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Multistate interferometric measurement of the nonlinear ac Stark shift
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We demonstrate measurement of quadratic ac Stark shifts between Zeeman sublevels in an 87Rb Bose-Einstein
condensate using a multistate atomic interferometer. The interferometer can detect a quadratic shift without being
affected by relatively large state-independent shifts, thereby improving the measurement precision. We measure
quadratic shifts in the total spin F = 2 state due to the light being near resonant to the D1 line. The agreement
between the measured and theoretical detuning dependences of the quadratic shifts confirms the validity of
the measurement. We also present results on the suppression of nonlinear spin evolution using near-resonant
dual-color light pulses with opposite quadratic shifts.
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I. INTRODUCTION

Atom-field interactions often cause shifts in atomic en-
ergy levels, referred to as ac Stark shifts in the semiclassical
treatment. These shifts often depend on the atomic spin state.
Linear and quadratic energy shifts (light shifts) of Zeeman
sublevels can arise from spherical tensor operators of rank
1 (vector) and 2 (tensor), respectively, in the irreducible de-
composition of the interaction Hamiltonian [1,2]. Quadratic
shifts enable advanced quantum state manipulation such as
dynamical spin control [3] and nuclear-spin–electronic-spin
entanglement [4]. Quadratic shifts have recently been used
to generate the Schrödinger kitten state in cold Dy atoms of
large spin J = 8 [5]. On the other hand, quadratic shifts are
often detrimental for precise measurements, such as in atomic
clocks. Even a small energy shift can be a dominant un-
certainty in state-of-the-art precise measurements. Quadratic
shifts are also harmful in spin detection via Faraday rotation
[6,7]. In a Faraday rotation measurement, near-resonant light
gives a large signal but may also change the atomic spin
state through nonlinear spin evolution due to quadratic shifts
[2,7,8].

Accurate measurement of quadratic or tensor shifts is im-
portant for building a sound basis for quantum control as
well as for precise measurements. The tensor shifts in clock
transitions in alkali-metal atoms have been measured using the
Ramsey method with a hot vapor [9] and a cold-atom fountain
[10]. Tensor shifts in cold lanthanide atoms in the ground state
have been determined using Kapitza-Dirac diffraction from
a pulsed standing wave [11], trap frequency measurement
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[12,13], and modulation spectroscopy in an optical lattice
[14]. In these measurements [9–14], the tensor shift is dis-
tinguished from other shifts based on the difference in the
frequency dependence of the scalar and tensor shifts and/or
the polarization dependence of the tensor shift. Tensor shift
measurements distinguished in this way tend to be uncertain
due to technical issues, such as imperfect polarization control
at the atomic position. It is difficult to precisely determine
a tensor shift much smaller than a state-independent scalar
shift. This is the case for most atom experiments, although
lanthanide atoms can have large tensor polarizability at spe-
cific light frequencies [11–14].

In the present study, we demonstrate the detection of
quadratic light shifts using a multistate atomic interferometer
[15,16] in a Bose-Einstein condensate (BEC) of 87Rb atoms.
This scheme is insensitive to state-independent light shifts and
directly measures the quadratic light shift, thereby realizing
a sensitive measurement by avoiding the uncertainty in dis-
tinguishing the tensor shift from other shifts. Direct tensor
shift detection is also advantageous in that we can measure
the shift in a particular experimental configuration without
needing to change light frequencies or polarization. Further-
more, as we can measure the tensor shift without relying on
a priori theoretical knowledge including the light frequency
and polarization dependence of the shift, the measurement
may be used to check the validity of a theory. Conversely,
by verifying that the measured frequency dependence of the
quadratic shift is consistent with the theory, the validity of the
measurement scheme is confirmed. We confirm the validity
of our measurement in this manner. We also demonstrate
suppression of nonlinear spin evolution using dual-color light
pulses near the D1 transition, with the light frequencies and
powers chosen on the basis of the light-shift measurement to
null the net quadratic shift.

