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Loosely bound few-body states in a spin-1 gas with near-degenerate continua
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A distinguishing feature of ultracold collisions of bosonic lithium atoms is the presence of two near-degenerate
two-body continua. The influence of such a near degeneracy on the few-body physics in the vicinity of a narrow
Feshbach resonance is investigated within the framework of a minimal model with two atomic continua and
one closed molecular channel. The model allows analysis of the spin composition of loosely bound dimers and
trimers. In the two-body sector the well-established coupled-channel calculation phenomenology of lithium is
qualitatively reproduced, and its particularities are emphasized and clarified. In the three-body sector we find that
the Efimov trimer energy levels follow a different functional form as compared to a single continuum scenario
while the thresholds remain untouched. This three-channel model with two atomic continua complements our
earlier developed three-channel model with two molecular channels [Yudkin and Khaykovich, Phys. Rev. A 103,
063303 (2021)] and suggests that the experimentally observed exotic behavior of the first excited Efimov energy
level (Yudkin, Elbaz, and Khaykovich, arXiv:2004.02723) is most probably caused by the short-range details of
the interaction potential.
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I. INTRODUCTION

Two decades of experiments with ultracold atoms have
stimulated spectacular advance in our understanding of
few-body systems. Especially intriguing is scattering in
the vicinity of a Feshbach resonance [1], near a so-called
singularity, because diverging two-body interactions give
rise to a large variety of bound clusters whose properties are
universal functions of the scattering length [2–5]. Several
experimental and theoretical works were able to establish this
universality [6–9].

Apart from the scattering length a, the systems’ size and
energy length scales are governed by the three-body param-
eter which, in the case of short-range two-body interaction
potentials, succumbs to another type of universality. This
Efimov–van der Waals universality relates the three-body pa-
rameter to the van der Waals length RvdW of the underlying
two-body potential [10–12]. While this holds for broad res-
onances [13–16], in the vicinity of narrow resonances the
three-body parameter was shown to deviate from such uni-
versality [17–21].

Although the concept of universality is now well un-
derstood, bosonic lithium (7Li) deviates from it in various
aspects and continues to puzzle experimentalists and theorists.
For one, 7Li satisfies the Efimov–van der Waals universality
quite well even though all its resonances are narrow [22].
Further, it was shown that modeling experimental results re-
quires relatively complex multichannel theories [23] with, on
occasion, even energetically distant channels [24] and spin-
exchange interactions [25] playing a crucial role. In addition,
it has been speculated that generic three-body forces must
be taken into account to achieve quantitative agreement be-
tween experiment and theory [26]. Finally, the spectrum of

the trimer was observed to cross into the atom-dimer contin-
uum (or go through an avoided crossing) instead of merging
with it [27].

While the typical few-body experiment is conducted with
atoms polarized in the absolute ground state (the a-state), in
7Li the second lowest state (b-state; see Fig. 1) was shown
to be extraordinarily stable against dipolar relaxation [22].
Bosonic lithium is thus an attractive species for experiments
with either spin state or a mixture of both [28]. In particular,
it provides an opportunity to compare the few-body physics,
e.g., the three-body parameter and the Efimov spectrum, of
the two channels [22,29].

In the case of 7Li (and many other species), Feshbach
resonances occur at high magnetic fields B, such that μBB �
Ah f (where μB is the Bohr magneton and Ah f the hyperfine-
structure constant) and the Zeeman shift ∼μBBmJ dominates
over the hyperfine splitting ∼Ah f mJmI . Here mJ and mI are
the electronic angular momentum (spin + orbital) and nuclear
spin projections, respectively, and mF = mJ + mI (Fig. 1).
Therefore, when considering differences within the mJ =
−1/2 subset the Zeeman shifts cancel, leaving the hyperfine
splitting (∼Ah f /2) to dominate. To first order in hyperfine
interaction, the differences between the lowest pair (a, b)
and the second lowest pair (b, c) are identical such that
the two-body bb- and ac-channels are degenerate. To higher
order the degeneracy is lifted and amounts to a few tens
of MHz. Moreover, the total spin projection of the bb- and
ac-channels are identical, which permits energy-conserving
spin-exchange coupling between the two. This near degener-
acy of a same-spin state in the bb-channel, and its absence
in the aa-channel, motivates a comparison of the spin com-
position of the loosely bound states. Indeed, full two-body
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FIG. 1. Plot of the energy of the hyperfine levels of the 7Li 2S1/2

ground-state vs magnetic field B in gauss. The labels of the levels
used throughout this paper are shown.

coupled-channel calculations show that the near-threshold bb-
eigenstate has a non-negligible ac-population, and we explore
its implications here by building a simplified model for the
bb-channel [30]. Another strong motivation for the model
originates in an effort to understand exotic behavior of the first
excited Efimov energy level in the vicinity of the atom-dimer
threshold observed in a recent experiment [27]. Although the
attempt ultimately fails, it indicates that the solution may be
hidden in the short-range details of the interatomic interaction
potential.

The paper is organized as follows. First, the two-body
sector observables of 7Li are presented in Sec. II and the
distinctiveness of the bb-channel, in comparison to the aa-
channel, is demonstrated. In Sec. III we introduce a model for
the bb-channel which captures the physics with three channels
[30]. The two-body scattering and bound state observables of
the model are derived in Sec. IV. We compare the results to
the standard two-channel model and demonstrate qualitative
agreement with full coupled-channel calculations of the aa-
and bb-scattering channels of 7Li. In Sec. V we apply the
model to the three-body sector and find that the functional
form of the trimer’s binding energy is altered. Although the
thresholds are not affected by the ac-channel, the binding en-
ergy is consistently lower than in its absence. After following
up with a quick discussion on the lithium few-body puzzle
and the implications of the developed model in Sec. VI, we
conclude the paper.

Note that together with the previously developed model
with one open atomic and two closed molecular chan-
nels, used for reproducing overlapping Feshbach resonances
[20,31], the current treatment complements the description
of the complexity of the bb-channel in 7Li within the
well-defined framework of the simplified theory. Thus, a
meaningful comparison with the experimental results is per-
formed in Sec. VI.

FIG. 2. Coupled-channel calculation for two atoms in the b-state
showing sin2 ηbb(E , B) for elastic scattering for E > 0 and the dimer
binding energies for E < 0. Here E = 0 is the energy of two atoms in
the b-state at magnetic field B. At the ac-threshold (E/h = 28 MHz)
the scattering exhibits cusp behavior.

II. 7Li

The bb-channel features a Feshbach resonance at Bres,bb =
893.78(4) G and a second, overlapping, much narrower one at
845.31(4) G [32,33]. The former is the resonance of interest,
but the effect of the latter cannot be fully ignored. Since it was
considered in depth in Ref. [31] we use the conclusions of that
work and focus on the additional closed atomic ac-channel
here.

