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23Na spin-1 Bose-Einstein condensates are used to experimentally demonstrate that mean-field physics
beyond the single-mode approximation can be relevant during the nonequilibrium dynamics. The experimentally
observed spin oscillation dynamics and associated dynamical spatial structure formation confirm theoretical
predictions that are derived by solving a set of coupled mean-field Gross-Pitaevskii equations [J. Jie et al.,
Phys. Rev. A 102, 023324 (2020)]. The experiments rely on microwave dressing of the f = 1 hyperfine states,
where f denotes the total angular momentum of the 2*Na atom. The fact that physics beyond the single-mode
approximation at the mean-field level, i.e., spatial mean-field dynamics that distinguishes the spatial density
profiles associated with different Zeeman levels, can, in certain parameter regimes, have a pronounced effect
on the dynamics when the spin healing length is comparable to or larger than the size of the Bose-Einstein
condensate has implications for using Bose-Einstein condensates as models for quantum phase transitions and
spin squeezing studies as well as for nonlinear SU(1,1) interferometers.
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I. INTRODUCTION

Spinor Bose-Einstein condensates (BECs) provide an ex-
citing platform for exploring, among other phenomena, the
dynamics of a quantum pendulum [1], thermal and quantum
phase transitions [2—-11], SU(1,1) interferometers [12-19],
and the interplay of symmetry and interactions [20]. Com-
pared to a single-component BEC, the spin degrees of
freedom of spinor BECs lead to rich mean-field and beyond-
mean-field phases that are characterized by nontrivial order
parameters [2,3,21,22]. In some instances, the spatial orbitals
of the different spinor components are, to a good approxima-
tion, the same: While the number of atoms occupying each
spinor component may be different, the shape of the spatial
orbital is approximately independent of the spinor component
[2,3,23-26]. This single-mode regime is said to be realized
when the spin healing length & is comparable to or larger
than the size R of the BEC [27]. If & 2 R, then the BEC is
too small to support a ground or low-energy state that exhibits
long-wavelength inhomogeneities of the order of the size of
the BEC, besides those that exist due to the finiteness of the
BEC. In this case, the densities of the spinor components
all have a maximum at the center of the BEC and decrease
monotonically until they are zero at the edge of the cloud.

This work presents experimental data for a spin-1 BEC,
which, in conjunction with simulations based on a set of
coupled mean-field Gross-Pitaevskii equations, confirm the
existence of an alternative mechanism for the creation of long-
wavelength density deformations (i.e., density deformations
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with characteristic length scale of the size of the BEC). This
dynamical mean-field-driven mechanism, which is beyond the
single-mode approximation (SMA), was recently predicted
theoretically [28]. It is distinct from the quantum fluctuation
driven processes discussed in Refs. [29,30] and also distinct
from the moving lattice-driven process discussed in Ref. [31].
While our work employs a >*Na BEC, the effect should also be
observable in other spin-1 BECs as well as higher-spin BECs
with s-wave contact interactions. The presence of nonlocal
potentials such as dipolar interactions or spin-orbit coupling,
which couple different partial waves, would likely modify the
observations and interpretation thereof.

The phenomenon described in this paper hinges critically
on the microwave tunability of the f = 1 hyperfine energy
levels via coupling to the f = 2 states [32,33]; here f denotes
the total angular momentum of the atom. Specifically, a com-
bination of external microwave and magnetic fields is used
to adjust the single-particle detuning g between the m = 0
and m = %1 states of the f = 1 hyperfine manifold. It is
well established that spin-spin interactions, characterized by
the spin-interaction energy c;, are associated with projection-
quantum-number-preserving collisions between two m = 0
atoms and a pair of m = %1 atoms [see Fig. 1(a)]. These col-
lisions play an important role in quench-induced oscillations
of the fractional populations p,, (so-called spin oscillations)
[7,32,34-41], which are, in the SMA framework, governed
by the ratios g/c; and cst/h, where ¢ denotes the time.
In the beyond-SMA scenario considered in this paper, the
single-particle detuning ¢ is adjusted such that projection