The paper is organized as follows. In Sec. II we present
our experimental method and setup. The experimental re-
sults are described in Sec. III. We summarize the paper in
Sec. IV.
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FIG. 1. (a) Experimental configuration. The BEC (shown by a red ellipsoid) in a coherent spin state (CSS), a product of the same single
spin states, exhibits Larmor precession after the first rf pulse of the interferometer about the z axis along the bias magnetic field B. A linearly
polarized 795-nm light pulse propagates in the x direction through the BEC. The spin evolves from a CSS into another spin state by the light
pulse. (b) Time sequence for quadratic shift detection. We use π/2-π -π/2 rf pulses to construct an atomic interferometer. A train of n light
pulses is applied between the π pulse and last π/2 pulse. (c) Typical time-of-flight (TOF) images of a BEC measured after the detection
sequence. The field of view is 2.1 × 0.46 mm2. The top and bottom panels show TOF images without light pulses and with a train of n = 9
pulses of P = 5.71 mW and �/2π = −840 MHz, respectively. The black rectangles in the bottom panel indicate the analysis regions for
counting the atom number in each magnetic sublevel. The vertical and horizontal axes are along the y and z directions, respectively.

II. EXPERIMENTAL METHOD AND SETUP

The BEC is trapped in a crossed optical trap. The trap is
composed of an axial beam at a wavelength of 852 nm and
a radial beam at 976 nm. The axial and radial beam waists
are approximately 30 and 70 μm, respectively. The axial
and radial trap frequencies are measured to be 2π × 16 and
2π × 123 Hz, respectively. A bias magnetic field B of 15 μT
is applied along the axial beam along the z axis.

The Larmor precession frequency by the bias field is mea-
sured to be 105.5 kHz with the use of rf spectroscopy. We
initially prepare the atoms in the |F, mz〉 = |2, 2〉 state, where
F is the quantum number for the total angular momentum of
the atoms in the ground state and mz denotes the magnetic
sublevel.

The experimental configuration for the light-shift mea-
surement is shown in Fig. 1(a). We measure the quadratic
light shift due to a light pulse near resonant to the D1 line
(λ = 795 nm), which propagates in the x direction. The D1

light is generated by a distributed feedback (DFB) laser and
is frequency offset locked to a master external cavity diode
laser (ECDL). The frequency of the ECDL is stabilized to
the F = 2 → F ′ = 1 resonance line, where F ′ represents the
total angular momentum for the excited 2P1/2 state. The beam
power is controlled by an acousto-optic modulator (AOM).
The beam is directed to the atoms through an optical fiber
after the AOM. The beam is almost collimated before the
atom cell and has a Gaussian profile with a 1/e2 radius of
w0 = 0.75 mm. We control the polarization state at the atomic
position using a half waveplate (HWP) and a quarter wave-
plate before the atom cell. Just after the cell we adjust the
polarization of the light to be linearly polarized. The angle
between the polarization plane and the direction of the mag-
netic field, θ , is adjusted to 54.7◦. This angle is chosen for the
compatibility with an atomic magnetometer experiment [17],
where the nonlinear atom-field interaction is reduced by time
averaging [7,17]. The nonlinear interaction, however, does not
vanish in this experiment, because the spin direction is almost
fixed during light irradiation. The quadratic shift measurement
presented below can be performed for any θ .

We perform atomic interferometry with the time sequence
depicted in Fig. 1(b). In this sequence, we use the spin echo
method to suppress the influence from low-frequency fluctua-
tions of the bias magnetic field. We apply light pulses between
the middle π pulse and last π/2 rf pulse. Each magnetic
sublevel experiences an ac Stark shift and acquires a phase
shift during the light pulse. Different phase shifts between the
magnetic sublevels result in a change in the population of each
sublevel after the last π/2 rf pulse. We measure the sublevel
populations by absorption imaging along the x axis after a
time of flight of 20.6 ms with Stern-Gerlach spin separation
along the z axis [see Fig. 1(a)].