Our coupled-channel calculations are based on the molec-
ular potentials determined in Ref. [33] and include all s-wave
two-body channels with the same total angular momentum
projection Mtot, which in this case is just the total spin pro-
jection summed over both atoms. Bound or scattering wave
functions are written as |ψ (R)〉 = ∑

i j φi j (R)|i j〉, where i j
denotes the channel indices specifying all atomic states with
the same Mtot included in the coupled-channel basis set, and
the components φi j reflect closed or open channel boundary
conditions depending on the total energy E . Figure 2 shows
the energies E < 0 of the two bound states with MF = 0
below the bb-channel threshold and the elastic scattering indi-
cated by sin2 ηbb(E , B) for E > 0 above the threshold, where
ηbb(E , B) is the asymptotic phase shift for the bb-channel.
Strong near-unitary elastic scattering persists above threshold
as the two bound states emerge into the bb scattering con-
tinuum as resonant features, exhibiting cusp behavior at the
ac-threshold.

The eight components of the Mtot = 0 bound state in the
bb-channel 9 G below the 893.78 G resonance are shown
in Fig. 3(a). In addition to the bb- and ac-channels there
are another six two-body channels: ae, b f , cg, dh, eg, and
f f (see Fig. 1). Around the resonance position (893.78
G), the ac-channel lies only (Eac − Ebb)/h = 28 MHz above
the bb-channel threshold (see Fig. 2), whereas the other
six atomic channels include at least one mJ = +1/2 spin
component such that the Zeeman shift makes them energeti-
cally very distant from the bb- or ac-channels (�2 GHz for
B > 800 G). Consequently, the behavior of the wave func-
tion components in the latter two channels is quite different
than for the other six. First, the spin-exchange interaction
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FIG. 3. (a) Wave function components of the dimer bound state
close to resonance in the basis of the Mtot = 0 two-body channels,
where a0 ≈ 0.0529 nm is one atomic unit of length. The vertical
dashed line, where all six energetically distant channels (faint green)
are maximal, indicates the van der Waals length RvdW = 32 a0. Both
the bb- and the ac-components reach far beyond RvdW. Note the log-
arithmic scale of the horizontal axis. (b) Magnetic field dependence
of the populations.

bb → ac → bb is relatively strong, suppressed by only a
small energy denominator. Furthermore, the bb- and ac-
components can persist to much larger distances than the
other six, extending far beyond the van der Waals length (as
with a halo dimer) while the remaining six are short ranged,
i.e., their amplitude decays quickly outside the van der Waals
length RvdW. Since RvdW is the smallest relevant length scale
for our problem (we can ignore short-range “chemistry”), it
can be thought of as vanishingly small. A diatomic channel
that is confined within this range thus resembles a pointlike
molecule. As is typical for two-channel models [34,35], also
here we categorize the six channels with components confined
to short range (order RvdW or less) as “molecular channels”
while the two channels with components that extend far be-
yond RvdW are called “atomic channels.” We will use this
nomenclature throughout this paper.

In the model in Sec. III for the bb-channel we consider
both long-range components as separate atomic channels and
group all closed channels together [30], thus reducing an
eight-channel problem to an effective three-channel model.
Utilizing this reduction, the magnetic field dependence of the
populations is shown in Fig. 3(b) and discussed below.

FIG. 4. The magnetic field dependence of the 7Li bb- and aa-
channel (a) scattering lengths and (b) dimer binding energies.

In contrast to the eight-channel bb case, the aa-channel,
which features an isolated Feshbach resonance at Bres,aa =
737.69(2) G [33], has no near-lying channel with the same
spin projection, Mtot = 2. Hence, all additional four chan-
nels (ag, bh, f h, and gg) collectively form the molecular
channel, thus making the aa-channel a good example of the
reduction of a homonuclear five-channel case to an effective
two-channel model, as described in Ref. [36].

We note that, within the coupled channels framework, the
reduction from eight (five) to three (two) channels is more
complicated than just grouping together the “molecular chan-
nels.” In reality, an “atomic channel” can also have a nonzero
contribution to the molecular bound state at short range [36].

Comparing the scattering lengths and dimer binding ener-
gies of the aa- and bb-channels demonstrates the effect of a
second, near-degenerate continuum. To this end we use full
coupled-channel calculations [37] and shift the observables of
both channels by their respective resonance position.

It is worth mentioning that the two resonances of the bb-
channel and the resonance of the aa-channel all arise due to
different nuclear spin projections of the same bare molecular
ν = 41, J = 0 bound state in the singlet potential [33]. In ad-
dition, since all three resonances are at large magnetic fields,
the free atom states have both electron spins down and thus
correspond to molecular triplet states. Thus, the differential
magnetic moments of the bare molecule in the bb- and aa-
channels are almost the same (within 3%).

The scattering lengths of the aa- and bb-channels, shown in
Fig. 4(a), are overwhelmingly similar. The main difference be-
tween the two channels is caused by the additional resonance
in the bb-channel. Its existence forces a zero crossing, and thus
a large gradient, at B − Bres,bb = −44 G which is absent in
the aa-channel. We also show the ac-scattering length, which
is complex because of inelastic collisional loss to the open
bb-continuum due to strong spin-exchange coupling. Its struc-
ture, in particular the double peak of the imaginary part and
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the inflection point of the real part, is due to the overlapping
nature of the two resonances.

The similarity of the bb and aa scattering lengths suggests
that also the two dimer binding energies are comparable.
Moreover, the additional dimer associated with the narrow
resonance in the bb-channel is expected to make the bb-dimer
near 893.7 G more deeply bound due to dimer-dimer level
repulsion (see Ref. [31], in particular Appendix C therein).
However, as seen in Fig. 4(b), the bb-channel dimer is con-
siderably shallower than the aa-channel dimer and has a
somewhat larger universal range where ED ∼ a−2 [38].

For the dimer, the populations 0 �
∫ |φi j (R)|2dR � 1 of

the various channels are shown in Fig. 3(b). While the atomic
bb- and aa-channels have similar behavior, the molecular
channels are different. In the bb case, the population of the
molecular channel (which dominates far from resonance, i.e.,
at deep dimer binding energies) increases at a slower rate
due to the population in the ac-channel. The latter reaches
a maximal population of ∼14 % at B − Bres,bb = −30 G and
then decays like an atomic channel.

The magnetic field dependence of the spin composition
of the aa-dimer is typical for a closed-channel-dominated
resonance and reproduced by a simple two-channel model
with one open atomic and one closed molecular channel
[34,39,40]; see also Ref. [36]. In contrast, the unique behavior
of the ac population marks the appearance of a nontrivial
spin composition which we successfully model with a three-
channel model (bb, ac, and a closed molecular channel) in
the following. The naturally arising question then concerns
the three-body sector: How is the Efimov trimer affected
by the proximity of the ac-channel and its non-negligible
population? Finding an answer within a full coupled-channel
model is extremely resource intensive. The straightforward
and comprehensive three-channel model introduced here and
benchmarked in the two-body sector can be applied to the
three-body sector without major complications. In addition,
due to the model’s simplicity, any deviation from the two-
channel model is necessarily caused by the ac-channel.

