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Quantum Monte Carlo study of the role of p-wave interactions in ultracold repulsive Fermi gases
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Single-component ultracold atomic Fermi gases are usually described using noninteracting many-fermion
models. However, recent experiments reached a regime where p-wave interactions among identical fermionic
atoms are important. In this paper, we employ variational and fixed-node diffusion Monte Carlo simulations to
investigate the ground-state properties of single-component Fermi gases with short-range repulsive interactions.
We determine the zero-temperature equation of state, and elucidate the roles played by the p-wave scattering
volume and the p-wave effective range. A comparison against recently derived second-order perturbative results
shows good agreement in a broad range of interaction strength. We also compute the quasiparticle effective mass,
and we confirm the perturbative prediction of a linear contribution in the p-wave scattering volume, while we find
significant deviations from the beyond-mean-field perturbative result, already for moderate interaction strengths.
Finally, we determine ground-state energies for two-component unpolarized Fermi gases with both interspecies
and intraspecies hard-sphere interactions, finding remarkable agreement with a recently derived fourth-order
expansion that includes p-wave contributions.
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I. INTRODUCTION

In ultracold atom theory, single-component (i.e., fully
spin-polarized) Fermi gases are usually treated as nonin-
teracting systems [1]. The reason is that s-wave scattering,
which dominates at low temperature and density, is inhibited
by the Pauli exclusion principle, while p-wave scattering is
strongly suppressed at ultracold temperatures, as observed in
several seminal experiments [2–4]. Previously, various other
experiments employed Feshbach resonances to enhance the
role of p-wave interactions (see, e.g., Refs. [5–9]), but they
were affected by strong losses due to inelastic collisions.
However, recent experiments reached a high-density regime
where p-wave interactions between fermionic atoms [10,11]
or molecules [12] play a relevant role. Spin-polarized Fermi
gases are also employed as the initial state in high-precision
atomic clocks [13]. For this application, the interaction en-
ergy due to p-wave intraspecies scattering must be precisely
known, since it induces a shift in the clock frequency [14–17].
Furthermore, experiments performed with single-component
Fermi gases have recently allowed observing Pauli blocking
of light scattering [18,19].

So far, most theoretical and computational studies ad-
dressed interaction effects in two-component Fermi gases,
focusing on s-wave interspecies interactions. In particular, the
zero-temperature equation of state (EOS) of spin-balanced
systems has been determined using second-order perturba-
tion theory in the seminal article by Lee and Yang [20] in
1957. This result has been extended to the third-order term
[21–24] and, recently, to the fourth-order term [25] in the
s-wave scattering length as (see also previous estimates [26]).
Importantly, these expansions have been compared against
nonperturbative results, in particular against quantum Monte

Carlo simulations [27–30], which provide rigorous upper
bounds to the ground-state energies of fermionic systems.
These comparisons turned out to be fruitful, allowing one
to shed light on the regimes of validity of various quantum
many-body techniques. In contrast, Fermi gases with imbal-
anced populations are more poorly understood. Perturbation
theories did address also spin-imbalanced gases [31–38], but
intraspecies interactions were not included, or they were de-
scribed only up to the first order in the p-wave scattering
volume v and without including effects due to the p-wave
effective range R. For the single-component (i.e., fully polar-
ized) Fermi gas, the ground-state properties have only recently
been computed up to the second order in v [39]. It was pointed
out that, already at this order, the role of the p-wave effective
range R must be accounted for [39–41]. To the best of our
knowledge, quantum Monte Carlo (QMC) results for dilute
single-component Fermi gases with intraspecies interactions
have not been provided yet.

In this paper, we employ variational and fixed-node dif-
fusion Monte Carlo (DMC) simulations to determine the
ground-state properties of single-component atomic Fermi
gases with short-range repulsive interactions. In particular,
the ground-state energy and the quasiparticle effective mass
are determined, exploring different regimes of interaction
strength. Two models for the interatomic potentials are con-
sidered, namely, the hard-sphere (HS) and the soft-sphere
(SS) potentials. This allows us to separately analyze the
roles played by v and by R. Our QMC results are com-
pared against the beyond-mean-field (BMF) expansion of
Ref. [39]. In the case of the ground-state energy, good agree-
ment is found in a broad range of the interaction parameters.
For the effective mass, we confirm the unusual perturba-
tive prediction of a dominant linear term in the p-wave
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scattering volume in a narrow interaction regime. However,
we observe significant discrepancies in beyond-mean-field
corrections, possibly indicating that an accurate determination
of this Fermi-liquid parameter requires higher-order terms, or
that the variational nodal surface should be improved. For
completeness, we also determine the ground-state energy of
a two-component Fermi gas with both interspecies and in-
traspecies (hard-sphere) interactions, in contrast to various
previous studies that considered only interspecies interactions
(intraspecies interactions have been addressed in Ref. [42],
but only within the Fermi hypernetted-chain theory). A com-
parison with the recently derived fourth-order expansion [25]
shows very good agreement. This represents an important
cross validation between perturbative results and variational
upper bounds provided by QMC simulations.