©2023 American Physical Society
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FIG. 1. Schematic illustration of population changing processes in spin-1 BECs for positive ¢. (a) “Standard” spin-interaction-energy-
driven process. The horizontal lines show the single-particle energy levels of the m = 0 and %1 states with single-particle detuning g. The
relative shift of the energy levels is due to the effective quadratic Zeeman shift; the energy contributions due to the linear Zeeman shift
are not shown. Spin-changing two-body collisions, characterized by the spin-interaction energy c;, lead to population transfer between the
spin components. (b) Mean-field-driven beyond SMA process. The effective mean-field potentials Ve(f'f") (solid lines, not to scale) felt by the
m = =1 components (left) and m = 0 component (right) support ground and radially excited states (the corresponding densities are represented
schematically by dashed and dotted lines, respectively). The effective potentials Ve(f?) and Ve(ﬁil) deviate notably from a simple harmonic-
oscillator potential and instead are, as indicated by the sketched flat-bottom shape, close to the Thomas-Fermi regime. If the excitation energy
is equal to 2¢, then the resonant energy condition facilitates (A) population transfer from the m = £1 ground state to the m = 0 ground and
excited states (and vice versa) and (B) population transfer from the m = 0 excited state to the m = 41 ground and excited states (and vice
versa). Process A (thick curved black arrows), which involves one excited state, is activated dynamically before process B (thin curved black

arrows), which involves two excited states. The mean-field energies Eg<1’.”) and E™ depend on the trap geometry as well as the interaction

strengths.

quantum-number-preserving population transfer is facilitated
by “activating” a long-wavelength excitation. The resonance
occurs at g/cy values that are larger than the critical value at
which the spin oscillation period, predicted within the SMA,
diverges [2,3,42] and g values smaller than the energy scales
that characterize the harmonic confinement.

Specifically, when ¢ is tuned such that Eg(f_)) + EWY is equal
to EGV4+ESY, the pathway |m=0,n,=0)+|m=
0,n,=1) < |m=+1,n,=0)+|m=-1,n,=0)
becomes resonantly enhanced [see Fig. 1(b)] [28]. Here

g(;"()exc) denotes the energy of the ground (excited) state
(labeled by n,) that is supported by the effective mean-field
potential associated with the mth channel. The effective
potentials have a spatial extent that is set by the density
interaction energy c,, thereby supporting an excited state
with energy E{") that sits by an energy that is comparable
to the Thomas-Fermi energy above the ground state with
energy Eé;“). When the resonance condition is fulfilled, the
quench-induced spin oscillation dynamics is no longer fully
captured by the SMA but instead displays, as illustrated in
this work, oscillations that are characterized by an amplitude
and oscillation period that change with time; we use the
term “drifting” to refer to this beyond-the-SMA dynamics.
Since the drifting is captured by the coupled Gross-Pitaevskii
equations, the dynamically induced beyond-SMA physics
discussed here is mean field in nature; quantum fluctuations
are not at play.

The remainder of this paper is organized as follows.
Section II outlines the experimental procedure. Section III
summarizes the employed mean-field formulation and high-
lights mean-field predictions relevant to the experiment.
Section IV presents and interprets experimental data that
evidence the dynamical emergence of beyond-single-spatial-
mode behavior in the mean-field regime where the spin

exc

healing length is comparable to or larger than the size of the
BEC. Section V summarizes.

II. EXPERIMENTAL PROCEDURE

Our experiment starts with a nearly pure *Na BEC in
the f = 1, m = —1 hyperfine state in a crossed-beam optical
dipole trap. The trapping potential near the minimum is ap-
proximately harmonic and approximately axially symmetric.
The stronger confinement direction aligns with the direction
of gravity. The center-of-mass sloshing motion, induced either
by letting the BEC fall for a short time before recapturing it
or by applying a magnetic field gradient in the z direction, is
used to calibrate the angular frequency w,. To measure w, and
wy, we simultaneously excite sloshing motions in the x and y
directions. From the combined motion we deduce that w, and
wy are approximately equal. In our theory calculations, we set
W, = wy = w,. Calibration measurements yield trap frequen-
cies with an uncertainty of 3 Hz. While the trap frequencies
are stable for each experimental run, variations on the order
of up to about 10% arise over the course of a measurement
campaign that lasts around 100 h due to fluctuations in the
laser power and room temperature (which leads to changes in
the alignment during the course of the day or night). While
the majority of our Gross-Pitaevskii simulations (discussed
below) utilize w, = 27 x 246 Hz and w, = 2 x 140 Hz, the
dependence of the spin oscillations on w, is illustrated for
select cases.