III. MODEL DESCRIPTION

We consider spin-1 particles (i.e., total spin F = 1) with
spin projections mF = 1, 0,−1 which we label σ = a, b, c =
1, 2, 3, respectively (lowest three states in Fig. 1). In contrast
to other studies of few-body physics in a spinor gas [41,42],
we work at large magnetic fields (μBB � Ah f ) and with a
single, well-defined, entrance spin channel (the bb-channel).
The model is designed to capture resonant scattering and
associated loosely bound states. To this end, we assume,
in addition to atomic channels formed from σ = a, b, c, the
presence of diatomic molecular levels with energy detuning
Emol,σ . In cold-atom experiments, Emol,σ can be tuned via an
external magnetic field. For the closed molecular channels, the
index σ indicates the spin flavor not part of the molecule, and
has a spin projection of, e.g., M (σ=3)

F = m(σ=1)
F + m(σ=2)

F . We
are interested in the zero total-spin projection (Mtot = 0) two-
and three-body systems made up of these particles. Thus, in
the two-body sector there are two atomic channels (continua),
bb and ac, which are coupled via a single MF = 0 molecular
state (closed channel). For the energies of interest, the atomic

bb-(ac-)channel is open (closed). The three-body sector also
features two continua: bbb (open) and abc (closed). However,
a three-body bound state with Mtot = 0 can be composed from
a diatomic molecule and a supplementary particle in three
different ways: (1) a MF = 0 molecule with a mF = 0 atom,
(2) a MF = +1 molecule with a mF = −1 atom, and (3) a
MF = −1 molecule with a mF = 1 atom.

We proceed by writing the Hamiltonian of the system:

Ĥ = Ĥatom + Ĥmol + Ĥint. (1)

The atomic and molecular parts, which are the sum of all
three spin flavors, Ĥatom/mol = ∑

σ Ĥatom/mol,σ , include kinetic
energy and an energy detuning:

Ĥatom,σ =
∫

d3k

(2π )3

(
h̄2k2

2m
+ Eσ

)
â†

σ,�kâ
σ,�k, (2)

Ĥmol,σ =
∫

d3k

(2π )3

(
h̄2k2

4m
+ Emol,σ

)
d̂†

σ,�kd̂
σ,�k . (3)

Here â†
σ,�k (d̂†

σ,�k) creates an atom (a molecule) of type σ , mass
m (2m) and with energy detuning Eσ (Emol,σ ) and momentum
h̄�k. The molecular detuning Emol,σ is tunable and serves as a
surrogate for the magnetic field detuning from resonance. The
interaction has two parts:

Ĥint =
∑

σ

Ĥint,σ + Ĥint,22. (4)

The first takes two atoms different from σ and turns them into
a molecule of type σ or vice versa. Written explicitly for σ =
3 it is

Ĥint,3 = �3

∫
d3q

(2π )3

∫
d3k

(2π )3

× (
d̂†

3,�qâ1,�k+ �q
2
â2,−�k+ �q

2
+ â†

2,−�k+ �q
2

â†
1,�k+ �q

2

d̂3,�q
)
. (5)

The second part takes two σ = 2 atoms to create a σ = 2
molecule:

Ĥint,22 = �22

∫
d3q

(2π )3

∫
d3k

(2π )3

× (
d̂†

2,�qâ2,�k+ �q
2
â2,−�k+ �q

2
+ â†

2,−�k+ �q
2

â†
2,�k+ �q

2

d̂2,�q
)
. (6)

We stress that the molecule participating in Ĥint,22 is the same
as the one in Ĥint,2, namely, a molecule with MF = 0 spin
projection.

The Hamiltonian in Eq. (1) does not include scattering
within the bb- or ac-channel, given that they are often, and in
particular for 7Li, negligible with respect to the resonant scat-
tering considered here. An exception occurs if a zero-energy
resonance is present; see, e.g., Ref. [43,44]. Further, direct
bb-to-ac coupling is also not included. A spin exchange of this
sort is possible indirectly via the MF = 0 molecule and there-
fore resonantly enhanced around the Feshbach resonance. The
direct coupling is of the same form as background scattering
within either of the atomic channels and neglected here for the
sake of simplicity.

The Hamiltonian can be viewed as the amalgamation of a
homo- and heteronuclear version of the two-channel model,
where the synthesis is made by merging the homonuclear
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FIG. 5. Depiction of the three possible two-body sectors in F =
1. The upper illustration shows the bare states and their coupling
via Ĥint. Below the bare state energy-dependence on the parameter
controlling Emol,σ is illustrated.

molecule with the same-spin heteronuclear molecule. The
two models are slightly offset by a relative shift in energy.
For �σ = 0 (�22 = 0) the standard homo-(hetero-)nuclear
two-channel model is reobtained, allowing quantitative com-
parisons in what follows.

IV. TWO-BODY SECTOR

In the Mtot = 0 two-body sector, the most general two-body
wave function is

|ψ0〉 = β2d̂†
2,�q=0|0〉 +

∫
d3k

(2π )3
αac(�k)â†

3,�kâ†
1,−�k|0〉

+
∫

d3k

(2π )3
αbb(�k)â†

2,�kâ†
2,−�k|0〉, (7)

where we have chosen the center-of-mass reference frame.
As is the case in 7Li we choose the energy E22 = 2E2 of the
bb-channel to be lower than the energy E13 = E1 + E3 of the
ac-channel: E13 > E22. The three bare states are illustrated
in Fig. 5 together with the couplings induced by the Hamil-
tonian. The decoupled homo-(hetero-)nuclear wave function
|ψhom〉 (|ψhet〉) is given by plugging in αac = 0 (αbb = 0)
(Appendix A). In the Mtot = ±1 two-body sectors, |ψ+1〉 and
|ψ−1〉 are equivalent to |ψhet〉.

In the following we solve the Schrödinger equa-
tion Ĥ |ψ0〉 = E |ψ0〉 and obtain expressions for the scattering
properties and the associated bound state. Direct substitution
of Ĥ and |ψ0〉 into Ĥ |ψ0〉 = E |ψ0〉 leads to three coupled
equations, one for each bare state projection. The free par-
ticle amplitudes are of Lorentzian form [see Eq. (9) below]
and thus a three-dimensional integral over them diverges.
In order to avoid infinities, a high-momentum cutoff kcutoff

must be introduced, which we use to renormalize all of the
quantities appearing in Ĥ and |ψ0〉, such that they become
dimensionless. For example, the renormalized momentum k
is k̃ = k/kcutoff, the renormalized molecular amplitude β2 is
β̃2 = β2k3/2

cutoff and the renormalized coupling constants �σ,22

are �̃σ,22 = �σ,22k3/2
cutoff/Ecutoff, where Ecutoff = h̄2k2

cutoff/m is
the cutoff energy. Note that the atomic amplitudes αac,bb are
already dimensionless and hence do not need renormalizing.
After this step, kcutoff no longer appears in the coupled equa-
tions. Hernceforth, all dimensionless, renormalized quantities
are denoted by a tilde.

TABLE I. The first two rows list the parameters used for
Figs. 6–9. The last two rows are the obtained resonance positions
and strengths.

bb (22) ac (2) Homo- Hetero-

�̃ 1 1 1 1
Ẽthr 0 0.0004 0 0
Ẽres 0.1504 0.1524 0.1013 0.0507
R̃� 18.78 – 6.28 12.57

For demonstration, the various two-body observables are
considered using the parameters in Table I, and we compare
them to those of the homo- and heteronuclear case. We choose
the same coupling constants for all models, i.e., �̃22 = �̃2 =
�̃hom = �̃het, to keep the microscopic models identical and
thus allowing quantitative comparison. We note that, due to
Bose enhancement, the effective coupling of the homonuclear
case is

√
2 larger than in the heteronuclear case, leading

to the former resonance being broader (Appendix B). The
comparison between the Mtot = 0 model and the homonuclear
model is equivalent to comparing the 7Li bb- and aa-channel
observables.