The ac Stark shift due to light near resonant to the D1 line
is derived from the light-shift Hamiltonian [2]

Ĥshift =
∑

F ′

h̄�2
0

4�FF ′

[
C(0)

FF ′ |�ε|2 + iC(1)
FF ′ (�ε ∗ × �ε )

·F̂ + C(2)
FF ′

(|�ε · F̂|2 − 1
3 F̂

2|�ε |2)], (1)

where �FF ′ is the amount of light detuning from the transition
frequency between the F and F ′ states, C(k)

FF ′ is a rank-k tensor
coefficient representing the angular momentum dependence
[2], and �ε is the polarization vector for the light. Further, �0

is defined by

�0 = 〈P1/2||d||S1/2〉E
h̄

, (2)

where 〈P1/2||d||S1/2〉 = 2.537 × 10−29 C m [18] is the re-
duced matrix element for the D1 dipole transition and E is
the field amplitude. In addition, �0 can be expressed using
the beam power P as

�0 = 〈P1/2||d||S1/2〉
h̄

√
4P

πcε0w
2
0

≡
√

ηP, (3)

where c is the speed of light and ε0 is the electric constant.
Here the beam intensity at the BEC is assumed to be given
by I = 2P/πw2

0. Hereafter, we consider linearly polarized
light, which introduces no vector shift and produces a state-
dependent shift solely through the tensor component. The
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state-dependent Hamiltonian can be written as

Ĥdepend = h̄�2
0

4�hfs
χ (F̂ycosθ + F̂zsinθ )2, (4)

where �hfs = 2π × 814.5 MHz is the hyperfine splitting be-
tween the F ′ = 1 and F ′ = 2 states and

χ =
∑

F ′

C(2)
FF ′�hfs

�FF ′
(5)

represents the dependence of the coupling strength on the light
frequency. We refer to χ as the coupling coefficient. In an
experiment using the ground F = 2 state, χ depends on the
laser frequency as

χ = �hfs

12

(
1

�
− 1

� − �hfs

)
, (6)

where � ≡ �21 [see Fig. 3(b)]. Hereafter, we consider detun-
ing with respect to the transition frequency between the F = 2
and F ′ = 1 states.

The spin dynamics for Ĥdepend can be easily described if the
quantization axis is selected to be along the direction of the
polarization axis, z′. The state before sending the light pulse,
|ψ〉 = ∑

mz′
βmz′ |mz′ 〉, with βmz′ the probability amplitude for

each sublevel mz′ in this frame, evolves under the influence of
a rectangular pulse of width τ and power P into

|ψ ′〉 =
∑
mz′

βmz′ e
iχmz′ 2ξPτ |mz′ 〉, (7)

where

ξ = η

4�hfs
. (8)

Here we consider evolution due to a single pulse for
simplicity. The extension to the multipulse case is straightfor-
ward. We assume that the pulse width τ is sufficiently shorter
than the period of Larmor precession and neglect evolution
due to the magnetic field during the pulses. In Eq. (7) we
omit the global (state-independent) phase shift, which has no
relevance to the population change in the magnetic sublevels.
If the spin evolution during the pulse is purely caused by the
light shift, the state after the last π/2 pulse in the mz basis is
written using the Wigner D matrix [16] D j (α, β, γ ) as

|ψ ′′〉 = D2(0, 0, π )D2
(

0,−π

2
, 0

)
× D2(0,−θ, φ)†AD2(0,−θ, φ)|ψ0〉, (9)

where A = diag(e4iχξPτ , eiχξPτ , 1, eiχξPτ , e4iχξPτ ) represents
the time development by light pulses, φ is the spin angle in
the x-y plane with respect to the y axis at the starting time of
the light pulse, and |ψ0〉 = (−1/4, i/2,

