lattice vector is described by kL =
kL[− sin(40◦), 0, cos(40◦)]. The reduction from three dimen-
sions to two dimensions does change the mean density and,
correspondingly, the chemical potential. This is accounted for
by introducing the effective 2D interaction strength geff

2D; sim-
ilar to the 1D case, g0(N − 1) and g2(N − 1) are replaced by
geff

2D and geff
2D/28.06, respectively. The coupling constant geff

2D is
set by enforcing that the chemical potential of the 2D system,
obtained by solving the scalar GP equation, is equal to that of
the 3D system at t = 0. It should be noted that the TOF images
in Figs. 2(d)–2(f) generated using this reduced 2D system are
characterized by a vanishing momentum component, which
does not reside exactly at p = 0. This micromotion can be
understood as a second-order effect due to the combination of
the coupling between the finite and the vanishing momentum
components and the force exerted on the finite-momentum
component by the trap. The trap force imparts momentum
to the finite-momentum BEC, which is transferred back to
the zero-momentum BEC, thereby explaining the observed
micromotion.

The procedure for mapping the full 3D system to a reduced
dimensionality model is not unique. Figure 5(c) illustrates
an example for the 1D case. Since the chemical potential
μ is the characteristic energy scale of the time-independent
scalar GP equation and c2 is the characteristic energy scale
of the effective spin Hamiltonian, it is natural to demand that
the reduced dimensionality scalar GP model reproduces these
two energy scales. The solid and dashed horizontal lines in
Fig. 5(c) show the chemical potential μ and the spin-spin
interaction strength c2 of the 3D system in the presence of
a static optical lattice with uL = 2.3 ER (note that the initial-
state preparation within the full 3D framework is significantly
simpler than tracking the time evolution); this is the final
lattice depth used in the experiment. Fixing the parameters
of the scalar 1D GP equation requires setting the values of
h̄ωz/ER and geff

1D/(ERk−1
L ). The 1D scalar GP equation is given

by Eq. (D2) with the r vector replaced by z and g0(N − 1)
replaced by geff

1D, where geff
1D has units of “energy times length.”

The 1D spinor GP equation is obtained analogously, i.e.,
g0(N − 1) and g2(N − 1) are replaced by geff

1D and geff
1D/28.06,

respectively.
The black and red dashed lines in Fig. 5(c) show c2 and μ

as a function of geff
1D/(ERk−1

L ) for fixed h̄ωz/ER (plugging in
uL = 2.3 ER, this corresponds to ωz = 197 Hz). It can be seen
that the dashed lines cross the solid lines at geff

1D/(ERk−1
L ) ≈

7 and 12.5, respectively, i.e., for the h̄ωz/ER value chosen
there exists no unique geff

1D/(ERk−1
L ) at which the values of

c2 and μ calculated within the 1D framework agree with
the respective values calculated within the 3D framework.
Since we do not find a unique geff

1D/(ERk−1
L ) for other values

of h̄ωz/ER either, there exists—unless additional conditions
are added—an arbitrariness in the chosen 1D simulation pa-
rameters. With this in mind, we select parameters that place
the divergence of T at about the same q value as observed
experimentally [see Fig. 5(a)]. Specifically, the simulations
shown in Figs. 1(d)–1(f) and 5(a) use the same final lattice
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depth as the experiment (namely, uL = 2.3 ER), ωz = 197 Hz,
and geff

1D/(ERk−1
L ) = 12.0.

APPENDIX D: SINGLE SPATIAL-MODE APPROXIMATION
AND EFFECTIVE SPIN MODEL

We now motivate and introduce an approximate treatment
that decouples the spin and spatial degrees of freedom. Typi-
cally, the energy scales associated with the spin-independent
terms of the Hamiltonian (i.e., the energy scales of the external
harmonic and lattice confinement, the interactions that are
proportional to g0, and the chemical potential μ of the system)
are of the order of kilohertz and much larger than those of
the spin-dependent terms of the Hamiltonian (i.e., the value of
the Zeeman shift q and the interactions that are proportional
to g2), which are of the order of hertz. This scale separation
motivates an approximate treatment wherein the spin and spa-
tial degrees of freedom are treated independently [22], with
the spatial degree of freedom controlled solely by the spin-
independent terms of the Hamiltonian and the spin dynamics
governed by the spin-dependent terms of the Hamiltonian.