The f = 1 hyperfine levels are split by a constant magnetic
field of 0.430 G. The magnetic field corresponds to a quadratic
Zeeman shift of the f = 1, m = £1 levels (in units of /) by
51.4 Hz. For the analysis of the data, the linear Zeeman shift is
irrelevant since it can be removed by going to a rotated basis
[3,26]. To prepare the initial state, we apply a radio-frequency
pulse, which transfers atoms from the m = —1 state to the
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FIG. 2. State preparation via radio-frequency pulse. Fractional
populations p,, of the f = 1 hyperfine states are shown as a func-
tion of the pulse length. The symbols show the average of three
experimental runs. Starting with all atoms in the m = —1 state (blue
diamonds), the radio-frequency pulse with frequency 300 kHz trans-
fers atoms to the m = 0 (red squares) and m = +1 (black circles)
states. The lines are the result of a noninteracting three-state model,
which treats the coupling strength of the radio-frequency pulse and
the magnetic-field strength as fitting parameters. The fit yields a
coupling strength, in units of A, of 34.2 kHz and B = 0.430 G.
We estimate the fluctuations from one initial state preparation to
another to be 0.3 kHz and 0.001 G for the coupling strength and
magnetic-field strength, respectively.

m = 0 and +1 states (see Fig. 2). The pulse length is chosen
such that the fractional populations of the m = +1, 0, and —1
hyperfine states are, to within a few percent, equal to ;11, % and
i, respectively [32,35].

At the end of the radio-frequency pulse (t = 0), we quench
the system by rapidly turning on a microwave field, which
dresses (i.e., shifts) the m = £1 hyperfine states relative to
the m = 0 state. We parametrize the effective energy shift
due to the magnetic-field-induced quadratic Zeeman shift and
the microwave-field-induced ac Stark shift by ¢ [32,33]. Our
versatile microwave source [43], which has the capability to
modulate the power and frequency on fast timescales, pro-
vides access to a wide range of ¢ values, including positive
and negative values [32]. Throughout this work, we restrict
ourselves to positive g, wWe stress, however, that resonances
also exist for negative g [28]. Our experimental determination
of the value of ¢ is associated with an uncertainty of 1-2 Hz.
The value of g is kept constant for 0 < ¢ < t;1q. The in-trap
dynamics of the f = 1 spinor BEC, i.e., the quench-induced
population transfer from the m = O state to the m = +1 and
—1 states, is then monitored as a function of #y4.

At t = thod, the confining potential is turned off. After
1.5 ms of free expansion, a 9-ms-long Stern-Gerlach pulse
is applied. After a total of 10.5 ms time-of-flight expansion,
destructive absorption imaging of the m = 1, 0, and —1 com-
ponents is performed in the plane spanned by the unit vectors
ey =G+ $)/+/2 and 2. Using standard techniques, we ex-
tract the number of atoms in each of the three spin components
(m = 0 and £1) as well as the two-dimensional density.

III. THEORETICAL FRAMEWORK AND RESULTS

To describe the spin oscillations that ensue in response
to the quench at t = 0 from g/h = 51.4 Hz for t < O to its