√
6/4,−i/2,−1/4)T ,

where the state is represented in the mz basis. Here |ψ0〉 is a
coherent spin state, which is defined as the product state of
the individual spin states pointing in the same direction. The
spin direction of |ψ0〉 is along the y axis. Here D j (α, β, γ ) is
defined in terms of the Euler angles (α, β, γ ) around the z, y,
and z axes, respectively, as

D j
q′q(α, β, γ ) = 〈 jq′|R̂(α, β, γ )| jq〉, (10)

where R̂(α, β, γ ) = e−iα ĵz e−iβ ĵy e−iγ ĵz is the rotational oper-
ator [19]. We calculate the magnetization m = 〈ψ ′′|F̂z|ψ ′′〉
using Eq. (9). The calculated m is a function of χξPτ . Details
of the calculation of m are presented in the Appendix. We note
that m = 2 cos3(χξPτ ) if θ = 0 [20].

III. RESULTS

A. Measurement of quadratic light shifts

We first detect quadratic light shifts produced by a single
pulse of �/2π = −840 MHz, which induces fewer light-
assisted collisional atom losses [17]. The pulse has an almost
rectangular shape and its length is fixed to τ = 667 ns. The
pulse length is much shorter than the inverse of the Larmor
frequency and the spin evolution by the magnetic field during
the pulse is negligible, as assumed in the calculation above.
The pulse is applied 0.125 ms after the π pulse, when the
spin orientation is along the x axis (φ = π/2). This interval
ensures negligible overlap between the light and rf pulses. The
rf π pulse has a Gaussian envelope of 28.78 μs width and the
spin evolution due to light is not practically affected by the
rf field. We confirm the spin direction by spin-sensitive phase
contrast imaging [17].

We observe changes in the sublevel population using a
Stern-Gerlach measurement, as shown in Fig. 1(c). We exper-
imentally obtain the magnetization using

m =
∑

i iNi

Ntot
, (11)

where Ni is the number of atoms in the |F, mz = i〉 state
(i = −2,−1, 0, 1, 2) after the read-out pulse and Ntot = ∑

i Ni

is the total number of atoms. The magnetization is plotted as
a function of the beam intensity normalized by the effective
far-detuned saturation intensity Isat = 4.4876(43) mW/cm2

[21]. We fit the data using (1 − δp)〈ψ ′′|F̂z|ψ ′′〉, where δp
is introduced to account for experimental imperfect state
preparation and control. Imperfect state control results from
magnetic-field noise. The effect of the ac noise is not perfectly
removed by the spin echo and the slow magnetic-field drift
makes the rf off-resonance. The fluctuation of the spin direc-
tion after the interferometric sequence due to the imperfect
spin control results in decreased mean magnetization around
m = 2. Fluctuation in the initial spin direction also results
from magnetic-field noise orthogonal to the bias field. State
preparation in the experiment can be imperfect due to, for
example, spin flip during atom transfer from the magnetic trap
for precooling atoms into the optical trap. In the fitting [red
solid line in Fig. 2(a)], we use Eq. (9) with θ = 54.7◦ and
φ = 90◦, in correspondence with the experiment. The fitting
gives χ = −0.0404(8). The value in parentheses denotes the
standard deviation of χ calculated from three sets of data. In
this fitting δp is 0.0132(7), where the value in parentheses
represents the standard error of the fit.

Next we measure the quadratic light shifts for other light
frequencies with positive detunings �/2π = {240, 340, 440,

540, 640} MHz. The results for each detuning are depicted
in Figs. 2(b)–2(f). We observe large changes in m. For these
positive detunings, χ is much larger than that for �/2π =
−840 MHz and the observed large change in m is reasonable.
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FIG. 2. Magnetization m for �/2π of (a) −840, (b) 240, (c) 340, (d) 440, (e) 540, and (f) 640 MHz as a function of I/Isat . The blue symbols
(circles and squares) represent the measured magnetization. The circle data points are used for fitting (see the text for details) and the red solid
lines are the fitting curves. The green dotted line is the simulated magnetization including the spontaneous-emission effect. The calculation
and simulation are performed for a single pulse of τ = 667 ns.