Following the literature [3], we make a single spatial-mode
approximation (SMA) wherein the bosonic field operators are
decomposed as

ψ̂m(r) = âmφ(r, t ), (D1)

where âm (â†
m) is a bosonic operator that destroys (creates)

a particle in Zeeman state m in a spatial mode defined by
the spatial mean-field wave function φ(r, t ), which is normal-
ized to 1, i.e.,

∫
d3r|φ(r, t )|2 = 1; in Eq. (D1), m labels the

Zeeman states (m = 0 and ±1). The key assumption of the
SMA is that φ(r, t ) is identical for all three Zeeman states.
The mean-field wave function φ(r, t ) is the solution to the
time-dependent scalar GP equation

ih̄
∂φ(r, t )

∂t
≈

[
− h̄2∇2

2MNa
+ V (r, t ) + g0(N − 1)|φ(r, t )|2

]

× φ(r, t ), (D2)

where V (r, t ) is the same as in Eq. (C3). The spin dynamics,
in turn, is governed by the effective Hamiltonian Ĥeff (t ):

Ĥeff (t ) = c2(t )

2N
Ŝ · Ŝ + q(â†

1â1 + â†
−1â−1), (D3)

where the quantity Ŝ denotes a collective spin operator. The
time-dependent interaction strength c2(t ),

c2(t ) = (N − 1)g2

∫
d3r|φ(r, t )|4, (D4)

is driven by the time dependence of the spatial mean-field
wave function φ(r, t ), i.e., the spin dynamics is governed—
through the coefficient c2(t )—by the spatial dynamics. In our
experiment, the spatial dynamics is, to a large degree, induced
by the moving optical lattice potential. The time dependence
of the interaction coefficient c2(t ) is distinct from prior works
(e.g., Refs. [11,24,28]), which assumed that the condensate
is prepared in the ground state of a static confining potential
such that subsequent spatial motion is minimal and to a good
approximation |φ(r, t )|2 = |φ(r, 0)|2. For this reason, we use
the distinguishing nomenclature of dynamical SMA (dSMA,

time-dependent c2) and static SMA (sSMA, time-independent
c2) for our and prior works, respectively. The latter is recov-
ered from Eq. (D3) by assuming c2(t ) = c2. To zeroth order,
the dynamics of the moving lattice experiments during the
first few milliseconds is dominated by spatial dynamics. At
later times, however, the spin degrees of freedom become
increasingly important as evidenced by the observation of spin
oscillations (see Fig. 1).

The dSMA is supported by our 1D spinor GP calculations.
First, Fig. 1 shows good agreement between dSMA and GP
predictions for ρ0(t ). Second, we can explicitly validate the
assumption that each Zeeman state occupies a single common
spatial mode by computing the overlap:

F = |∫ dxψ∗
0 (x)ψ1(x)|√∫

dx|ψ0(x)|2
√∫

dx|ψ1(x)|2
. (D5)

The time evolution of this quantity over a range of Zeeman
shifts is plotted in Fig. 5(b). We observe that F remains
near unity across the interaction dominated regime (q < q∗)
throughout the timescales we investigate (up to 40 ms in the
GP calculations, which is longer than the 30 ms covered by
the experiment). In the Zeeman regime, the overlap remains
close to unity for t � 20 ms before minor deviations appear.
As might be expected naively, a substantial breakdown of the
single spatial-mode approximation occurs in a narrow region
around the critical regime, q ≈ q∗.