The paper is organized as follows: the model Hamiltonian
and the scattering parameters are defined in Sec. II. The QMC
methods to determine the expectation values are briefly de-
scribed in Sec. III. The two procedures used to estimate the
quasiparticle effective mass are reviewed in more detail in
Secs. III A and III B. Our results for the ground-state energy
and the effective mass of fully polarized gases are presented
in Sec. IV, while those for balanced repulsive gases are dis-
cussed in Sec. V. In Sec. VI we draw our conclusions and
provide some perspective for future research. In the Appendix,
we report further details on partial-wave scattering for the
considered short-range potentials.

II. MODEL

We consider a nonrelativistic ensemble of N (pseudo-)spin
1/2 fermions in three dimensions, described by the following
Hamiltonian in continuous space:

H = − h̄2

2m

Nσ∑
σ=↑,↓

i=1

∇2
σ,i +

Nσ∑
σ=↑,↓

i< j

Vσσ (ri j ) +
N↑,N↓∑

i,i′
V↑↓(rii′ ), (1)

where m is the mass, ri represents the three-dimensional
(3D) coordinates of the ith particle, ri j = |ri − r j | is the dis-
tance between the ith and the jth particles, and we indicate
the two relevant internal states by σ =↑,↓. These can re-
fer to hyperfine states, in the case of alkali-metal atoms or
the ground-state manifold of alkaline-earth atoms, or orbital
states, when considering the clock states of alkaline-earth
atoms. We focus on short-range intraspecies (V↑↑ and V↓↓) and
interspecies (V↑↓) interaction potentials.

Since we include neither spin-spin nor spin-orbit in-
teractions, nor spin-flipping external fields, the total spin
populations N↑ and N↓ are separately conserved, besides their
sum N . Simulations are performed with periodic boundary
conditions (PBC) in a cubic box of size L = (N/n)1/3, where
n = n↑ + n↓ is the total particle density and nσ are the par-
tial densities. The Fermi wave vector of the ↑ component is
kF = (6π2n↑)1/3 and its Fermi energy is EF = h̄2k2

F /2m.
In the low-energy limit, the above Hamiltonian is cus-

tomarily simplified by setting Vσσ = 0, since the scattering
amplitude for two fermions with the same spin does not con-
tain even-wave contributions, in particular the s-wave term,
while higher-order terms, starting from the p-wave one, are

suppressed, so that the interspecies interactions quantitatively
dominate the EOS. However, in the case of spin-polarized sys-
tems, or when accurate determination of the EOS is required,
taking into account at least the p-wave contribution from Vσσ

is crucial.
Close to broad s-wave Feshbach resonances, the s-wave

scattering length as is sufficient to describe the effects of
short-range interactions in a fermionic atomic gas [43].
Conversely, it has been argued [39–41,44] that an accurate
description of p-wave dominated Fermi gases requires specifi-
cation of both the p-wave scattering volume v and the p-wave
effective range R. Although the consideration of a van der
Waals tail may be relevant for p-wave effects of atomic poten-
tials (see discussion in the Conclusions), here we focus on the
strictly short-range case, to compare with existing literature
[39]. In order to have analytical expressions for the scattering
parameters, we consider SS potentials VS (r) = V0 for r � RS

and VS (r) = 0 for r > RS , using various combinations of the
strength V0 > 0 and the diameter RS so as to independently
vary v and R. The HS limit corresponds to taking V0 → ∞.
See the Appendix for a recap of scattering theory for these
potentials.

In this paper, we mostly focus on the fully polarized case
with N = N↑ and N↓ = 0, where p-wave collisions give the
dominant contribution to the interaction energy. However, for
more generality we consider also the spin-balanced case with
N↓ = N↑, where p-wave collisions contribute only to sublead-
ing order in the interaction strength. In the fully polarized
case (Sec. IV), we compare the results when setting V↑↑ ei-
ther equal to a SS potential with v = R3

S/24 (SS24), or with
v = R3

S/12 (SS12), or to the HS potential, which corresponds
to v = R3

S/3. These three choices amount to fixing three val-
ues for the parameter K0 = (mV0)1/2RS/h̄, which relates the
strength and range of the potentials. The weak repulsion SS24
potential is close to a SS model in which the s-wave effective
range is null, while the SS12 potential is representative of an
intermediate regime (see Fig. 4). In the spin-balanced case
(Sec. V), we compare the case of a HS potential present
only in the opposite-spin sector V↑↓, with V↓↓ = V↑↑ = 0 and
as = Rs, to the case in which the same potential is also present
in the equal-spin sector V↓↓ = V↑↑ = V↑↓.