A. Scattering properties

Here, for two atoms in the bb-channel with energy E =
E22 + E0, where E0 = h̄2k2

0/m > 0 is their relative kinetic
energy, we derive an expression for the elastic scattering
amplitude fbb←bb(k0). For E0 < E13 the ac-channel is closed,
and bb → bb is the only possible scattering event. However
for E0 � E13 an additional scattering process is energetically
allowed, namely, inelastic scattering bb → ac. Hence, the
elastic and inelastic scattering processes compete for incom-
ing kinetic energies above the ac threshold and fbb←bb(k0) is
reduced with respect to its two-channel model counterpart.
Moreover, if E0 � E13, the ac-channel qualifies as an entrance
channel, i.e., it is an energetically open channel. Two atoms
in the ac-channel with kinetic energy E0 − E13 can scatter
either elastically back into the ac-channel or inelastically to
the bb-channel. The most general incident state with kinetic
energy E0 � E13 is thus∣∣ψ (in)

0

〉 = α
(in)
bb â†

2,�k0
â†

2,−�k0
|0〉 + α(in)

ac â†
3,δ�k0

â†
1,−δ�k0

|0〉, (8)

where E22 + h̄2k2
0/m = E13 + h̄2δk2

0/m with k0 = |�k0| and
δk0 = |δ�k0|, and the coefficients are normalized according to
|α(in)

bb |2 + |α(in)
ac |2 = 1. For 0 < E0 < E13 the ac-channel coef-

ficient α(in)
ac = 0 vanishes, such that α

(in)
bb = 1.

In order to find fbb←bb(k0) we use Ĥ |ψ0〉 = (E22 + E0)|ψ0〉
to write the bb and ac atomic channel amplitudes αbb(k̃) and
αac(k̃) in terms of the closed molecular amplitude β̃2:

αbb(k̃) = α
(in)
bb (2π )3δ(k̃ − k̃0) − �̃22β̃2

k̃2 − k̃2
0 − iη

, (9a)

αac(k̃) = α(in)
ac (2π )3δ

(
k̃ −

√
k̃2

0 − Ẽ
)

− �̃2β̃2

k̃2 − k̃2
0 + Ẽ − iη

, (9b)
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where Ẽ = Ẽ13 − Ẽ22 > 0 is the energy difference of the
two atomic channels, k̃0 = k0/kcutoff is the incident momen-
tum in the bb-channel, and η → 0+. From a scattering theory
perspective the δ function [45] represents an incoming plane
wave, and the second term is the scattered, spherically sym-
metric, wave [46]. For the waves in αbb the modulus of the k
vector is k̃0 such that both waves exist for any kinetic energy.

However, in the case of αac it is
√

k̃2
0 − Ẽ , which is real (i.e.,

the waves propagate) only if the kinetic energy k̃2
0 is equal or

larger than Ẽ . Further, the origin of the scattered wave is
twofold. Although all scattering events must go through the
molecule due to the connectivity defined by the Hamiltonian
(Fig. 5), the molecule can originate from either the bb or the
ac atomic channel. This is made clear by the form of the
molecular amplitude, which is given by

β̃2(k̃0) = − 1

D(k̃0)

[
2�̃22α

(in)
bb �(k̃0) +�̃2α

(in)
ac �(k̃0−

√
Ẽ )

]
,

(10)

where

D(k̃0) = (
Ẽmol,2 − Ẽ22 − k̃2

0

) − �̃2
2

2π2

(
1 − π

2

√
Ẽ − k̃2

0

)

− �̃2
22

π2

(
1 − i

π

2
k̃0

)
. (11)

The amplitude of the molecular channel is the sum of two
terms corresponding to the two origins. The Heaviside step
functions �(x) arise due to the two different continuum
thresholds and prevent an influx from the ac-channel if it is
closed. The factor 2 in the first term is due to Bose enhance-
ment. The scattering amplitude for elastic bb → bb scattering
is thus

f̃bb←bb(k̃0) = �̃2
22

2π

�(k̃0)

D(k̃0)
, (12)

where we have used the scattered wave from αbb and the
molecular amplitude term originating from the bb-channel.
Since the entrance channel is specified to be the bb-channel,
we have set α

(in)
bb = 1. To derive an expression for the ac →

ac elastic scattering amplitude we consider the kinetic en-
ergy δE0 = h̄2(δk0)2/m > 0 measured with respect to the
ac-threshold (the excess energy) and defined via E = E22 +
E + δE0 or k̃2

0 = Ẽ + δk̃2
0 . Taking the scattered wave from

αac and the molecular amplitude term originating from the
ac-channel we find

f̃ac←ac(δk̃0) = �̃2
2

4π

�(δk̃0)

D
(√

Ẽ + δk̃2
0

) , (13)

where α(in)
ac = 1.

As a first observable we extract the resonance position
Ẽres,i (i = {bb, ac, hom, het}), i.e., the value the bare molec-
ular energy Ẽmol,2 takes when the scattering length diverges
and the condition f̃ −1

i (k̃0 = 0) = 0 is satisfied (Table I).
For degenerate continua, i.e., for E13 = E22, the bb- and
ac-resonance positions are identical and equal to the sum
of the homo- and heteronuclear model. In this case, the
relative energy offset of the two two-channel subsystems
(homo- and heteronuclear) vanishes and the shifts from the

FIG. 6. E13 dependence. (a) The bb- and ac-resonance positions
are shown as a function of the energy splitting between the continua.
(b) The two possible ways to extract R�

bb are contrasted. The solid
line is Eq. (14). hom = homonuclear, het = heteronuclear.

bare resonance positions add linearly. For nonequal thresh-
olds the ac-resonance position increases linearly with |E13 −
E22|, while the bb-resonance decreases as ∼√

E13 − E22; see
Fig. 6(a). An energetically distant but equally coupled ac-
channel (�̃22 = �̃2 = 1) causes the bb-resonance to shift
below the homonuclear (�̃2 = 0) resonance. However, realis-
tically �̃2 should decrease with increasing |E13 − E22|, since
distant energy levels are coupled weaker. In the limit �̃2 → 0,
Ẽres,bb approaches the value of Ẽres,hom.

In the following, the resonance position Eres,bb is used to
shift the molecular energy axis such that the bb-resonance is
at the origin.

A contour plot of 0 � |k̃0 · f̃bb←bb(k̃0)|2 � 1, which is
equivalent to sin2 η [47], demonstrates the effect of the ac-
threshold embedded in the bb-continuum (Fig. 7). As in 7Li
(Fig. 2) we observe cusp behavior at the threshold. Compared
to the homonuclear two-channel model, the bb → bb (elastic)
scattering is decreased above the ac-threshold due to the in-
crease in bb → ac (inelastic) scattering (Fig. 8).