The experimental spin oscillation data in Fig. 1 are ana-
lyzed using the sSMA, i.e., the mean-field equations associ-
ated with Ĥeff(t ) for a time-independent spin-spin interaction
coefficient. Specifically, the spin oscillation period T is
extracted by fitting the experimentally measured fractional
population ρ0(t ) for various q with sinusoidal functions,
which provide good approximations to the spin oscillation
dynamics away from the critical regime where the period
diverges. All fits include at least one full period of oscillation.
To determine the spin-spin interaction coefficient from the
extracted periods, we perform a nonlinear least-squares fit
of the T -versus-q data using the analytical solutions to the
mean-field equations associated with Ĥeff [57]. The fit uses
ρ0(0) = 0.5 and θ (0) = 0 and treats c2 as a free parameter
(we denote the fit result by c2,fit). While ρ0(0) is measured ex-
perimentally, θ (0) is not. However, based on the experimental
sequence used to prepare the initial Zeeman populations we
expect that θ (0) is equal to zero. Our fitting procedure yields
c2,fit = h × 23.7(1) Hz.

To gain additional insights, we perform an analogous anal-
ysis for the spin oscillation data obtained by solving the 1D
spinor GP equations. Specifically, we obtain ρ0(t ) and the
associated period T by solving the spinor GP equations [see
markers in Fig. 5(a)], and then extract c2,fit from the T -versus-
q data using the sSMA [solid line in Fig. 5(a)]. For the 1D
spinor GP simulations shown in Fig. 5(a), the spin oscillation
period diverges at q∗/h ≈ 22 Hz, i.e., at roughly the same
value of the Zeeman energy as in the experiment. The qual-
itative agreement between the experimental and theoretical
analysis, particularly the consistency with the sSMA results,
is encouraging and suggests that the 1D spinor GP simula-
tions provide a qualitatively correct description of the moving
lattice experiments.
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FIG. 6. Solid (open) markers represent the time evolution of the
z momentum of the L peak for m = 0 (m = ±1) spin components
extracted from experimental TOF images similar to those shown
in Fig. 2. Inset: Trajectories of the mean position of L peak (blue
triangles) and R1 peak (red squares), extracted similarly to Fig. 3.
Markers represent data taken in a typical ODT (LODT,z = 20 µm).
Blue (red) solid lines are L peak (R1 peak) positions according to
Lissajous curves based on a calculation of a classical point particle in
an ideal (effectively, LODT,i = ∞) harmonic trap. Preceding L peak
formation, atoms occupy the p = 0 state at pz = px = 0 (prepared
BEC) and the p = 2h̄kL state. The gray shaded region marks the
approximate resonance region where decelerated atoms are kicked
by the lattice (to create, e.g., the R1 peak).

The GP simulations also enable us to better understand
why the spin oscillation period extracted from the experimen-
tal data is consistent with the predictions of the sSMA, even
though the time traces show significant discrepancies. In the
regime q � q∗, the sSMA theory predicts that the spin oscil-
lation period should be strongly correlated with the spin-spin
interaction strength [6,29,57], which the GP results [see, e.g.,
Fig. 1(h)] predict to decay relatively slowly, compared to the
typical timescales of the spin degree of freedom, apart from

initial transient dynamics for t � 3 ms. This suggests that the
spin oscillation period obtained from the experimental data
for q � q∗ should be interpreted as being reflective of the
characteristic scale of c2(t ) over the experimental sequence.
On the other hand, in the regime q 
 q∗ the oscillation period
is expected to be dominated by the quadratic Zeeman shift.
Thus, the experimentally observed spin oscillation periods are
fit well by the sSMA predictions as the time dependence of
c2(t ) is less relevant for larger q.