III. METHODS

The QMC methods that we employ are the variational
Monte Carlo (VMC) and fixed-node DMC methods, which
stochastically solve the many-body Schrödinger equation,
either with a variational wave function �T [45], or with
an imaginary-time-projected wave function �τ = e−τ Ĥ�T ,
whose nodal surface (where the wave function is zero) is
constrained to that of the guiding function �T so as to remove
the fermionic sign problem [46]. In both cases expectation
values of various operators can be obtained: in particular, both
methods provide an upper bound for the exact ground-state
energy. While the precision of the results can be increased
at will, by reducing the errorbar due to stochastic sampling,
the accuracy of the results is affected by a few factors. For
VMC, results fully depend on the chosen �T , which must
therefore be suitably optimized; for DMC, results are af-
fected only by inaccuracies in the nodal surface, besides finite
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time-step and walker-population-size biases, which can be
properly extrapolated to zero [47–51].

In this paper, we use a trial (or guiding, for DMC) wave
function of the standard Jastrow-Slater form �T (R↑, R↓) =
J (R↑, R↓)D↑(R↑)D↓(R↓), where Rσ refers to all the co-
ordinates of fermions with spin σ . The antisymmetry
of the wave function upon exchange of two fermions
with the same spin is guaranteed by the Slater determi-
nants Dσ , where the single-particle orbitals are taken to
be plane waves eikl ri . In order to fulfill PBC, the al-
lowed kl have components (kx, ky, kz ) = (nx, ny, nz )2π/L,
where nx,y,z are integer numbers. The Jastrow factor is a
symmetric product of two-body correlations J (R↑, R↓) =∏N↑,N↓

i, j f↑↓(ri j )
∏N↑

i,i′ f↑↑(rii′ )
∏N↓

j, j′ f↓↓(r j j′ ). Notice that the
pair correlations fσσ ′ (r) depend only on relative distances and
that we take them to be the analytical s-wave solution of the
corresponding two-body problem, even in the same-spin case
σ ′ = σ . The reason for this choice is that the purpose of the
Jastrow factor is to smoothen the local energy EL(R↑, R↓) =
〈R↑, R↓|Ĥ |�T 〉/〈R↑, R↓|�T 〉, while proper antisymmetry is
taken care of by Dσ . This is arguably an accurate choice
for moderate interactions, while for strongly repulsive or
attractive interactions, a Pfaffian wave function could be
more suited, where two-particle orbitals are directly antisym-
metrized and can themselves be antisymmetric [52,53].

In determining the pair correlations fσσ ′ (r), we impose
the boundary conditions fσσ ′ (R̄σσ ′ ) = 1 and f ′

σσ ′ (R̄σσ ′ ) = 0,
where R̄σσ ′ are variational parameters that play the role of
a healing length. We optimize R̄σσ ′ with the stochastic re-
configuration method [54], which requires the evaluation of
the analytic derivatives of the trial wave function with respect
to the parameters. Since the above boundary conditions yield
implicit equations for R̄σσ ′ , we use Dini’s theorem on implicit
function derivation.

A. Dispersion relation for single-particle excitations

In the context of QMC simulations of fermionic systems,
the evaluation of the Fermi-liquid theory effective mass m∗
is usually performed via the calculation of the single-particle
dispersion through energy estimates using different nodal sur-
faces, compatible with finite total momentum (see Ref. [55]
for a recent account and results on the electron gas).

For a fully polarized system, let E (N ) be the total energy of
N↑ = N fermions with density n, where N corresponds to fill-
ing only closed shells (we consider N = 33, 57, 81, 123, 171)
and the total momentum is zero, since all the single-particle
orbitals in the Slater determinant are matched and maxi-
mally symmetric. Each closed shell contains all the wave
vectors corresponding to the same integer modulus square
M = n2

x + n2
y + n2

z . The last closed shell in the reference con-
figuration defines the Fermi wave vector for this finite system,
kN

F = 2π
√

Mmax/L. By keeping the volume V = N/n fixed,
we add a fermion with wave vector k in a shell with M >