While the contour plots of Figs. 7 and 8 are instructive,
cold-atom experiments usually operate in the k0 → 0 limit.
In this case one may expand the scattering amplitude in pow-
ers of k0 and compare its coefficients to the effective range
expansion [ f̃bb←bb(k̃0)]−1 = −ã−1

bb − ik̃0 + r̃e,bbk̃2
0/2, thus ob-

taining expressions for the scattering length ãbb [Fig. 9(a)]
and effective range re,bb. The latter is related to the parameter
R�

bb = −re,bb/2, which is indicative of the narrowness of a
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FIG. 7. For E > 0, a contour plot of |k̃0 · ˜fbb(k̃0 )|2, as a func-
tion of the bare molecular energy Ẽmol (shifted to resonance) and
the kinetic energy Ẽ0 of two free particles is shown. The dimer
binding energy, which vanishes at resonance, is depicted for E < 0.
These Mtot = 0 model properties are directly comparable to the full
coupled-channel calculations of Fig. 2.

Feshbach resonance (Table I). In Fig. 9(a) we see that abb is
identical to ahom, i.e., its width in units of Emol is governed
by the bb-channel. However, the seemingly perfect overlap is
misleading because, in Fig. 9(a), we shifted both resonances
by their respective (different; see Table I) Eres,i. More im-
portantly, R�

bb > R�
hom, indicating that the bb resonance pole

strength [48] is increased by the proximity of the additional
ac-channel, even beyond R�

het. In fact,

R̃�
bb = 2π

�̃2
22

+ �̃2
2

4�̃2
22

1√
Ẽ13 − Ẽ22

(14)

is made up of two terms. The first is the contribution from the
bb-channel and identical to R̃�

hom. The second term is inversely
proportional to the square root of the energy difference. Thus,
the closer the two continua, the stronger the pole. We note
that in the limit �̃2 → 0, as well as in the limit Ẽ13 � Ẽ22,
R̃�

bb → R̃�
hom as expected.

Turning to the ac-threshold, the scattering length aac,
which is obtained from ãac = − f̃ac←ac(δk̃0 = 0), is complex
[Fig. 9(a)]. At the pole position, Re aac = 0 vanishes and
the modulus of Im aac experiences a maximum. Expanding
fac(k0) beyond the zeroth order is meaningless because the

FIG. 8. (a) Contour plot of |k̃0 · ˜fbb←bb(k̃0)|2, as in Fig. 7 but with
a logarithmic vertical scale. (b) For comparison, the two-channel
homonuclear case is shown. The color scales here and in Figs. 2 and
7 are identical.

FIG. 9. Two-body sector. (a) Plot of the scattering length ã as a
function of the bare molecular energy Ẽmol. The bb and ac curves are
shifted by Ẽres,bb and hom (het) by Ẽres,hom (Ẽres,het). The curves for bb
and hom overlap. (b) Plot of the dimer binding energy with respect to
the (lower) continuum threshold. (c) For the three models in (b) the
open and closed channels populations are contrasted.

linear term ∼k0 is not parameter independent as required by
the optical theorem.

B. Binding energy

Now we discuss the negative energy solution of the
Schrödinger equation, i.e., the binding energy of the Feshbach
dimer. One way of finding it is by looking for poles of the scat-
tering amplitude for k0 = iλ, λ > 0. Alternatively, one may
solve the Schrödinger equation with ED = E22 − h̄2λ2/m <

E22 which reduces to solving the following equation:

(Ẽmol,2 − Ẽ22 + λ̃2) − �̃2
2

2π2

(
1 − π

2

√
Ẽ + λ̃2

)

− �̃2
22

π2

(
1 − π

2
λ̃
)

= 0. (15)
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We note that solving the Schrödinger equation for ED =
E13 − h̄2λ2/m leads to a different solution for λ but the
same (observable) binding energy ED. The additional atomic
channel does not lead to an additional dimer but instead
gives the dimer a mixed bb and ac spin composition. (This
should be contrasted to the three-channel model with two
molecular channels [31].) Its numerical solution is com-
pared to the homo- and heteronuclear dimers in Fig. 9(b).
Interestingly, although we established above that the pres-
ence of the ac-channel increases the pole strength (larger
R�), the Mtot = 0 dimer is shallower than in the homonu-
clear model and its universal range, where ED ∼ a−2, is
increased. In fact, the functional form of the homonuclear
dimer describes the Mtot = 0 dimer with �̃ = 1.12 or R̃� =
4.364. We conclude that, counterintuitively, the addition of
the ac-channel increases the pole strength while also in-
creasing the universal range, a correlation that is usually
vice versa.

To illustrate this point in a more general setting, Fig. 6(b)
contrasts the value of R̃�

bb found by expanding the scattering
amplitude [Eq. (14)] to the value of R̃�

bb obtained from fitting
the Mtot = 0 dimer to the homonuclear dimer. While they
become equal at large continua separation, as they approach
degeneracy the two values grow apart. We note that R̃�

bb ex-
tracted from the dimer approaches R̃�

homR̃�
het/(R̃�

hom + R̃�
het ) for

E13 → E22 (Appendix C).
Some insight into this counterintuitive behavior may be

gained by looking at the populations in the atomic and molec-
ular channels. Given the dimer binding wave number λ > 0,
they are (Appendix E)

Pbb = 1

N

(
�̃2

22

8πλ̃

)
, (16a)

Pac = 1

N

(
�̃2

2

8π
√

Ẽ + λ̃2

)
, (16b)

Pmol = 1

N , (16c)

where

N = �̃2
22

8πλ̃
+ �̃2

2

8π
√

Ẽ + λ̃2
+ 1, (17)

for the bb, ac, and molecular channel, respectively. These
functions are plotted in Fig. 9(c). Far from resonance, the pop-
ulation of the ac-channel behaves like an atomic channel and
approaches zero, as the dimer adopts a predominantly closed
channel character. Close to resonance, the dimer becomes
bb-open-channel-dominated and the ac-channel population
also approaches zero. In between it experiences a maximum
as |ED − E22| ≈ |E13 − E22|. Compared to the open channel
populations of the homo- and heteronuclear models, the bb
population depletes faster, as expected from a stronger pole
(larger R�). However, the molecular channel population in-
creases at a slower rate than the closed channel in both the
homo- and heteronuclear models. This is in agreement with
the dimer’s binding energy being shallower. The missing pop-
ulation is of course found in the ac-channel. In other words,
the proximity of the ac-channel depletes the bb-channel faster
causing the bb-resonance to seem less open-channel domi-

FIG. 10. Depiction of the Mtot = 0 three-body sector. The illus-
tration on the left shows the bare states and their coupling via Ĥint.
To the right, the bare state energy dependence on the parameter
controlling Emol,σ is illustrated.

nated (i.e., narrower, larger R�). But from the point of view of
the dimer the atomic channel population is the sum Pbb + Pac

which implies that the resonance is more open-channel domi-
nated (i.e., larger universal range). It is this duality that gives
rise to the (unusual) correlation between the pole strength and
the universal range.

Contrasting the observables of the Mtot = 0 model to the
homonuclear model is reminiscent of the comparison of the
bb- and aa-channel in 7Li (see Fig. 4). We therefore conclude
that the nearby ac-channel is responsible for the observed dif-
ference. By fitting the model to the coupled-channel scattering
length and R� of 7Li, the three bare parameters of the model
(bare resonance position + two coupling constants) can be
found. However, quantitative agreement between the model
and the coupled-channel dimer is limited to small binding en-
ergies. We observe that the model predicts a less deeply bound
dimer (compared to coupled channels) for both channels. We
associate this discrepancy to the van der Waals tail of the real
interaction potential that is not captured by the model. We
do, however, faithfully reproduce the shallowing effect due to
ac-channel.