The spontaneous-emission rates also become large for these
detunings and optical pumping due to spontaneous emission
may also result in spin change. To evaluate the contribution
of spontaneous emissions, we numerically calculate the dy-
namics of the magnetization using an atomic master equation
including spontaneous emission [22]. A theoretically pre-
dicted value of the coupling coefficient χtheor is used in the
simulation. We plot the simulation results in Fig. 2 (green
dotted lines). The numerical simulation indicates that the
spontaneous emissions are not negligible for beam powers
higher than approximately 5 mW (I/Isat = 126), which we
were not able to investigate in detail due to the limited avail-
able beam power. In the fitting shown by red solid lines in
Figs. 2(b)–2(f), to obtain experimental values of the coupling
coefficient χexpt, we use data points at beam powers for which
the magnetization obtained by the simulation differs from
the matrix calculation by less than 0.06 to lessen the effect
of spontaneous emissions on the estimation of χ . The fitted
values of χexpt are shown in Table I.

The frequency dependence of χexpt is consistent with the
theoretical curve given by Eq. (6), as shown in Fig. 3(a). Note
that interferometric detection does not reveal the sign of χ . We
determine the sign of χ at each � in Fig. 3(a) to coincide with
the theoretically determined sign. We also note that the exact
determination of χ requires precise calibration of the beam
intensity at the atom position. It is more appropriate to analyze
the ratio between χexpt and χtheor to estimate the validity of
the measurement. This ratio is shown in Table I. The sample
standard deviation of the ratios, which represents the precision
of the measurement, is 0.02 (2%).

B. Suppression of nonlinear spin evolution

We also demonstrate suppression of spin evolution due to a
quadratic shift by using near-resonant dual-color light pulses.
From Eq. (6) we can see that χ is positive if 0 < � < �hfs

and negative otherwise. If we combine negative (� < 0) and
positive (0 < � < �hfs) detuned light with a power ratio of
pneg/ppos = χpos/χneg, the quadratic light shift should vanish
and nonlinear spin evolution should be suppressed. We use
the DFB laser used in the above experiment at a fixed de-
tuning of �−/2π = −840 MHz. We prepare another ECDL
for quadratic shift compensation. The ECDL is frequency
offset locked to the master ECDL and its detuning is set
to �+/2π = {240, 340, 440, 540, 640} MHz. The two laser
beams are mixed at a nonpolarizing beam splitter (NPBS)
before the AOM for power control. We adjust the ratio of the
DFB laser power to the ECDL power using a HWP and PBS

TABLE I. Measured and theoretical coupling coefficients and
power ratios for quadratic shift cancellation.

�

2π
(MHz) χexpt χexpt/χtheor rexpt rtheor rexpt/rtheor

−840 −0.0404 1.016
240 0.411 1.025 10.17 10.08 1.01
340 0.356 1.039 8.81 8.61 1.02
440 0.351 1.045 8.68 8.43 1.03
540 0.379 1.017 9.39 9.37 1.00
640 0.486 0.982 12.02 12.44 0.97
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FIG. 3. (a) Dependence of the coupling coefficient χ on detun-
ing. The blue circles represent the coefficients obtained from the
experiments. The error bar for each circle represents the standard
deviation over three experimental runs. The red solid line is the
theoretical curve given by Eq. (6). (b) Energy diagram for 87Rb
relevant to the experiment.

before the NPBS. The ratios used in the experiment rexpt are
listed in Table I. The values of rexpt are close to the theoretical
optimal ratios

rtheor =
(

1

�+
− 1

�+ − �hfs

)/(
1

�−
− 1

�− − �hfs

)
.

(12)

We observe that the change in magnetization for the pulse
mixture is much less than that for the single negative-detuned
pulse. We show the results for �+/2π = 640 MHz light com-
pensation and without compensation in Fig. 4(a). We apply
n = 9 pulses to observe the changes in magnetization more
clearly. We set the interval between pulses to 9.5 μs, equal to
the period of Larmor precession, in order to apply all pulses
when the spin is directed to the probe propagation direction.
The results with compensation light pulses with �+/2π =
240, 340, 440, 540, 640 MHz are plotted in Fig. 4(b).