Mmax, corresponding to momentum h̄k = h̄|k| = 2π h̄
√

M/L,
and we denote the resulting total energy by E (N + 1, k).
Alternatively, we add a vacancy, by removing a fermion
with M � Mmax, and we denote the resulting total energy by
E (N − 1, k). For a homogeneous system, the choice of the
specific wave vector within a shell is irrelevant. The dispersion

relation is defined as

ε(k) + μ =
{

E (N + 1, k) − E (N ) k > kN
F

E (N ) − E (N − 1, k) k � kN
F

(2)

where μ is the chemical potential of the ↑ particles. By defi-
nition of μ, ε(k) = 0 for momenta in the last reference shell,
when |k| = kN

F . We are interested in the slope of the dispersion
relation close to the Fermi momentum because the definition
of the effective mass is

ε(k) �
k∼kN

F

h̄2kN
F

m∗
(
k − kN

F

) = 2
m

m∗ EN
F (k̃ − 1) (3)

where EN
F = h̄2(kN

F )2/2m is the Fermi energy for the finite
system of N fermions, and k̃ = k/kN

F . We fit Eq. (3), with the
inclusion of a constant offset (namely the chemical potential)
and a quadratic term ∝ (k̃ − 1)2, to the QMC data of Eq. (2)
for various wave vectors. The range of validity of the quadratic
expansion around the Fermi surface could in principle be nar-
row; for a finite system, the discrete grid of wave vectors puts
a lower bound on the size of the momentum range that can
be fitted with sufficient precision, therefore finite-size effects
are introduced and different numbers of fermions have to be
considered, in order to assess the thermodynamic limit.

B. Finite-size effects and effective mass

The dispersion approach requires a large number of
simulations, involving both different particle numbers and
different momenta. An alternative approach was proposed,
that involves the evaluation of only the zero-total-momentum
ground-state energy for different particle numbers [56,57]. In
spite of its relatively limited computational cost, this method
has been much less frequently used, perhaps due to its reliance
on the validity of Fermi-liquid theory and its rigorous demon-
strability only in the weakly interacting regime. We report
here its derivation for completeness.

Fermi-liquid theory [58,59] postulates a one-by-one cor-
respondence between particles of a noninteracting Fermi gas
and quasiparticles in the Fermi liquid, which are therefore
labeled by wave vector k, in a homogeneous system (here
we neglect spin since we are considering a fully polarized
system). Quasiparticle energies ε are determined in a self-
consistent fashion as the functional derivative of the energy
density e with respect to the variation of their distributions
n(k) upon perturbation:

δe =
∫

dτε(k)δn(k), (4)

with dτ = dk/(2π )d , where d is the dimensionality. In gen-
eral, the quasiparticle energies depend on the variation of the
occupations, and a linear expansion is considered: ε(k) =
ε0(k) + ∫

dτ ′ f (k, k′)δn(k′). For the moment we neglect the
quasiparticle interaction function f , and only consider the
equilibrium term ε0(k), which can be expanded close to the
Fermi surface as in Eq. (3).

We now specialize our discussion to a finite system of N
fermions in a cubic box of volume V with PBC at zero tem-
perature. The equilibrium distribution of quasiparticles in this
case is a sum over the wave vectors K = {ki} allowed by PBC,
up to the Fermi wave vector: n0(k) = (2π )d

∑
ki∈K δ(k −
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ki )/V , with the normalization constraint on the total density
n = ∫

dτn0(k). We consider particle numbers that correspond
to filling only closed shells, such that the set K is closed
upon all the system symmetries [60]. As a perturbation from
the equilibrium of N particles in a volume V = N/n, we
consider a variation of number and volume such that the
density remains fixed: n = N ′/V ′ [57]. The new equilibrium
quasiparticle distribution is thus n′

0(k) = (2π )d
∑

k′
i∈K′ δ(k −

k′
i )/V ′, where the wave vectors in K′ are those compatible

with PBC in volume V ′, and the same normalization as for
n0(k) holds. Let us consider the variation of the occupations
δn(k) = n′

0(k) − n0(k): for sufficiently large N and N ′, we
can substitute δn(k) with its average in a neighborhood of k
of size larger than the typical spacing between wave-vector
coordinates in K and K′, namely, 2π/V 1/d and 2π/V ′1/d ,
respectively. The resulting smeared function is close to zero
for k � kN