APPENDIX E: EXPERIMENTAL COMPARISON WITH
LISSAJOUS CURVES

Figure 6 shows time evolutions of spin-resolved L peak
pz momenta extracted from experimental TOF images similar
to Fig. 2. The clear similarity between the m = 0 and ±1
curves shown in Fig. 6 supports our previous assertion that
the spatial dynamics are shared across the spin populations.
As illustrated in Fig. 3, theoretical calculations of the Lis-
sajous trajectories qualitatively reproduce the experimental
trajectories that utilize the compressed ODT. However, ODT
compression is accompanied by lower condensate fractions
and reduced visibility [see also Fig. 4(d)]. In the inset of
Fig. 6 we compare the Lissajous curves with the ODT typ-
ically employed in our experiment (uncompressed trap with
LODT,z = 20 µm). We find stark differences between exper-
iment and theory curves for these parameters, including an
early exiting of atoms out of the ODT trap due to gravity. The
disagreements found in the compressed trap of Fig. 3 and the
inset of Fig. 6 illustrate that fully capturing all the aspects of
the experiment is necessarily beyond the simplified classical
model, which is designed to minimally capture the dynam-
ical appearance of resonances between different momentum
states. A closer quantitative comparison would be provided
by, e.g., a full 3D GP simulation and analysis of momentum
space dynamics analogous to what is carried out in Fig. 3 and
the inset of Fig. 6 for the experimental data.

[1] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[3] D. M. Stamper-Kurn and M. Ueda, Spinor Bose gases: Symme-
tries, magnetism, and quantum dynamics, Rev. Mod. Phys. 85,
1191 (2013).

[4] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Ultracold atomic gases in optical lattices: Mimick-
ing condensed matter physics and beyond, Adv. Phys. 56, 243
(2007).

[5] K. Eckert, Ł. Zawitkowski, M. J. Leskinen, A. Sanpera, and M.
Lewenstein, Ultracold atomic Bose and Fermi spinor gases in
optical lattices, New J. Phys. 9, 133 (2007).

[6] L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu, Antiferro-
magnetic Spinor Condensates in a Two-Dimensional Optical
Lattice, Phys. Rev. Lett. 114, 225302 (2015).

[7] J. O. Austin, Z. N. Shaw, Z. Chen, K. W. Mahmud, and Y. Liu,
Manipulating atom-number distributions and detecting spatial
distributions in lattice-confined spinor gases, Phys. Rev. A 104,
L041304 (2021).

[8] J. O. Austin, Z. Chen, Z. N. Shaw, K. W. Mahmud, and Y. Liu,
Quantum critical dynamics in a spinor Hubbard model quantum
simulator, Commun. Phys. 4, 61 (2021).

[9] Z. Chen, T. Tang, J. Austin, Z. Shaw, L. Zhao, and Y. Liu,
Quantum Quench and Nonequilibrium Dynamics in Lattice-
Confined Spinor Condensates, Phys. Rev. Lett. 123, 113002
(2019).

[10] C. Becker et al., Ultracold quantum gases in triangular optical
lattices, New J. Phys. 12, 065025 (2010).

[11] L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu, Dynamics in
spinor condensates tuned by a microwave dressing field, Phys.
Rev. A 89, 023608 (2014).

[12] K. W. Mahmud and E. Tiesinga, Dynamics of spin-1 bosons
in an optical lattice: Spin mixing, quantum-phase-revival

053311-9

https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1088/1367-2630/9/5/133
https://doi.org/10.1103/PhysRevLett.114.225302
https://doi.org/10.1103/PhysRevA.104.L041304
https://doi.org/10.1038/s42005-021-00562-y
https://doi.org/10.1103/PhysRevLett.123.113002
https://doi.org/10.1088/1367-2630/12/6/065025
https://doi.org/10.1103/PhysRevA.89.023608


Z. N. HARDESTY-SHAW et al. PHYSICAL REVIEW A 107, 053311 (2023)

spectroscopy, and effective three-body interactions, Phys. Rev.
A 88, 023602 (2013).

[13] L. Gabardos, B. Zhu, S. Lepoutre, A. M. Rey, B. Laburthe-
Tolra, and L. Vernac, Relaxation of the Collective Magnetiza-
tion of a Dense 3D Array of Interacting Dipolar s = 3 Atoms,
Phys. Rev. Lett. 125, 143401 (2020).