final value, we employ two different theory frameworks: the
mean-field SMA [2,3,23-26] and a set of coupled mean-field
Gross-Pitaevskii equations [2,24-26,44]. The former assumes
that the spatial orbitals of the three spinor components have
an identical shape that is independent of time. The frozen
spatial orbital assumption implies a decoupling of the spatial
and spin degrees of freedom. The spin degrees of freedom
are treated at the mean-field level [42], i.e., the m = +1, O,
and —1 components are characterized by /0, (t) exp[i6,,(t)],
where p,,(¢) and 6,,(¢) denote the population and phase of
the mth component. Normalization implies p4(¢) + po(t) +
p—1(t) = 1. The differential equations that govern the spin
dynamics [pg(#) and the relative phase 0(¢), where 0(t) is
defined as 26y(t) — 64+,(t) — 6_1(t)] depend on two dimen-
sionless parameters, namely, the ratios g/c; and cyt/h. The
spin interaction energy c; is determined by the spin interaction
strength g;, gs = 4nh2(a2 —ap)/(BM) (M denotes the atom
mass), and the mean spatial density 7 before the applica-
tion of the radio-frequency pulse, ¢, = g,n. Here ay and a;
denote the two-body scattering lengths in the two-particle
angular momentum channels 0 and 2, ayp = 48.91ap and
ap = 54.54ap [45] (ap denotes the Bohr radius). The shape
of the spatial orbital, and correspondingly the mean spatial
density 7, is determined by solving a single-component time-
independent Gross-Pitaevskii equation, which depends on the
aspect ratio A (A = w;/w,) and the dimensionless interac-
tion strength (N — l)gn/(ha)zafqoyz), where g, = 4nh2(2a2 +
ap)/(3M) and a%,o’z = h/(Mw,). For typical atom numbers
and trap frequencies considered in this paper (i.e., N = 2.3 x
10%, w, = 27 x 140 Hz, and A = 1.75), the associated den-
sity interaction energy c,, ¢, = g7, is (in units of /&) equal
to 589 Hz. The fact that ¢, is 28.1 times larger than ¢, is
typically used to justify the applicability of the SMA. Within
the SMA framework, the spin oscillations are fully periodic
(time-independent oscillation period and time-independent
minimum or maximum amplitude) [42].

To go beyond the SMA, we solve a set of three
coupled time-dependent mean-field Gross-Pitaevskii equa-
tions, which depend on five dimensionless parameters (N —
l)gn/(ha)zaaoqz), 8n/8s» A, q/cs, and tcg/h [28]. This frame-
work allows for the coupling of the spin and spatial degrees of
freedom, which, in the regime where the SMA breaks down,
can lead to modifications of the spin oscillations. In particular,
previous theory work [28] predicted that the interplay between
these degrees of freedom induces, for certain parameter com-
binations, a resonancelike effect that leads to drifting, i.e.,
spin oscillations whose oscillation amplitude, frequency, and
mean value are not, as predicted by the SMA, constant in time.
Figures 3-5 show examples of this behavior.

The physical picture behind the drifting is illustrated in
Fig. 1. Within the coupled Gross-Pitaevskii equation frame-
work, the mth spinor component feels an effective time-
dependent mean-field potential that is created by its own
spinor wave function as well as the spinor wave functions of
the other components. Neglecting some small terms so that the
effective potentials depend only on the densities of the spinor
components and treating the time as an adiabatic parameter
[28], the effective potential Ve(f'f)(?, t) of the mth component
supports a ground state with energy Eé,f”) and excited states
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FIG. 3. Fractional population pogpe(?) as functions of time ¢
and Zeeman energy g for w, = 2w x 246 Hz, w, = 27 x 140 Hz,
and (a) N =2.3 x 10%, (b) N = 1.7 x 10%, and (c) N = 3.1 x 10%
the color coding is given by the color bar on the right. In (a), the
oscillation period diverges at g/h ~ 20 Hz, in agreement with the
mean-field SMA result of g/h = ¢;/h = 20.9 Hz. Note that the range
of g values considered in (a) is larger than in (b) and (c). This paper
focuses on the regime where the spin dynamics deviates from regular
oscillatory behaviors; the red color for ¢g/h =~ 40 Hz signals drifting.
It can be seen that the g values for which the drifting occurs (fuzzy
red region) move to smaller values with increasing N.
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FIG. 4. Absolute value of the normalized difference (pyGpg —
Po.sma)/ Po.Geg» Obtained by considering 0 < ¢ < 80 ms, as a function
of N and g/h for w, = 2w x 246 Hz and w, = 27 x 140 Hz.

t (ms) t(ms)