F , kN ′
F , since well inside the Fermi sphere the PBC

wave vectors are equally spaced; obviously, it is zero for
k � kN

F , kN ′
F , while it can have large fluctuations for k � kN

F �
kN ′

F , due to the different symmetry of the last closed shells
for different particle numbers. For this reason, the difference
in energy density between two Fermi liquids with different
particle numbers is determined by the quasiparticles close
to the Fermi surface, and we can safely extend Eq. (3) to
wave vectors far from the Fermi surface, where δn ≈ 0. In
this derivation, we can now assume that the dependence of
μ and kF on the number of particles is negligible because it
contributes only to second order in δn. It is convenient then to
write ε0(k) ≈ h̄2

2m∗ (k2 − k2
F ), so that

δe ≈
∫

dτ

[
h̄2

2m∗ (k2 − k2
F )

]
δn(k)

= m

m∗

∫
dτ

h̄2k2

2m
[n′

0(k) − n0(k)] = m

m∗ (t ′
0 − t0), (5)

where we have used the normalization constraint of the occu-
pations and the definition of the kinetic-energy density of the
ideal Fermi gas: t0 = ∫

dτn0(k)h̄2k2/2m.
Since t0 is tabulated, relation (5) provides a relatively

straightforward method to determine the effective mass with
only the evaluation of the total energy of closed-shell systems
with different particle numbers. It also provides a finite-
size correction to the energies from QMC simulations of N
fermions, by letting N ′ → ∞ and using t∞

0 = 3EF /5 for a
polarized 3D system, with straightforward generalization to
other polarizations. We use this correction when reporting
energies in Secs. IV and V, but approximating m∗ = m. The
errorbars then include QMC statistical uncertainty and an
estimate of residual finite-size effects based on the above
correction. These are summed in quadrature and the result is
smaller than the symbol size.

In order to take into account also second-order corrections
in the variation of occupations and the role of the quasiparticle
interaction f , Eq. (5) can be extended with a phenomenolog-
ical term of type c/Nν , where c and ν are parameters to be
fitted from the QMC data [56,61]. This correction is expected
to be relevant only for small number of fermions, or when the
interactions are strong.

FIG. 1. DMC interaction energy of a fully polarized Fermi gas
interacting with the HS, SS12, and SS24 potentials as a function
of α, compared to the linear and BMF predictions. Empty symbols
correspond to VMC simulations.

IV. ANALYSIS OF THE FULLY POLARIZED FERMI GAS

The main focus of this paper is on a spin-polarized Fermi
gas, where n = n↑ and interaction effects at low energy are
mainly accounted for by p-wave contributions.

The zero-temperature Fermi-liquid theory treatment of
such a system has been recently perturbatively studied in
Ref. [39]. In particular, the correction ε to the noninteracting
energy per particle, E/N = EF (3/5 + ε), has been calculated
to be, to the second order in the scattering volume and the
dominant order in the effective range,

ε = 6α

5π
−

(
9

35πζ
− 2066 − 312 log 2

1155π2

)
α2, (6)

where α = k3
F v and ζ = kF R. Both α and ζ are small in the

weakly interacting limit (see the Appendix). Strikingly, the ef-
fective range appears in the denominator, indicating that the
coefficient of the second-order term in v is strongly dependent
on the effective range, in the weakly interacting regime.

The above expression has been obtained for a generic
potential; however, when considering a specific class of po-
tentials, like the SS ones and their limit, the HS one, ζ and
α are not independent: in this case Eqs. (A3) and (A4) allow
one to consider ζ as an implicit function of α, or equivalently
of the density nR3

S , having fixed the dimensionless strength
K0 to three representative values. Therefore, Eq. (6) can be
viewed as an expansion in α, where the first and the last
terms are the effective-range-independent linear and quadratic
contributions, respectively, while the second term is of order
α5/3. The coefficient of this term is very large for small K0,
while it decreases when approaching the HS limit. As a result
of the competition between the α5/3 and α2 terms, the BMF
correction to the energy is negative for small α, but changes
sign for sufficiently large α.

In Fig. 1, we compare the above perturbative prediction
for the zero-temperature equation of state with VMC (empty
symbols) and DMC (full symbols) simulation results for the
HS, SS12, and SS24 potentials, with varying α � 4. The

053305-4



QUANTUM MONTE CARLO STUDY OF THE ROLE OF … PHYSICAL REVIEW A 107, 053305 (2023)

FIG. 2. VMC determination of the inverse effective mass, offset
by 1 as a function of α, compared to the perturbative prediction of
Eq. (7). Shown are results for both the finite-size method (empty
squares, for the HS model) and the dispersion method with N = 123
particles (light gray filled squares, red diamonds, and blue circles for
the HS, SS12, and SS24 models, respectively). For selected values of
α, the dispersion method for the HS model is also used with N = 33
(black filled squares) and N = 57 (dark gray squares). Inset: The
range α � 0.15 is highlighted.