V. THREE-BODY SECTOR

In a system with three particles and total-spin projection
Mtot = 0 there are two possible spin configurations in the
continuum: bbb and abc [49]. Each pair (bb, ac, ab, bc) is
coupled to a molecule with a matching spin projection, and,
as discussed above, the bb and ac pairs are coupled via the
MF = 0 molecule. The latter is also the link between the two
three-body continua (Fig. 10). The most general three-body
wave function is

|ψ3B〉 =
∑

σ

∫
d3q

(2π )3
βσ (�q)d̂†

σ,�qâ†
σ,−�q|0〉

+
∫

d3q

(2π )3

∫
d3k

(2π )3
αbbb(�q, �k)â†

2,�k+ �q
2

â†
2,−�k+ �q

2

â†
2,−�q|0〉

+
∫

d3q

(2π )3

∫
d3k

(2π )3
αabc(�q, �k)â†

3,�k+ �q
2

â†
1,−�k+ �q

2

â†
2,−�q|0〉.

(18)

There are three decoupled two-body subsystems underlying
|ψ3B〉, namely, |ψ0〉 [Eq. (7)], |ψ+1〉, and |ψ−1〉 (Fig. 5). In the
three-body sector, these decoupled two-body systems become
coupled due to the common continuum (Appendix D).

Upon solving Ĥ |ψ3B〉 = E |ψ3B〉 with E = E222 − h̄2λ2/m
one obtains three coupled equations for the molecule-atom
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FIG. 11. Three-body sector. (a) Plot of the ground-state trimer
binding energy with respect to the dimer, as a function of the bare
MF = 0 molecule energy. The large difference between the homo-
and heteronuclear trimer is fully explained by Bose enhancement
(Appendix B). The positions from which the Efimov features in
Table II are extracted are indicated. (b) The populations in the various
open and closed channels are shown for the two- and three-body
sector of the bb + ac model. (c) The difference between the three-
and two-body populations are compared to those of the homonuclear
model.

amplitudes βσ (q) and the binding wave number λ:

[ fσ (q̃) − gσ (q̃)]β̃σ (q̃) − δσ,2g22(q̃)β̃2(q̃)

−
∑
σ ′ �=σ

∫ 1

0
dk̃Lσ,σ ′ (q̃, k̃)β̃σ ′ (k̃)

− δσ,2

∫ 1

0
dk̃L22(q̃, k̃)β̃2(k̃) = 0. (19)

Here we have defined the functions

fσ (q̃) =
(

3q̃2

4
+ Ẽσ + Ẽmol,σ − Ẽ222 + λ̃2

)
, (20a)

TABLE II. Top: Parameters used for Fig. 11. Ẽthr denotes the
continuum threshold energy. Bottom: Values of various features of
the ground-state Efimov trimer; see Fig. 11(a).

Parameters

Channel bb ac ab/bc
σ 22 2 3/1
�̃ 1 1 1
Ẽthr 0 0.0004 0.0002
Ẽmol − Ẽres Vary – −0.0008
ã Vary – 100

Features

Mtot = 0 Homo- Hetero-

ã� 2.88 2.88 5.77
R�/a� 6.53 2.18 2.18
ã− −37.89 −69.2 −137.2
R�/a− −0.496 −0.091 −0.091
κ̃� 0.0199 0.0187 0.0094
R�κ� 0.374 0.118 0.118

gσ (q̃) = �̃2
1

2π2

(
1−π

2

√
3q̃2

4
+ Ẽ123 − Ẽ222 + λ̃2

)
, (20b)

g22(q̃) = �̃2
22

π2

(
1 − π

2

√
3q̃2

4
+ λ̃2

)
, (20c)

Lσ,σ ′ (q̃, k̃) = �̃σ �̃σ ′

4π2

× ln

(
k̃2 + k̃q̃ + q̃2 + Ẽ123 − Ẽ222 + λ̃2

k̃2 − k̃q̃ + q̃2 + Ẽ123 − Ẽ222 + λ̃2

)
,

(20d)

L22(q̃, k̃) = �̃2
22

π2
ln

(
k̃2 + k̃q̃ + q̃2 + λ̃2

k̃2 − k̃q̃ + q̃2 + λ̃2

)
. (20e)

To make the numerical computation of Eqs. (19) more re-
source effective we set the parameters of σ = 1 and σ = 3
to be equal, i.e., β1 = β3, �1 = �3, E1 = E3 and Emol,1 =
Emol,3. This way the three equations in (19) reduce to two (one
for σ = 2 and one for σ = 1). In addition we fix the value of
Emol,1 and vary only Emol = Emol,2 as we track the binding
energy across the Feshbach resonance. In Fig. 11(a) we show
the spectrum of the ground-state trimer, using the parameters
in Table II, and we compare it to the homo- and heteronuclear
model. In Table II we also extract the usual features of the
spectrum, namely, the merging point with the dimer-atom
continuum (a�), the dissociation into the bbb continuum (a−)
and the binding wave number at resonance κ�. The results of
the two-body sector are used to obtain scattering length values
from Ẽmol. We further normalize the features with respect to
R�, such that the high-momentum cutoff cancels and quantita-
tive comparison to experiments is made possible.

The slope near a− is smaller than in the two-channel mod-
els. This, however, is an artifact of varying only Emol,2 while
keeping the others constant. The same phenomenon is also
observed in the pure heteronuclear model.
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When comparing the Mtot = 0 spectrum with that of the
homonuclear two-channel model the impact of the ac-channel
is apparent. Although the extreme points of the spectra
(almost) overlap, the trimer formed under near-degenerate
continua is bound less deep at its maximum. Thus, the func-
tional form of the spectrum is altered by the presence of the
ac-channel which suggests that care should be taken in the
interpretation of some of the experimental results. For almost
two decades, the majority of Efimov-related measurements
were conducted at the free atom or atom-dimer threshold
with the goal of proving (or disproving) universality. The
comparison in Fig. 11(a) shows that the extreme points at
their respective continuum thresholds might not suffice to
characterize the energy level.

The model is presented here in terms of microscopic pa-
rameters such as the coupling constants between the continua
and the bare molecules. When dealing with Feshbach reso-
nances in a cold atom experiment one uses observables, such
as the resonance width B and the R� parameter, to char-
acterize the observed behavior. For this reason, the Efimov
features are shown in units of R� in Table II. We note that
this normalization equates the homo- and heteronuclear model
because the Bose enhancement cancels. To demonstrate the
consequence of the ac-channel consider a given resonance
(given R�). If there is no ac-channel one expects the merger
with the dimer-atom continuum to be at a�,hom = R�/2.18
[50]. However, if one is aware of its presence one anticipates
a� = R�/6.53 < a�,hom to be a factor ∼3 lower (for the param-
eters in Table II).

