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Supersolid is a special state of matter with both superfluid properties and spontaneous modulation of particle
density. In this paper we focus on the supersolid stripe phase realized in a spin-orbit-coupled Bose-Einstein con-
densate and explore the properties of a class of metastable supersolids. In particular, we study a one-dimensional
supersolid whose characteristic wave number k (magnitude of wave vector) deviates from k,,, i.e., the one in the
ground state. In other words, the period of density modulation is shorter or longer than the one in the ground state.
We find that this class of supersolids can still be stable if their wave numbers fall in the range k.; < k < k., with
two thresholds k.; and k.. Stripes with k outside this range suffer from dynamical instability with a complex
Bogoliubov excitation spectrum at long wavelength. Experimentally, these stripes with k different from k,, are
accessible by exciting the longitudinal spin dipole mode, resulting in temporal oscillation of the stripe period
as well as k. Within the mean-field Gross-Pitaevskii theory, we numerically confirm that for a large enough
amplitude of spin dipole oscillation, the stripe states become unstable through breaking periodicity, in qualitative
agreement with the existence of thresholds of & for stable stripes. Our work extends the concept of supersolid

and uncovers an unconventional class of metastable supersolids to explore.
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I. INTRODUCTION

Supersolid is an exotic state of matter, which features both
superfluid properties and spontaneous modulation of particle
density. Supersolids are characterized by two types of gapless
Goldstone modes, associated with spontaneous breaking of
U(1) gauge symmetry and spatial translation symmetry, re-
spectively. Previously, it had been long speculated that solid
‘He at low temperature could be a supersolid [1,2]; how-
ever, that idea was overturned by subsequent experiments
[3,4]. In recent years, this concept has stimulated renewed
interest among researchers due to significant progress made
in the community of cold atomic gases. Until now, there
have been three successful schemes to realize a supersolid,
i.e., the stripe phase of a spin-orbit-coupled Bose-Einstein
condensate (BEC) [5-11], a BEC coupled with modes of
two optical cavities [12], and recently in dipolar gas with a
roton excitation spectrum [13—19]. In addition, in spin-orbital
angular-momentum-coupled quantum gases, there are also in-
teresting supersolidlike stripe phases, i.e., the angular stripe
phase [20-22].

A supersolid in its ground state and its low-energy excita-
tions have been extensively studied, with particular attention
paid to the existence of two types of gapless Goldstone
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modes [16,23-26]. These studies considered the collective
excitations in the linear response regime, which reflects the
properties of a supersolid close to the ground state. In fact,
there are other classes of excited states of a supersolid. For
example, in the plane-wave phase of a spin-orbit-coupled
BEC, the wave vector does not necessarily coincide with the
one in the ground state, but instead can take values differ-
ent from the lowest-energy one. In particular, these states
correspond to an excited state carrying mass current and un-
der certain conditions they become a metastable superfluid
[27-29]. Analogously, for the stripe phase, one can also vary
the wave vector, or equivalently the period of the stripe, to re-
alize a supersolid in the excited state [see Figs. 1(a) and 1(b)].
This scenario is also experimentally relevant as the supersolid
prepared may not reach the ground state during the limited
observation time. Will these supersolids be metastable? If not,
what is the underlying instability mechanism? How can these
metastable supersolids be experimentally accessed? These are
the interesting questions we aim to answer in this paper.

To be specific, we focus on the supersolid realized in the
stripe phase of a spin-orbit-coupled BEC and consider a su-
persolid whose wave number k (magnitude of wave vector)
does not coincide with the one in the ground state, denoted
by k,,, but instead a supersolid with general k. We find that
nonlinear dispersion of the chemical potential with respect
to k can exhibit a loop structure. For k # k,,, the supersolid
is in the excited state and may not be stable. We study the
stability of a general stripe state by calculating its Bogoliubov
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FIG. 1. (a) Noninteracting dispersion of spin-orbit-coupled BEC at small 2. The black dots denote the momentum k,, of the plane wave in
the ground state. The green (blue) dots denote the momentum of plane waves with momentum k; < k,, (k, > k,,), whose interference results
in a stripe with period longer (shorter) than the one in the ground state, as illustrated by their density modulations in (b). (c) and (d) Nonlinear
dispersions of chemical potential n(k) determined by Eq. (3). (e) and (f) Dispersions of energy E (k) defined in Eq. (2) corresponding to
(c) and (d), respectively. The line color in (c)—(f) denotes the density contrast C, as shown by the color bar. The parameters are fig/k3 = 0.484,
figin/k3 = 0.44, and (c) and (e) 2/kZ = 0.09 and (a), (d), and (f) 2/k3 = 0.63, with 7 the average condensate density.