same α corresponds to different ζ , depending on the poten-
tial. VMC and DMC results show very few discrepancies,
which indicates that the variational optimization of the Jas-
trow factor is satisfactory. All the considered systems follow
the perturbative effective-range-independent linear prediction
for α � 0.5, while BMF effective-range-dependent contribu-
tions are manifest for stronger repulsion. Consistently with
Eq. (6), departures from the linear behavior are larger the
softer the repulsive potential is (corresponding to smaller
effective range). Also, the regime of quantitative agreement
between perturbative and DMC predictions goes from α � 1
for the SS24 potential to α � 2 for the HS potential. In the
latter case one can also observe a change of concavity of the
equation of state, in qualitative agreement with the discussion
in the previous paragraph.

Reference [39] also provides the BMF expression for the
effective mass of the quasiparticles in the fully polarized case,
which has been deduced to be

m

m∗ = 1 + 2α

π
−

[
1

πζ
− 8(313 − 426 log 2)

315π2

]
α2. (7)

Differently from the s-wave case, this expression varies
from the noninteracting case m∗ = m already at the mean-
field level. In the range of α that we are considering, the
BMF correction is dominated by the negative effective-range-
dependent contribution, since the last term has a very small
coefficient.

We show our QMC results for the inverse effective mass
in Fig. 2. Due to the demanding computational requirements,
for the effective mass determination we only employ VMC
simulations, whose energies are very close to the DMC
ones (see Fig. 1). For some points, we have in fact evalu-

ated the effective mass also with DMC (not shown), finding
compatible values with VMC, albeit with larger uncertainty
bars. We consider both the fit of the single-particle disper-
sion of Sec. III A, for N = N↑ = 123 fermions (and also for
N = 33, 57 with the HS model at some selected values of α),
and with the finite-size method of Sec. III B fitting results for
N = 33, 57, 81, 123, and N = 171 in some cases. For both
methods, we increase the uncertainty bars up to 0.02 when we
notice that removing some particle sizes or momenta from the
fits yields differences in the output effective mass exceeding
the error bars. We also notice that for α � 1, a correction of
type 1/N2, as mentioned in Sec. III B, is important to ob-
tain reduced χ2 � 1, without significantly affecting the value
of m∗.

We find that the two ways of evaluating the inverse
effective mass in QMC are consistent, provided that the dis-
persion relation is calculated for a sufficiently high number of
fermions. In particular, we observe that the HS results at α =
0.5 and 1.5 calculated with the dispersion method with N =
33, 57, 123 particles are consistent with each other and with
the result from the finite-size method within � 0.05. We find
that the QMC results are consistent with the effective-range-
independent linear correction predicted by Eq. (7) for α <

0.1. A strong dependency on the chosen potential, namely,
on the effective range, is observed for α � 0.15. Also, in this
regime, the QMC results with different potentials depart from
the BMF correction in Eq. (7). This is in striking contrast
with the consistency of the perturbative and QMC methods
for the equation of state, which is generically apparent up
to α � 1. For α � 0.1, the errorbars are too large to make
conclusive statements regarding the accuracy of the BMF
correction. However, further reducing QMC errorbars in this
regime would require one not only to increase statistics, but
also to better assess the possible residual role of finite-size
effects and of the chosen fitting function, significantly increas-
ing the computational burden.

The origin of the discrepancy of beyond-mean-field p-
wave effects in the effective mass can be twofold: on the
perturbative side, it might be that convergence in this quantity
requires resummation of higher-order terms, especially for
small effective range; on the QMC side, it might be that the
nodal surface in both the VMC and DMC calculations plays
an important role, as for the electron gas [55], a question that
will be worth investigating in the future.

V. ROLE OF EQUAL-SPIN INTERACTION IN THE
SPIN-BALANCED CASE

This section focuses on balanced (i.e., unpolarized) Fermi
gases, namely, on the case n↑ = n↓ = n/2. In this case,
the Fermi wave vector and energy are kF = (3π2n)1/3 and
EF = h̄2k2

F /2m, respectively. The HS potential is adopted to
model both intra- and interspecies scatterings. It is worth
emphasizing that, with this model, all scattering parameters,
including the s-wave scattering length and effective range, as
well as the p-wave scattering volume and effective range, are
fixed by the HS diameter RS only. In particular, the s-wave
scattering length is as = RS , and the interaction parameter
considered in Sec. IV can be written as α = (3π2n)3ν =
(kF RS )3/3. Following the standard convention, here we