The magnetization changes with increasing power even
with compensation. This change is considered to be due to
spin relaxation by optical pumping. We also observe that
the size of the change depends on the detuning of the com-
pensation beam �+. The closer the frequency to the F =
2 → F ′ = 1 resonance, the greater the magnetization change.
The frequency dependence can be understood as follows. The
polarization component of êy − iêz induces the �mx = −1

FIG. 4. Magnetization with and without compensation as a func-
tion of intensity in saturation units. (a) Magnetization for a single
pulse. The open blue circles represent the magnetization without
compensation (with only the negative-detuned light). The data rep-
resented by closed red circles are taken with the compensation light
with �+/2π = 640 MHz added. (b) Magnetization for n = 9 pulses.
The magnetization values with compensation light of �+/2π = 640,
540, 440, 340, and 240 MHz are plotted by closed red circles, open
yellow triangles, closed purple triangles, open green squares, and
closed cyan squares, respectively. The open blue circles represent
the magnetization without compensation. The magnetization by the
numerical simulation including spontaneous emissions is represented
by the dotted line with text describing the pulse condition.

transition, as shown in Fig. 5. The coupling strength to the
F ′ = 1 state is three times stronger than that to the F ′ = 2
state. The increase in the magnetization change as � ap-
proaches 0 is related to this difference in coupling strength.
The frequency dependence of the magnetization change is
confirmed by a numerical simulation. The simulated change is
minimum at �+/2π = 540 MHz. This is consistent with the
simple estimation of the relaxation rate given by the product
of the scattering rate (approximately proportional to 3/�2

21 +
1/�2

22) and the beam power required for the quadratic shift
compensation (proportional to 1/�21 − 1/�22). The magne-
tization change in the experiment is larger than that in the
simulation including the spontaneous emissions, especially
for detuning from 340 to 540 MHz.
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FIG. 5. Coupling strength between the |F, mF 〉 = |2, 2〉 state and
excited states. The x axis is taken as the quantization axis here. The
blue arrows represent the allowed transitions. The number next to
each arrow is the dipole matrix element, expressed as multiples of
〈P1/2||d||S1/2〉.

A possible cause of the faster magnetization change in the
experiment than the simulation is the superradiance [23–25].
Optical pumping can be enhanced if the Raman superradiance
among the magnetic sublevels occurs. In fact, we observe
atoms kicked by superradiant scattering when the beam is
strong. We show time-of-flight images and one-dimensional
atom density profiles with strong n = 9 pulses in Fig. 6. We
observe atom density peaks at both sides of the normal com-
ponent along the z axis, which is ascribed to atoms kicked
by the superradiance. The kick direction is consistent with
the expected endfire mode. We evaluate the proportion of the
number of kicked atoms Nside to the nonkicked BEC com-
ponent Nc. The population in a state other than the mz = 2
state should reflect the optical pumping and the ratio of the
superradiant component can be a measure of optical pumping

FIG. 6. Superradiance after applying nine dual-color pulses with
�−/2π = −840 MHz and �+/2π = −640 MHz. Here I/Isat is 140.
The color represents optical transmission. Absorption by the esti-
mated thermal component is subtracted in these images. The field
of view is 0.32 mm (vertical, y) × 0.37 mm (horizontal, z). (c) and
(d) The 1D profile obtained by vertically integrating the data in the
white dotted box in (a) and (b), respectively. The blue points and red
solid line represent the densities without and with thermal component
subtraction. The number of atoms in the shaded area is counted as Nc.