[14] S. Hild, T. Fukuhara, P. Schauss, J. Zeiher, M. Knap, E. Demler,
I. Bloch, and C. Gross, Far-from-Equilibrium Spin Transport in
Heisenberg Quantum Magnets, Phys. Rev. Lett. 113, 147205
(2014).

[15] P. N. Jepsen et al., Spin transport in a tunable Heisenberg
model realized with ultracold atoms, Nature (London) 588, 403
(2020).

[16] S. Smale et al., Observation of a transition between dynam-
ical phases in a quantum degenerate Fermi gas, Sci. Adv. 5,
eaax1568 (2019).

[17] J. Jiang, L. Zhao, S.-T. Wang, Z. Chen, T. Tang, L.-M. Duan,
and Y. Liu, First-order superfluid-to-mott-insulator phase tran-
sitions in spinor condensates, Phys. Rev. A 93, 063607 (2016).

[18] M. Boll et al., Spin- and density-resolved microscopy of antifer-
romagnetic correlations in Fermi-Hubbard chains, Science 353,
1257 (2016).

[19] L. Asteria, H. P. Zahn, M. N. Kosch, K. Sengstock, and C.
Weitenberg, Quantum gas magnifier for sub-lattice-resolved
imaging of 3D quantum systems, Nature (London) 599, 571
(2021).

[20] N. A. Sinitsyn and V. Y. Chernyak, The quest for solvable
multistate Landau-Zener models, J. Phys. A: Math. Theor. 50,
255203 (2017).

[21] N. Dogra et al., Dissipation-induced structural instability and
chiral dynamics in a quantum gas, Science 366, 1496 (2019).

[22] C. K. Law, H. Pu, and N. P. Bigelow, Quantum Spins Mixing
in Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 81, 5257
(1998).

[23] H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow,
Spin-mixing dynamics of a spinor Bose-Einstein condensate,
Phys. Rev. A 60, 1463 (1999).

[24] S. Yi, O. E. Mustecaplioglu, C. P. Sun, and L. You, Single-mode
approximation in a spinor-1 atomic condensate, Phys. Rev. A
66, 011601 (2002).

[25] M. J. Martin et al., A quantum many-body spin system in an
optical lattice clock, Science 341, 632 (2013).

[26] X. Zhang et al., Spectroscopic observation of su(N)-symmetric
interactions in Sr orbital magnetism, Science 345, 1467 (2014).

[27] J. S. Krauser et al., Giant spin oscillations in an ultracold Fermi
sea, Science 343, 157 (2014).

[28] Y. Liu, S. Jung, S. E. Maxwell, L. D. Turner, E. Tiesinga, and
P. D. Lett, Quantum Phase Transitions and Continuous Observa-
tion of Spinor Dynamics in an Antiferromagnetic Condensate,
Phys. Rev. Lett. 102, 125301 (2009).

[29] J. Kronjager, C. Becker, P. Navez, K. Bongs, and K. Sengstock,
Magnetically Tuned Spin Dynamics Resonance, Phys. Rev.
Lett. 97, 110404 (2006).

[30] H. K. Pechkis, J. P. Wrubel, A. Schwettmann, P. F. Griffin, R.
Barnett, E. Tiesinga, and P. D. Lett, Spinor Dynamics in an
Antiferromagnetic Spin-1 Thermal Bose Gas, Phys. Rev. Lett.
111, 025301 (2013).

[31] J. Jie, Q. Guan, S. Zhong, A. Schwettmann, and D. Blume,
Mean-field spin-oscillation dynamics beyond the single-mode

approximation for a harmonically trapped spin-1 Bose-Einstein
condensate, Phys. Rev. A 102, 023324 (2020).

[32] C. Gross et al., Atomic homodyne detection of continuous-
variable entangled twin-atom states, Nature (London) 480, 219
(2011).