FIG. 5. Fractional population pycpe(f) as a function of time ¢
for g/h = 40 Hz, w, = 27 x 246 Hz, and (a) N = 1.7 x 10* and
(b) N =2.3 x 10*. The black solid, red short-dashed, blue dot-
ted, green dash-dotted, and gray long-dashed lines show results for
w, = 2w x 120,27 x 130, 27 x 140, 27 x 150, and 2w x 160 Hz,
respectively (see also the legend on the right of the figure).

with energies E " at each time. Specializing to positive g, a

exc, j
resonance condition is realized when
+1 -1 _ =0 (0)
Eg(fr ) +E§§r )= Eg(r) +Eexc,j’ (1)

i.e., when a pair of m = +1 atoms is energetically degen-
erate with two m = 0 atoms, one in the ground and one
in the excited state of the effective potential felt by the
m = 0 component. Since the time-dependent mean-field po-
tentials, which can be estimated within the Thomas-Fermi
approximation [28], depend on g, and gy, the resonance con-
dition given in Eq. (1) depends on the trap frequencies as
well as the interaction strengths. The energetic degeneracy
enhances projection-quantum-number-preserving population
transfer between the m = 0 and 41 modes (and vice versa).
Since the excited state associated with the energy Eéfc)gl has a
wavelength or density modulation that is of the order of the
size of the BEC, the considered m = 0 <> m = 1 popula-
tion transfer mechanism leads to dynamically induced density
deformations of the spinor components; for j > 2, the associ-
ated density deformation is characterized by a smaller length
scale. The competition between the dimensionless energy
scales g/c; and (ES — EQ) )/e triggers the drifting of the
spin oscillations. For fixed (N — 1)g,/ (hwzaf{o,z), gn/gs, and
A, the single-particle detuning g provides a knob for tuning
the spinor BEC into and out of resonance.

Figure 3 shows the fractional population py, obtained by
evolving the initial state using the time-dependent three-
component Gross-Pitaevskii equation for various ¢/h for a
2’Na BEC consisting of N =2.3 x 10* [Fig. 3(a)], N =
1.7 x 10* [Fig. 3(b)], and N = 3.1 x 10* [Fig. 3(c)] parti-
cles. For N = 2.3 x 10* [Fig. 3(a)], the divergence of the
oscillation period at ¢*/h =~ 20 Hz, which is associated with
a separatrix in classical phase space, is clearly visible and
well described by the mean-field spin model. If the SMA
were valid, the spacing of the green and blue stripes would
be decreasing monotonically as one moves away from the
divergence. While this holds for ¢ < g*, irregularities are ob-
served for g/h =~ 40 Hz; these irregularities are indicative of
the drifting that is caused by a resonance (see the discussion in
the context of Fig. 1 above). Figures 3(b) and 3(c), which show
the dynamics of the spin oscillations for two other N (using a
smaller g region), demonstrate that the irregularities depend
quite sensitively on the particle number. The sensitivity of the
drifting on the particle number is an important consideration
when interpreting the experimental data (see Sec. IV).
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To quantify the deviations between the fractional popu-
lations obtained by the mean-field Gross-Pitaevskii frame-
work [00.gpe(?)] and the SMA-based mean-field spin model
[00.sma(?), time-independent oscillation period, and maxi-
mum or minimum amplitude], Fig. 4 shows the absolute value

max

of the normalized difference between the maximum py’Gpg of
po.cpe(?) and the maximum pgfg’l‘w A Of 0o sma(?), calculated
using fractional population data for 0 < ¢ < 80 ms, as func-
tions of N and g. The quantity |pgGee — Po'smal/Po Gpe 1S
obtained for the same trap frequencies as those considered
in Fig. 3. A larger value of |pg'Ghe — Po.smal/ P Gpe Signals
larger drifting. Figure 4 shows that the drifting depends sensi-
tively on both N, which unavoidably fluctuates in experiment,
and g, which can be tuned via microwave dressing.