FIG. 7. Evaluation of the superradiance. Proportion of atoms
kicked by superradiance for (a) mz = 2 and (b) mz = 1 as a func-
tion of beam intensity in saturation units. The ratio Nside/Nc, with
compensation light of �+/2π = 640, 540, 440, 340, and 240 MHz,
is plotted by closed red circles, open yellow triangles, closed purple
triangles, open green squares, and closed cyan squares, respectively.
Positive-detuned light for compensation is not applied for data rep-
resented by open blue circles. The intensity along the horizontal axis
does not include that of the compensation beam.

enhancement by superradiance, provided the spin evolution
due to the nonlinear light shift is sufficiently small. In the
analysis, we count the number of atoms in the regions adjacent
to the zero-moment component as Nside and that in the center
region, represented by the shaded area in Figs. 6(c) and 6(d),
as Nc. The thermal component is subtracted before the count-
ing. We obtain the thermal component distribution by fitting a
Gaussian function to the wings of the vertical density profile
of the mz = 2 state. The thermal component in the mz = 1
state is estimated from the ratio between the number of atoms
in the mz = 1 and 2 states, because the estimation by fitting
to the mz = 1 profile is uncertain when there are few atoms in
the mz = 1 state. Atom number offset remaining in the case of
weak light is also excluded from the counting.

We plot Nside/Nc for the magnetic sublevels of mz = 1 and
2 in Fig. 7. The data in Fig. 7 are taken with n = 9 pulses. We
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observe a qualitative difference in the mz = 1 case between
with and without the compensation beam [Fig. 7(b)]. While
the ratio grows at around I/Isat = 130 without the compensa-
tion beam (only with the red-detuned beam), the ratio starts
to grow at a lower power when the compensation beam is
added. This difference should be related to the higher photon
scattering rate for the case with the compensation beam. The
compensation beam has a larger scattering rate per intensity
due to smaller detuning and contribution from the F ′ = 2
state. Such a difference is not observed for the mz = 2 case
[Fig. 7(a)]. A lower threshold intensity is expected due to
the coupling strength being twice higher than that for the
mz = 1 case. The superradiant component ratio in the mz = 1
state may reflect the enhancement of magnetization change
by superradiance, as mentioned above. The result implies
enhancement of at most several tens of percent. The ob-
served excessive magnetization change, however, is not fully
explained by the enhanced optical pumping. The detuning
dependence of the excessive change differs from that of the
superradiant component ratio. An advanced multilevel simula-
tion is necessary for quantitative evaluation of the superradiant
effect on the magnetic sublevel change.

The Raman superradiance [26] to the F = 1 state should
also contribute to the scattering rate enhancement. State-
selective imaging using repumping light will enable the
evaluation of such hyperfine Raman superradiance, although
we measure atoms in the F = 2 state only in this work.
We also measure the atom number loss, which changes the
population among the magnetic sublevels and causes spin re-
laxation. We note that the observed loss includes the hyperfine
pumping effect, because we measure the atoms in the F = 2
state. However, we do not observe a significant dependence of
the loss rates on �+, while the observed excessive magnetiza-
tion change depends on �+.

The larger than expected magnetization change might be
partly due to the enhancement of spontaneous emission near
the critical temperature for Bose-Einstein condensation [27].
We initially prepare atoms at a temperature T of 0.6Tc,
where Tc is the critical temperature. The T/Tc in our ex-
periment is comparable to that in [27], which reported the
enhancement factor of 3. The effect of this enhancement
on the magnetization change might be minor, however, be-
cause it would not significantly increase the Raman scattering
[28].

IV. CONCLUSION AND OUTLOOK

We have demonstrated the successful measurement of
quadratic light shifts using an atom interferometer. The mea-
sured dependence of the shift due to detuning is consistent
with the theoretical prediction. In addition, we suppressed
the influence of nonlinear light shifts by using dual-color
light pulses. Dual-color light is applicable to high-precision
measurement in a probe, especially for BEC magnetometers
[17]. A dual-color probe is useful not only for improving
the signal-to-noise ratio in spin measurements by increasing
the probe strength, but also for preventing disturbances when
creating a spin squeezed state via quantum nondemolition
measurements [29–33].