As in the two-body sector, also here we can find the popula-
tions of the various three-atomic and molecule-atom channels
to explore the spin composition of the trimer (Appendix F).
The obtained expressions are accurate in the limit of small
population in the σ = 1 and 3 molecular channel with respect
to the σ = 2 population. This approximation breaks down for
Emol � Eres, where the latter decreases and approaches 0 at
a−. In fact, at a− we expect the bbb-channel population to
approach unity while all others vanish. In Fig. 11(b), where
the populations are plotted for the ground-state trimer to-
gether with the two-body dimer populations, this property is
not reproduced due to the approximation breaking down. At
a�, the trimer populations asymptotically approach the dimer
populations indicating the merger of the two energy levels:
the trimer dissociates into a dimer and an atom. This is also
shown in Fig. 11(c), where the difference between the three-
and two-body populations is plotted.

The three-body bbb (mol2|b) population is smaller (larger)
than the two-body bb (mol) population in the entire spec-
trum. The same is true in the homonuclear model. However,
comparison of the abc and ac populations reveals that,
as we move from a− to a�, the abc population is larger
(like a molecular channel), then crosses the ac popula-
tion, and finally approaches it from below (like an atomic
channel). Thus, close to the free atom (dimer-atom) thresh-
old the abc-channel behaves like a molecular (atomic)
channel.

Compared to the homonuclear model, the molecular chan-
nel of the Mtot = 0 model is less populated. As in the
two-body sector, this is in agreement with its binding energy
being smaller.

VI. IMPLICATIONS FOR 7Li TRIMER

Considering the special characteristics of the bb-channel
of 7Li, namely, overlapping resonances and near-degenerate
continua, this near-degenerate continua model and our previ-
ous overlapping-resonances model [31] encapsulate the main
contributions to the asymptotic scattering wave function. Both
are considerably better than the regular two-channel model
in the two-body sector and both predict slight alternations to
the three-body sector. However, none agree with the unusual
features of the trimer. Neither of these minimal models can
explain why the three-body parameter is universal despite the
resonance being narrow [22] or how the trimer crosses into
the dimer-atom continuum [27]. We conclude that the 7Li
trimer energy is affected in a major way by the short-range
details of the interaction potential whose treatment requires
more sophisticated theoretical approaches [26].

VII. CONCLUSION

We have presented a simple and straightforward, but at
the same time realistic and successful, model of resonant
interactions in the presence of a near-degenerate continuum.
The phenomenology of the two-body sector of 7Li is repro-
duced. Since the interaction potential of the model is hard
core (the simplest possible), quantitative agreement is limited.
Inclusion of more interaction potential details, such as the van
der Waals tail, should improve thereon; however, the physical
mechanism causing the behavior of the various observables is
clear. In particular, we have shown how a narrow resonance
can have an enlarged universal range and how the functional
form of the Efimov trimer is altered.

An interesting future aspect to explore is the many-body
physics. The extended universal range of the two-body sector
could work in favor of exploring universality near a narrow
resonance.

A similar configuration was found to be important for the
p-wave scattering of identical fermions in 40K polarized in the
b-state [51,52]
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APPENDIX A: HETERONUCLEAR
TWO-CHANNEL MODEL

The standard two-channel model (one open atomic and one
closed molecular channel) can be written for identical bosons
(homonuclear) or distinguishable particles (heteronuclear).
While the latter is usually applied to a fermionic mixture of
different spin states (6Li being a practical example [53]), it
may of course be used for any distinguishable particles, such
as different-spin bosons.
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The heteronuclear two-body wave function, written here
for σ = 3, is∣∣ψ (σ=3)

het

〉 = β3d̂†
3,�q=0|0〉 +

∫
d3k

(2π )3
α3(�k)â†

1,�k â†
2,−�k|0〉. (A1)

The Schrödinger equation Ĥ |ψ (σ=3)
het 〉 = E |ψ (σ=3)

het 〉, where Ĥ
is given in Eq. (1), leads to the following two coupled equa-
tions:

β3(Emol,3 − E ) + �3

∫
d3k

(2π )3
α3(�k) = 0, (A2a)

α3(�q)

(
h̄2q2

m
+ E12 − E

)
+ �3β3 = 0. (A2b)

The second equation shows that the free-particle amplitude
ασ (�q) is a Lorentzian of its argument �q, causing the integral
in the first equation to diverge linearly in | �q|. To deal with this
UV divergence, as mentioned in Sec. IV, a high-momentum
cutoff kcutoff is introduced. The Lorentzian form of ασ (�q)
agrees with the expected exponential in position space (halo
dimer).

In general, Eqs. (A2) lead to three equivalent equations in
the two-body sector due to the different coupling constants
�σ and molecular and atomic detunings Emol,σ and Eσ . If one
assumes, however, that �σ = �, Emol,σ = Emol, and Eσ = 0
for all σ , the equations of each sector become identical. The
scattering amplitude f̃ (k̃0) = −�̃β̃(k̃0)/4π is then given by

1

f̃ (k̃0)
= 4π

(
Ẽmol − k̃2

0

)
�̃2

− 2

π

[
1 − iπ

2
k̃0

]
, (A3)

and the dimer binding energy −λ̃2 is found by solving

(Ẽmol + λ̃2) − �̃2

2π2

(
1 − π

2
λ̃

)
= 0. (A4)

In the three-body sector one starts from

∣∣ψ (3B)
het

〉 =
∑

σ

∫
d3q

(2π )3
βσ (�q)d̂†

σ,�qâ†
σ,−�q|0〉 +

∫
d3q

(2π )3

×
∫

d3k

(2π )3
α(�q, �k)â†

3,�k+ �q
2

â†
1,−�k+ �q

2

â†
2,−�q|0〉, (A5)

which, in general, leads to three coupled integral equations.
Assuming the three two-body subsystems to be identical re-
duces them to a single equation:[

Ẽmol + 3q̃2

4
+ λ̃2 − �̃2

2π2

(
1 − π

2

√
3q̃2

4
+ λ̃2

)]
β̃(q̃)

− �̃2

2π2

∫ 1

0
dk̃ ln

(
k̃2 + k̃q̃ + q̃2 + λ̃2

k̃2 − k̃q̃ + q̃2 + λ̃2

)
β̃(k̃) = 0, (A6)

where the trimer binding energy is given by −λ̃2.
For the populations in the open and closed channels of the

two- and three-body sectors, see Appendix E.

APPENDIX B: CONTRASTING THE HOMO-
AND HETERONUCLEAR TWO-CHANNEL MODELS

The derivation in the homo- and heteronuclear case
are equivalent. In particular, the identical two-body sectors

assumption is trivial for homonuclear systems. However,
when acting with the interaction Hamiltonian ∼d̂†ââ on the
free particle wave function ∼â†â†|0〉, the homonuclear model
allows for two paths for creating a molecule, while in the
heteronuclear model there is only one option. This effect is
known as Bose enhancement. The two- and three-body equa-
tions for the homonuclear model are thus obtained from the
heteronuclear equations above by substituting �̃ → √

2�̃.
Although Bose enhancement is usually discussed in the

context of many-body physics (e.g., the condensation of
bosons into a Bose-Einstein condensate), its effect is already
apparent at the two-body level and demonstrated beautifully
by comparing the homo- and heteronuclear two-channel mod-
els. From the above discussion we see that, if �̃het = �̃, then
�̃hom = √

2�̃, i.e., the effective coupling between the open
channel and the closed channel is a factor

√
2 larger for identi-

cal bosons. The stronger coupling leads to a broader Feshbach
resonance, as compared to the heteronuclear model, with all
of its characteristics: larger shift from the bare resonance,
smaller R�, shallower dimer, and slower population increase
(decrease) of the closed (open) channel when moving away
from resonance.