Motivated by the fact that the experimental trap frequencies
can change by up to about 10% over the course of a day
(see Sec. II), Fig. 5 illustrates the dependence of the spin
oscillations on the angular trapping frequency w, in the p
direction. For both N considered, the deviations between the
fractional populations for different trap frequencies but other-
wise identical parameters initially increase with time (¢ < 30
ms). For some of the parameter combinations [see, e.g., the
red short-dashed line for w, = 27w x 130 Hz in Fig. 5(a) and
the black solid line for w, =27 x 120 Hz in Fig. 5(b)],
the upward drift slows after a finite number of oscillations,
followed by a downward drift; this behavior is indicative of
a competition of two energy scales, namely, the spin and the
density interaction energies. Looking ahead to the interpre-
tation of the experimental data, a key message of Fig. 5 is
that the spin oscillation dynamics depends more strongly on
the trap frequencies in the vicinity of the resonance than away
from the resonance, i.e., the amount of drifting depends, when
it occurs, sensitively on w,,.

IV. EXPERIMENTAL RESULTS

This section presents experimental data that confirm the
dynamically induced beyond-SMA spin-oscillation dynamics.
Analogous to Fig. 3, Figs. 6(a), and 6(b) show the frac-
tional population py(z) of the f = 1, m = 0 hyperfine state
as a function of the hold time ¢t and ¢ for two separate
data campaigns, corresponding to somewhat different mean
atom numbers and trap frequencies. The two data campaigns
used, several months apart, the same apparatus. The data sets
shown in Figs. 6(a) and 6(b) are characterized by mean atom
numbers of 2.3 x 10* and 2.7 x 10%, respectively, with BECs
ranging from about N = 1.5 x 10* to N = 3.2 x 10*. The
atom number distributions follow Gaussians with standard
deviations of oy = 1.7 x 103 and 1.8 x 10° in Figs. 6(a) and
6(b), respectively. A BEC with N = 2.4 x 10*, w, =27 x
246 Hz, and w, = 2 x 140 Hz, e.g., corresponds to Thomas-
Fermi radii in the p and z directions of Ry, ~ 7.06 um
and Rtg,; &~ 0.57Rtr,,, respectively. For comparison, the spin
healing length &, & = h//2M]|cy|, is about 3.20 um, i.e.,
the spin healing length is comparable to the Thomas-Fermi
radii in the p and z directions. In Fig. 6 the hold time and
q value are varied in steps of 2 ms and 1 Hz, respectively.
Each experimental data point is the average of ten measure-
ments. The symbols in Fig. 7 show the fractional population
Po.expt(t), which is shown in Fig. 6(a) as a function of g/h

@ 80F—1 _I__- ! J 7 POexpt
sol 0.6

) =

é 40 -h——-i —_— »

0

()] 2= 1 1 1 =
(b) 80F—T B e . ]
60} — X
)
g/ 40 [ e — ] 02
200 7 .
0] === 1 1 1 =
28 30 32 34 "

q/h (Hz)

FIG. 6. Fractional population ppcq as a function of the
hold time 7 = 09 and the Zeeman energy g¢/h determined in
two different experimental campaigns. The trap frequencies are
(@) (wx, 0y, w;) = 2w x (147,132, 246) Hz and (b) (wy, 0y, ®;) =
2w x (140, 122, 255) Hz. The red regions are interpreted as signa-
tures of the drifting, in qualitative agreement with what is predicted
by mean-field Gross-Pitaevskii simulations (see Fig. 3).

and ¢, separately for each g/h as a function of r. As a guide
to the eye, the solid lines connect experimental data points.
The error bars, which are not shown in Fig. 6(a), represent
the standard deviation of ten independent experimental runs.
Drifting can be seen in both data sets [Figs. 6(a) and 6(b)] for
q/h values around 31-32 Hz, in qualitative agreement with the
theoretical mean-field Gross-Pitaevskii simulations. For both
experimental runs, the g values for which drifting is observed
display an asymmetry, i.e., the drifting extends further to
smaller g than to larger ¢g. This asymmetry is not captured by
our mean-field simulations. We speculate that the asymmetric
broadening of the resonance might be caused by deviations
of the axial symmetry of the confinement (slightly different
trap frequencies in the x and y directions or anharmonicities),
which are not included in our theory calculations.