[33] B. Lücke et al., Twin matter waves for interferometry beyond
the classical limit, Science 334, 773 (2011).

[34] C. D. Hamley, C. Gerving, T. Hoang, E. Bookjans, and M. S.
Chapman, Spin-nematic squeezed vacuum in a quantum gas,
Nat. Phys. 8, 305 (2012).

[35] J. Peise et al., Satisfying the Einstein-Podolsky-Rosen criterion
with massive particles, Nat. Commun. 6, 1 (2015).

[36] Y.-Q. Zou et al., Beating the classical precision limit with spin-1
Dicke states of more than 10,000 atoms, Proc. Natl. Acad. Sci.
USA 115, 6381 (2018).

[37] A. Qu, B. Evrard, J. Dalibard, and F. Gerbier, Probing Spin
Correlations in a Bose-Einstein Condensate Near the Single-
Atom Level, Phys. Rev. Lett. 125, 033401 (2020).

[38] F. Anders, A. Idel, P. Feldmann, D. Bondarenko, S. Loriani,
K. Lange, J. Peise, M. Gersemann, B. Meyer-Hoppe, S. Abend
et al., Momentum Entanglement for Atom Interferometry, Phys.
Rev. Lett. 127, 140402 (2021).

[39] Q. Guan, G. W. Biedermann, A. Schwettmann, and R. J. Lewis-
Swan, Tailored generation of quantum states in an entangled
spinor interferometer to overcome detection noise, Phys. Rev.
A 104, 042415 (2021).

[40] P. Kunkel et al., Spatially distributed multipartite entangle-
ment enables EPR steering of atomic clouds, Science 360, 413
(2018).

[41] K. Lange et al., Entanglement between two spatially separated
atomic modes, Science 360, 416 (2018).

[42] P. Kunkel, M. Prufer, S. Lannig, R. Rosa-Medina, A. Bonnin,
M. Garttner, H. Strobel, and M. K. Oberthaler, Simultaneous
Readout of Noncommuting Collective Spin Observables be-
yond the Standard Quantum Limit, Phys. Rev. Lett. 123, 063603
(2019).

[43] P. Kunkel, M. Prufer, S. Lannig, R. Strohmaier, M. Garttner, H.
Strobel, and M. K. Oberthaler, Detecting Entanglement Struc-
ture in Continuous Many-Body Quantum Systems, Phys. Rev.
Lett. 128, 020402 (2022).

[44] F. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann, and L.
Santos, Quantum magnetism without lattices in strongly inter-
acting one-dimensional spinor gases, Phys. Rev. A 90, 013611
(2014).

[45] A. G. Volosniev, D. Petrosyan, M. Valiente, D. V. Fedorov, A. S.
Jensen, and N. T. Zinner, Engineering the dynamics of effective
spin-chain models for strongly interacting atomic gases, Phys.
Rev. A 91, 023620 (2015).

[46] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H. Schleier-
Smith, Photon-Mediated Spin-Exchange Dynamics of Spin-1
Atoms, Phys. Rev. Lett. 122, 010405 (2019).

[47] A. Periwal et al., Programmable interactions and emergent ge-
ometry in an array of atom clouds, Nature (London) 600, 630
(2021).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.107.053311 for further details on the ex-
perimental setup, theory formulation and simulation, and
supporting experimental and theoretical results.

[49] Q. Guan et al. (unpublished).