In the three-body sector, the larger effective coupling leads
to a deeper bound trimer and merging features that are far-
ther away from resonance. In fact, if one rescales both axes
for the heteronuclear trimer in Fig. 11(a) by a factor of
(R̃�

het/R̃�
hom)2 = 4, the two traces are identical.

APPENDIX C: DEGENERACY LIMIT OF R̃�
bb FROM ED

In the main text we noted that, in the limit E13 →
E22, the value of R̃�

bb extracted from the dimer approaches
R̃�

homR̃�
het/(R̃�

hom + R̃�
het ).

To derive this limit we start from Eq. (15) for the dimer
binding energy and plug in E13 = E22. Using R̃�

hom = 2π/�̃2
22

and R̃�
het = 4π/�̃2

2 one obtains

(Ẽmol,2 − Ẽ22 + λ̃2) − 2

π

(
1

R̃�
hom

+ 1

R̃�
het

)(
1 − π

2
λ̃
)

= 0.

(C1)

Comparison with Eq. (A4) leads to the aforementioned ex-
pression for R̃�

bb.

APPENDIX D: FROM THE TWO- TO THE
THREE-BODY SECTOR

In the main text we noted that |ψ3B〉 in Eq. (18) has three
different, uncoupled two-body subsystems, as illustrated in
Fig. 5. In fact, this effect is true also for the heteronuclear two-
channel model, whose three-body wave function, Eq. (A5),
has three two-body subsystems of the form of Eq. (A1). To
illustrate how to go from the two- to the three-body wave
function we introduce the operator

Ôσ=3(�q) = β3(�q)d̂†
3,�q +

∫
d3k

(2π )3
α3(�q, �k)â†

1,�k+ �q
2

â†
2,−�k+ �q

2

,

(D1)
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with which Eq. (A1) can be written as∣∣ψ (σ )
het

〉 = Ôσ (�q = 0)|0〉. (D2)

The operator Ôσ (�q) creates a two-body system of type σ with
center-of-mass momentum h̄�q. We add a particle of type σ

and with momentum −h̄�q to |ψ (σ )
het 〉 and sum over σ = 1, 2, 3

to obtain

∣∣ψ (3B)
het

〉 =
∑

σ

∫
d3q

(2π )3
Ôσ (�q)â†

σ,−�q|0〉. (D3)

Comparing this expression to Eq. (A5) shows that the βσ am-
plitudes are the same in the two- and three-body sector, while
the two-body ασ amplitudes are related to the three-body α

amplitude via

α(�q, �k) = α1

(
�k − �q

2
,− �k

2
− 3�q

4

)
+ α2(�q, �k)

+ α3

(
−�k − �q

2
,− �k

2
+ 3�q

4

)
. (D4)

In the homonuclear case the identity of the open channel
atoms renders the σ index redundant, leading to the conclu-
sion that the three-body α-amplitude is equal to its two-body
counterpart with finite center-of-mass momentum.

APPENDIX E: OPEN AND CLOSED CHANNEL
POPULATIONS IN THE HOMO- AND

HETERONUCLEAR MODEL

We present expressions for the populations of the open
and closed channels in the two- and three-body sector of the
heteronuclear model using the equal two-body sector assump-
tion.

In the two-body sector the population of the open and
closed channels for the dimer is

Popen = 1

N

∫
d3k

(2π )3
|α(�k)|2, (E1a)

Pclosed = 1

N |β|2, (E1b)

where

N =
∫

d3k

(2π )3
|α(�k)|2 + |β|2. (E2)

Using the second equation in (A2) one replaces α(�k) for β,
which conveniently cancels, to obtain

Popen = 1

N

(
�̃2

8πλ̃

)
, (E3a)

Pclosed = 1

N , (E3b)

and

N = �̃2

8πλ̃
+ 1. (E4)

In the three-body sector, similar to the two-body sector, the
populations for the trimer are

Popen = 1

N

∫
d3q

(2π )3

∫
d3k

(2π )3
|α(�q, �k)|2, (E5a)

Pclosed = 1

N

∫
d3q

(2π )3
|β(�q)|2, (E5b)

and N is the appropriate normalization factor (the sum of
both integrals). The free-particle amplitude α(�q, �k) is ex-
pressed in terms of the molecule-atom amplitude β(�q) via the
Schrödinger equation upon which the integral over �k can be
solved. The open channel population thus simplifies to

Popen = �̃2

8πN

∫
d3q̃

(2π )3

|β(q̃)|2√
3q̃2/4 + λ̃2

. (E6)

Having found the trimer binding wave number and its wave
function from Eq. (A6), the populations may be computed.

In contrast to the equations presented in Appendix A, here
the homonuclear expressions are identical to those of the
heteronuclear model. However, when plotted as a function of
Emol they differ as described at the end of Appendix B, due to
the difference in binding energy.

APPENDIX F: DRIVATION OF THE OPEN- AND
CLOSED-CHANNEL POPULATIONS

IN THE THREE-BODY SECTOR

According to the three-body wave function in Eq. (18), the
open channel populations are (i = bbb, abc)

Pi = 1

N

∫
d3q

(2π )3

∫
d3k

(2π )3
|αi(�q, �k)|2, (F1)

and the closed channel populations are (σ = 1, 2, 3)

Pσ = 1

N

∫
d3q

(2π )3
|βσ (�q)|2. (F2)

The normalization constant N is found from
∑

i Pi +∑
σ Pσ = 1. From the solution of Eqs. (19) the binding wave

number λ and the eigenvectors βσ are obtained. The closed
channel populations are thus readily computed. For the open
channel populations we use the Schrödinger equations to ex-
press αi in terms of βσ , resulting in

Pbbb = 1

N

∫
d3q̃

(2π )3

∫
d3k̃

(2π )3

∣∣∣∣ �̃22β2(q̃)

k̃2 + 3q̃2/4 + λ̃2

∣∣∣∣
2

(F3)

for the bbb-open channel. Since β2(q̃) is k-independent the
integral over the latter may be computed, and we get

Pbbb = �̃2
22

8πN

∫
d3q̃

(2π )3

|β2(q̃)|2√
3q̃2/4 + λ̃2

. (F4)

For i = abc the substitution leads to

Pabc = 1

N

∫
d3q̃

(2π )3

∫
d3k̃

(2π )3

×
∣∣∣∣∣ �̃1β1

(�k − �q
2

) + �̃2β2
(
q̃
) + �̃3β3(�k + �q

2 )

k̃2 + 3q̃2/4 + Ẽ123 − Ẽ222 + λ̃2

∣∣∣∣∣
2

.

(F5)
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At this stage we make the simplifying assumption β1,3 �
β2, which is equivalent to P1,3 � P2, permitting integration
over k:

Pabc = �̃2
2

8πN

∫
d3q̃

(2π )3

|β2(q̃)|2√
3q̃2/4 + Ẽ123 − Ẽ222 + λ̃2

. (F6)

While the expressions for Pbbb and Pσ are exact, the expression
for Pabc is approximate. The approximation breaks down when
P1,3 ≈ P2, which is the case at Emol > Eres [see Figs. 11(b) and
11(c)]. The populations at a− are thus not captured well by the
expressions derived here.
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