The multistate interferometric measurement demonstrated
here can be applied not only to a Bose condensed gas but
also to more general situations. The method works if the
atom number in each magnetic sublevel can be individually
measured; it is possible to perform a similar measurement for
a cold thermal gas. An interesting extension is to measure
the tensor polarizability of excited states. If one can induce a
sufficient phase shift and perform a spin measurement within
the lifetime of the excited state, the tensor polarizability of the
excited state can be measured. The polarizability of excited
states may give rich information on the coupling strengths of
atoms. The precise measurement of the polarizability of the
excited state should be important for ultraprecise measure-
ment such as atomic clocks.

The current main limiting source of the measurement pre-
cision is imperfect spin control and state preparation. These
noises increase the uncertainty in the measured magnetiza-
tion, thereby degrading the sensitivity of the quadratic shift
measurement. The relative fluctuation of the measured magne-
tization m in the experiment is 0.01 in the range of m = 0–1.5.
The current sensitivity will be improved by reducing the
magnetic-field fluctuation. The magnetic field slowly drifts
by several tens of nT in our environment, which makes the
rf pulse slightly off-resonant and can induce the spin direction
error of 10−2. The field stabilization within nT order is pos-
sible using the appropriate technique [34]. The optimization
of the echo interval may reduce noise due to the ac field.
The improvement of the initial spin state preparation by spin
cleaning using a microwave transition [35] may also lead to
better precision.

Further improvements of this measurement scheme are
feasible. Reducing technical noises in absorption imaging will
lead to higher sensitivity. The bias magnetic field may produce
a slight difference between the experimental data and the
theoretical prediction calculated by the Wigner D matrix and
interaction Hamiltonian, in which we have neglected the spin
evolution due to the magnetic field. Therefore, to improve the
estimation accuracy for the coupling coefficients, it may be
effective to use a low magnetic field. These improvements
may make it possible to estimate physical quantities such as
transition matrix elements and hyperfine splittings.
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APPENDIX: CALCULATION OF THE MAGNETIZATION

We explain how to obtain the calculated magnetization
used for the fitting to the data shown in Fig. 2. The main part
of the calculation is to calculate the product of five matrices
(four Wigner D matrices and A) on the right-hand side of
Eq. (9). Because we treat the F = 2 state in the experiment,
each matrix has 52 = 25 elements.
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Here we provide an explicit expression of the Wigner D
matrix. The Wigner D matrix can be written as

D j
q′q(α, β, γ ) = 〈 jq′|R̂(α, β, γ )| jq〉

= e−im′αd j
m′m(β )e−im′γ , (A1)

where

d j
m′m(β ) = 〈 jm′|e−iβ ĵy | jm〉. (A2)

The d2
m′m(β ) are given by

d2
22(β ) = 1

4 (1 + cos β )2,

d2
21(β ) = − 1

2 sin β(1 + cos β ),

d2
20(β ) =

√
3
8 sin2 β,

d2
2−1(β ) = − 1

2 sin β(1 − cos β ),

d2
2−2(β ) = 1

4 (1 − cos β )2,

d2
11(β ) = 1

2 (2 cos2 β + cos β − 1),

d2
10(β ) =

√
3
8 sin 2β,

d2
1−1(β ) = 1

2 (−2 cos2 β + cos β + 1),

d2
00(β ) = 1

2 (3 cos2 β − 1),

d2
m′m(β ) = d2

−m′−m(β ).

Because A = diag(e4iχξPτ , eiχξPτ , 1, eoχξPτ , e4iχξPτ ), each el-
ement of the product of the five matrices is in general a
function of χξPτ . Therefore, m = 〈ψ ′′|F̂z|ψ ′′〉 is a func-
tion of χξPτ , as mentioned in the main text. We perform
symbolic calculation of m and the fitting by Mathematica,
instead of writing out explicit expression of the calculated
magnetization.
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