053305-5



BERTAINA, TARALLO, AND PILATI PHYSICAL REVIEW A 107, 053305 (2023)

FIG. 3. DMC equation of state (blue circles) of a spin-balanced
Fermi gas with hard-sphere interaction both in the opposite and in
the equal spin sectors. The energy per particle E/N is plotted vs
the interaction parameter kF as. The upper horizontal axis reports the
corresponding values of α. This is compared to perturbative expan-
sions with increasing order from Ref. [25], and with the third-order
expansion by Pera et al. [36]. As a reference, the DMC results in the
absence of intraspecies interactions are also shown (black crosses)
[28,64].

discuss our results in terms of the interaction parameter
kF as. Our fixed-node DMC results are compared with vari-
ous perturbative expansions from the literature. One of our
main goals is to inspect the role of intraspecies interactions,
making comparison with the case where only interspecies
interactions are accounted for in the DMC simulations. Notice
that intraspecies interactions affect the itinerant ferromagnetic
transition [42,62,63]. The DMC energy per particle E/N is
shown in Fig. 3, as a function of kF as. In the broad regime
kF as � 0.5, the results obtained with only interspecies in-
teractions closely match the corresponding results including
also the intraspecies channels. However, for kF as � 1, sizable
deviations occur. This indicates the increased role of p-wave
scattering in this regime. Notably, the perturbative equation of
state for this system has been recently extended up to the
fourth order [25]. When specialized to the HS model, the
equation of state reads

E

N
= 3

5
EF

jmax∑
j=0

Cj (kF as) j, (8)

where (C0,C1,C2,C3,C4) = (1, 0.354, 0.186, 0.384, 0.001),
and the integer jmax � 4 is the chosen expansion order in
the interaction parameter kF as. A third-order expansion has
been provided also in Ref. [36] for arbitrary number of
components and populations imbalances. When specialized
to two balanced components, this expansion closely agrees
with the corresponding result of Ref. [25] with jmax = 3 (see
Fig. 3). It is worth pointing out that, when specialized to the
single-component case, the third-order expansion of Ref. [36]
corresponds to Eq. (6) truncated to the first order in the scat-
tering volume v. In particular, effects due to p-wave effective
range R are not accounted for. From Fig. 3, one also notices
that the contribution of the fourth-order term ( j = 4) is very

small. Notice that, also in the balanced case, these third- and
fourth-order expansions do not account for the effect of the
p-wave effective range R. Notably, these expansions barely
deviate from the DMC results including also intraspecies scat-
tering. The residual discrepancy might be attributed to the
fixed-node constraint, meaning that a more accurate nodal
surface or an unbiased released node technique would provide
lower energies, in agreement with the perturbation theory. On
the other hand, it is also plausible that beyond-fourth-order
terms, or terms depending on R, would provide the missing
contribution to exactly match the DMC results.

VI. CONCLUSION

The role of intraspecies interactions in (pseudo-)spin-1/2
Fermi gases with short-range repulsive potentials has been
investigated via fixed-node diffusion and variational Monte
Carlo simulations. The ground-state energy per particle for
the fully polarized gas has been determined and the roles
of the p-wave scattering volume and of the p-wave effective
range have been separately elucidated. The effective mass has
also been determined, finding deviations from the recently
derived perturbative expansion already for moderately strong
interaction strength, where agreement is instead found for the
equation of state. Furthermore, the equation of state for the
balanced configuration has been determined, making compar-
ison with previous studies that considered only interspecies
scattering. Notably, we have found good agreement with the
recently derived fourth-order perturbative expansion.

We hope that our findings will favor the further develop-
ment of many-body theories for Fermi gases, which should
take into account p-wave scattering effects [65–67]. Indeed,
ultracold atom experiments reached high-density regimes
where these effects become relevant. The p-wave parameters,
scattering volume and effective range, are also relevant to
describe p-wave Feshbach resonances in the resonant regime
[44,68,69]. Future research should check whether the regime
of reliability of the perturbative expansion is reduced or not,
when considering different potentials with the same scattering
volume and effective range, establishing universality in terms
of these two scattering parameters. It will also be relevant to
study the effective mass by means of more computationally
demanding, but more accurate, DMC simulations, possibly
including backflow correlations [70].