To map out the resonance in more detail, the gray his-
tograms in Fig. 8 show the distribution of the fractional
population pg expi(t) at t = thoig = 60 ms for nine g/h values;
for each g/h, the experiment is repeated 90 times. The data
are for the same conditions (i.e., same mean particle number
and trap frequencies) as in Fig. 6(a). The blue solid lines show
normalized Gaussian distributions that are obtained from the
mean value and standard deviation of the experimental data;
the use of Gaussians is motivated by the shape of the exper-
imentally observed distributions. It can be seen that pg expt
(i.e., the fractional population at which the blue lines take
their maximum) changes, as expected, smoothly with ¢: It in-
creases monotonically for g/h = 27-29 Hz and subsequently
decreases monotonically for gq/h = 29-35 Hz. The shape of
the gray histograms, in contrast, varies intricately with g/h.
The distributions for ¢/h =27 Hz and g/h > 33 Hz are
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FIG. 7. Fractional population oy expi(f) (symbols) as a function of
t for various g/h, as indicated by the label in each panel. The pg expt
data are identical to those shown in Fig. 6(a). Error bars indicate
the standard deviation calculated from ten independent experimental
runs.

approximately Gaussian and comparatively narrow; for the
other g/h values, the distributions are less well described by
a Gaussian distribution (fits, not shown, result in larger x?2)
and comparatively broad. The non-Gaussian behavior near
q/h =31 Hz is attributed to the resonance, which triggers
the drifting that is (as evidenced by our mean-field Gross-
Pitaevskii simulations shown in Fig. 4) associated with a
comparatively strong sensitivity to the particle number. As
a consequence, repeated experiments with a Gaussian atom
number distribution lead to a non-Gaussian distribution of the
fractional population in the m = 0 component.

If the system was described accurately by the SMA, the
maximum of the densities n,,(7, 1) would always be located
at (p,z) = (0,0), where p? is equal to x> + y>. However,
Gross-Pitaevskii simulations for an axially symmetric trap and
axially symmetric m-dependent mean-field orbitals show that
the beyond-SMA spin oscillation dynamics is associated with
density deformations (peak densities that are located at p #
0), which develop dynamically with increasing time ¢ = ty01q
[28]. These deformations oscillate back and forth between the
m = 0 and +1 components. While the density deformations
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FIG. 8. Distribution of fractional population pg exp; at t = fhold =
60 ms for (wy, wy, w;) = 2w x (147, 132,246) Hz for (a) q/h =
27 Hz, (b) q/h =28 Hz, (¢) g/h =29 Hz, (d) q/h = 30 Hz, (e)
q/h =31 Hz, (f) g/h = 32 Hz, (g) g/h = 33 Hz, (h) g/h = 34 Hz,
and (i) g/h = 35 Hz. The blue lines show Gaussian distributions,
using the mean value and standard deviation of the experimentally
measured P, expt-

are most pronounced on resonance, they also occur for g/h
values below and above the resonance.

Figures 9(a)-9(d) show integrated two-dimensional Gross-
Pitaevskii component densities 7,,(ex,, z, 1) as functions of z
and e,, = (x +y)/ V/2 (this is the same representation as em-
ployed in the experimental imaging system) for g/h = 31 Hz,
w, =2m x 140 Hz, 0, = 2w x 246 Hz, and N =4 x 10* at
two times, namely, t = 50 ms [Figs. 9(a) and 9(b)] and t = 58
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FIG. 9. Theoretical and experimental spatially integrated two-dimensional densities 7, [defined through 7,,(ey,, z,1) = f n,, (7, t)dn,
where 1 = (x — y)/+/2] for g/h = 31 Hz. Theoretical densities are obtained by solving the coupled Gross-Pitaevskii equations for N =
4 x 10*, w, = 27 x 140 Hz, and w, = 27 x 246 Hz, with (a) m = £1 and = tyoiq = 50 ms, (b) m = 0 and ¢ = e = 50 ms, (c) m = =1
and 1 = fyolg = 58 ms, and (d) m = 0 and ¢ = foq = 58 ms. The normalization is >, f n,(7,1)d7 = N. The time-of-flight sequence is not
included in the simulations. Experimental two-dimensional images are shown for 10.5-ms time-of-flight expansion, with (e¢) m = —1 and
t =thow =50 ms, (f) m =0 and 1 = 09 = 50 ms, (g) m = +1 and ¢ = fig = 50 ms, (h) m = —1 and t = tyo0 = 58 ms, (i) m = 0 and
t = thoq = 58 ms, and (j) m = +1 and t = g = 58 ms. The particle numbers N are (e)—(g) 2.6 x 10* and (h)—(j) 2.2 x 10*. To aid with the
visualization, the three images are centered individually. The side bar on the right defines the color code for the experimental images shown in