053311-10

https://doi.org/10.1103/PhysRevA.88.023602
https://doi.org/10.1103/PhysRevLett.125.143401
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1126/sciadv.aax1568
https://doi.org/10.1103/PhysRevA.93.063607
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1038/s41586-021-04011-2
https://doi.org/10.1088/1751-8121/aa6800
https://doi.org/10.1126/science.aaw4465
https://doi.org/10.1103/PhysRevLett.81.5257
https://doi.org/10.1103/PhysRevA.60.1463
https://doi.org/10.1103/PhysRevA.66.011601
https://doi.org/10.1126/science.1236929
https://doi.org/10.1126/science.1254978
https://doi.org/10.1126/science.1244059
https://doi.org/10.1103/PhysRevLett.102.125301
https://doi.org/10.1103/PhysRevLett.97.110404
https://doi.org/10.1103/PhysRevLett.111.025301
https://doi.org/10.1103/PhysRevA.102.023324
https://doi.org/10.1038/nature10654
https://doi.org/10.1126/science.1208798
https://doi.org/10.1038/nphys2245
https://doi.org/10.1038/ncomms7811
https://doi.org/10.1073/pnas.1715105115
https://doi.org/10.1103/PhysRevLett.125.033401
https://doi.org/10.1103/PhysRevLett.127.140402
https://doi.org/10.1103/PhysRevA.104.042415
https://doi.org/10.1126/science.aao2254
https://doi.org/10.1126/science.aao2035
https://doi.org/10.1103/PhysRevLett.123.063603
https://doi.org/10.1103/PhysRevLett.128.020402
https://doi.org/10.1103/PhysRevA.90.013611
https://doi.org/10.1103/PhysRevA.91.023620
https://doi.org/10.1103/PhysRevLett.122.010405
https://doi.org/10.1038/s41586-021-04156-0
http://link.aps.org/supplemental/10.1103/PhysRevA.107.053311


QUENCH-INDUCED NONEQUILIBRIUM DYNAMICS OF … PHYSICAL REVIEW A 107, 053311 (2023)

[50] K. Fujimoto and S. Uchino, Floquet spinor Bose gases, Phys.
Rev. Res. 1, 033132 (2019).

[51] Z.-C. Li, Q.-H. Jiang, Z. Lan, W. Zhang, and L. Zhou, Non-
linear Floquet dynamics of spinor condensates in an optical
cavity: Cavity-amplified parametric resonance, Phys. Rev. A
100, 033617 (2019).

[52] P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L. Santos,
L. Pezze, and A. Smerzi, Interferometric sensitivity and en-
tanglement by scanning through quantum phase transitions in
spinor Bose-Einstein condensates, Phys. Rev. A 97, 032339
(2018).

[53] S. S. Mirkhalaf, E. Witkowska, and L. Lepori, Supersensitive
quantum sensor based on criticality in an antiferromagnetic
spinor condensate, Phys. Rev. A 101, 043609 (2020).

[54] B. Sundar et al., Bosonic Pair Production and Squeezing for
Optical Phase Measurements in Long-Lived Dipoles Coupled
to a Cavity, Phys. Rev. Lett. 130, 113202 (2023).

[55] S. Knoop, T. Schuster, R. Scelle, A. Trautmann, J. Appmeier,
M. K. Oberthaler, E. Tiesinga, and E. Tiemann, Feshbach spec-
troscopy and analysis of the interaction potentials of ultracold
sodium, Phys. Rev. A 83, 042704 (2011).

[56] G. R. Dennis, J. J. Hope, and M. T. Johnsson, XMDS2:
Fast, scalable simulation of coupled stochastic partial dif-
ferential equations, Comput. Phys. Commun. 184, 201
(2013).

[57] W. Zhang, D. L. Zhou, M.-S. Chang, M. S. Chapman, and
L. You, Coherent spin mixing dynamics in a spin-1 atomic
condensate, Phys. Rev. A 72, 013602 (2005).

053311-11

https://doi.org/10.1103/PhysRevResearch.1.033132
https://doi.org/10.1103/PhysRevA.100.033617
https://doi.org/10.1103/PhysRevA.97.032339
https://doi.org/10.1103/PhysRevA.101.043609
https://doi.org/10.1103/PhysRevLett.130.113202
https://doi.org/10.1103/PhysRevA.83.042704
https://doi.org/10.1016/j.cpc.2012.08.016
https://doi.org/10.1103/PhysRevA.72.013602