Strictly speaking, the results presented in this paper and
in Ref. [39] are valid for short-range potentials, which ad-
mit an effective-range expansion in powers of k2 for the
scattering amplitude of any partial wave. This is also the
case for the s-wave amplitude of realistic atomic potentials
asymptotically decaying with a van der Waals tail −C6/r6.
However, scattering theory for such potentials predicts that the
effective-range expansion of the p-wave amplitude contains
also a term proportional to k [71]. On the one hand, it has
been argued that this term is negligible when considering large
p-wave scattering volumes, for example in two-channel mod-
els describing p-wave Feshbach resonances [68]; on the other
hand, this fact highlights the opportunity to investigate more
the many-body consequences of a van der Waals tail in the
weakly interacting regime of polarized Fermi gases, and we
leave this endeavor for future studies. Van der Waals potentials
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FIG. 4. Low-energy scattering parameters of the SS potential, in
units of the range RS , as a function of the dimensionless strength
K0. Two vertical lines mark the two considered SS potentials, while
arrows indicate the HS limits.

also fulfill universal relations between scattering parameters
of different partial waves [72]. This property, together with
density shifts in an optical clock, was used in Refs. [17,73]
to estimate the values v1/3

gg = 76.6(4)a0, v1/3
ee = −119(18)a0,

and v
1/3
ge+ = −169(23)a0, for two 87Sr atoms in a fully

polarized nuclear spin configuration and symmetric electronic
states |gg〉, |ee〉, and (|ge〉 + |eg〉)/

√
2, respectively, where the

relevant (pseudo-)spin levels are g =1S0 and e =3P0. These
scattering parameters correspond to α � 1 at the densities of
standard atomic clocks, indicating that the linear contribution
due to the p-wave scattering volume is sufficient to estimate
density shifts in such cases. A relevant extension of this pa-
per is to consider different confinement geometries, such as
the quasi-two-dimensional ones, that allow one to reach the
Lamb-Dicke regime in optical lattice clocks. Finally, combin-
ing accurate QMC methods with the simulation of laser-driven
interacting atomic systems with generic polarization and con-
finement is still an open problem.

Data to reproduce the figures in this paper are available
online [74].
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APPENDIX: PARTIAL-WAVE SCATTERING AMPLITUDE
IN THREE DIMENSIONS

The expansion of the low-energy scattering amplitude
in three dimensions, for angular momentum number l ,
reads

fl (k)−1 = k cot[δl (k)]

−ik = k−2l

(
− 1

al
+ rl

2
k2 + O[k4]

)
− ik, (A1)

where the relative momentum is k2 = 2μE/h̄2, E is the ki-
netic energy of the two scattering particles, and μ = m/2 is
the reduced mass for equal mass particles. In the s-wave case
f0(k)−1 = (− 1

as
+ rs

2 k2 + O[k4]) − ik where as and rs are the
s-wave scattering length and effective range, respectively.

The p-wave case reads

f1(k)−1 =
(

− 1

vk2
− 1

2R
+ O[k2]

)
− ik, (A2)

where, for dimensionality reasons, v is the p-wave scattering
volume, while R is the p-wave effective range. Notice that
some authors define the p-wave effective range as the inverse
of R, which is then an effective momentum, possibly including
the factor 2 in the definition [75]. Notice also the minus sign,
that we introduced to follow the convention used in Ref. [39].

Here, we consider the SS model potential and adapt the
results in Ref. [75], with K2

0 = mV0R2
S/h̄2. The p-wave scat-

tering volume is

v = R3
S

3

(
1 − 3

K0C0 − 1

K2
0

)
, (A3)

with C0 = coth K0. The p-wave effective range is

R = 5RS

9

(
K2

0 + 3 − 3K0C0
)2

15K2
0 C2

0 − 5
(
2K2

0 + 3
)
K0C0 + (

2K2
0 + 5

)
K2

0

.

(A4)
In the HS limit when V0 → ∞, one obtains v = R3

S/3 and
R = 5RS/18. Some authors therefore also use the auxiliary
definition for a p-wave scattering length ap = (3v)1/3, be-
cause it results in ap = RS for the HS potential. For V0 → 0,
one obtains v → R3

SK2
0 /45 and R → 7RSK2

0 /90. So, in the
weakly interacting limit both the scattering volume and the
effective range are positive (using the convention in Ref. [39])
and small.

For completeness we report here also the s-wave scattering
length and effective range for the SS potential:

as = RS (1 − 1/C0K0), (A5)

rs = RS

(
1 − 1

3(1 − 1/C0K0)2
+ 1

K2
0 (1 − 1/C0K0)

)
. (A6)

In the HS case, one has as = RS and rs = 2RS/3, while in
the weakly interacting regime one obtains as → RSK2

0 /3 and
rs → −6RS/5K2

0 . Notice that rs changes sign and is infinite
and negative for small V0.

In Fig. 4, we show the p-wave scattering volume and ef-
fective range for the SS potential, together with their s-wave
counterparts.
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