(©)-()-

ms [Figs. 9(c) and 9(d)]. For this particle number, the system
is close to resonance, as can be seen by extrapolating the
simulation results shown in Fig. 4 to larger N. The two images
in Figs. 9(a) and 9(c) show the m = %1 densities, while the
two images in Figs. 9(b) and 9(d) show the m = 0 density.
Since the (e,y, z) representation is inconsistent with the axial
symmetry of the system, the density deformations are being
partially averaged over. They lead to an elongation in the ey,
direction of the m = =£1 density at t = 50 ms [Fig. 9(a)] and
a double-peak structure of the m = 0 density at t = 58 ms
[Fig. 9(d)].

The experimental images shown in Figs. 9(e)-9(g) are for
t = thola = 50 ms, while those shown in Figs. 9(h)-9(j) are
for t = tholg = 58 ms; they correspond to the same g/h value
as the theory calculations but smaller atom number. It can be
seen that the experimental data are in qualitative agreement
with the Gross-Pitaevskii simulation results, thereby confirm-
ing the beyond-SMA dynamics. Gross-Pitaevskii simulations
for the same atom numbers as measured experimentally show
significantly smaller density deformations. This is attributed
to multiple effects. The experimental setup breaks the axial
symmetry, which is assumed to hold strictly in the theory
calculations, weakly. Moreover, the experimental data may be
impacted by small trap frequency variations. Our simulations
show that the resonance position and shape depend, due to the
intricate interplay between the kinetic and potential energy
contributions, sensitively on the exact trap parameters and
atom number (see Figs. 3-5), rendering fully quantitative side-
by-side comparisons of theory and experiment challenging.

V. CONCLUSION

This paper presented theory predictions and experimental
data for a sodium spinor condensate that confirm the existence

of a dynamically induced mean-field-driven resonance mech-
anism that is not captured by the SMA. The physical picture
behind the resonance mechanism is quite simple: When the
density and spin-interaction strengths are such that the effec-
tive mean-field potentials support an excited state that leads
to an energetic degeneracy, population transfer between the
m = 0 and 1 modes is enhanced. For a fixed single-particle
detuning ¢, the mean-field parameters can be adjusted by,
e.g., changing the particle number or trap frequencies. This
population transfer mechanism is distinctly different from the
“usual” collision-induced population transfer in which the
spin-changing two-body collision term triggers the transfer
of population. This process is, in the case where the density
interaction energy is much larger than the spin-interaction
energy, captured by the SMA. The resonance mechanism
studied in this paper, in contrast, is not captured by the
SMA since it leads to the dynamical occupation of excited
spatial modes. While the experimental observations reported
here are for a spin-1 2*Na BEC, the same mechanism exists
(according to the theory) in spin-1 8’Rb BECs, which are char-
acterized by a much larger density-to-spin-interaction-energy
ratio.

The results presented in this paper are of relevance to
a broad range of dynamical studies involving spinor BECs.
Spinor BECs have been used to study, e.g., quench-induced
dynamical quantum phase transitions, which are supported
by the quantum spin Hamiltonian that is derived by treat-
ing the spatial degrees of freedom within the SMA. The
quantum spin Hamiltonian also forms the starting point of
spin squeezing studies and interferometer protocols. The
work presented in this paper shows that attention needs
to be paid to the mean-field parameters to ensure that the
SMA provides a faithful description. The dynamically in-
duced transfer of population to excited modes, which can
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be controlled by adjusting the single-particle detuning via
microwave dressing, provides an alternative route for study-
ing the coupling between the spin and spatial degrees of
freedom.
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