excitation spectrum and find that stripe states with k within the
range k.; < k < k., are metastable. When k falls outside this
range, the supersolid suffers from dynamical instability. These
stripes with k # k,, can be accessed by exciting the longitudi-
nal spin dipole mode of the stripe [30], and the thresholds of
k are related to the upper limit of the oscillation amplitude of
spin dipole mode.

The rest of this paper is organized as follows. In Sec. II
we formulate the spin-orbit-coupled BEC within mean-field
theory, numerically solve the wave function of the stripe state,
and calculate the nonlinear dispersion w(k) as a function of
wave number k. In Sec. III we calculate the excitation spec-
trum of the stripe phase with Bogoliubov theory, from which
we determine the stability condition of stripes and examine the
instability mechanism. In Sec. IV we demonstrate that stripes
with k # k, can be experimentally accessed by exciting the
spin dipole mode, and the stability condition of the stripe
obtained in Sec. III is related to the stability of the stripe in
response to the spin dipole mode excitation within the frame-
work of Gross-Pitaevskii theory. We summarize our results in
Sec. V.

II. NONLINEAR DISPERSION

Spin-orbit-coupled BECs with equal Rashba and Dressel-
haus types can be engineered by Raman coupling of two
internal atomic states, as first experimentally realized by Lin
et al. [31]. Assume that the Raman lasers introduce momen-
tum transfer in the x direction and the trap frequencies in
the y and z directions are high enough that the low-energy
degree of freedom of this system can be described by the one-

dimensional effective Hamiltonian with spin-orbit coupling

N , Q
Hy = S—(=id; — koo2)” + - 0u, (D
2m 2

where kj is the strength of spin-orbit coupling, €2 is the Ra-
man coupling strength, and Pauli matrices are defined in the
pseudospin-% Hilbert space. For simplicity, in the following
calculations, we set i = m = 1. Here k¢ and k(% are chosen as
the momentum and energy units, respectively. The dispersion
of this Hamiltonian has two branches, as shown in Fig. 1(a).

Now consider that Bose-Einstein condensation occurs in
this system and the two-component condensate can be de-
scribed by the mean-field energy functional [32]

* *\ LT kIJ
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Here W, (W) is the condensate wave function of the up
(down) pseudospin and g (g12) is the interaction strength be-
tween the same (different) spin species. The bare values of g
and gy, are related to the s-wave scattering lengths between
atoms of the same and different hyperfine states. For the ’Rb
atom, g and g, are very close [31], making the density con-
trast of the stripe state very low [32]. However, their difference
can be enhanced by various schemes, e.g., separating the two
components in a bilayer configuration [33].

It is predicted that the ground state of this model has
three phases, with the change of parameters such as Q/kg,
g, and gi» [32]. For atomic density below a critical value,
with the increase of ©2/k2, the ground state changes from the
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stripe phase to the plane-wave phase and then to the zero-
momentum phase. The stripe phase spontaneously breaks the
translation symmetry of the Hamiltonian and develops peri-
odic modulation of the atomic density, which is the focus of
this paper.

Minimizing the energy functional with respect to the spinor
wave function, one arrives at the stationary Gross-Pitaevskii
(GP) equation

Q
o) =% m)()
M( _ , 3)
vy (% Hy, v,
where  Hyp = (—idy — ko)?/2 + glW41|* + gi2| ¥, > and

Hll =(—zal+k0)2/2+g|\D¢|2+g12|\IJT|2 The wave
function of a general stripe characterized by & has the form

w 2L+1 u
o n inkx
G)- 2 G

n=—2L—1

where L is a positive integer and the spacing of integer n
is 2. Note that for the stripe phase, apart from an overall
phase factor, the coefficients satisfy the relation b, = a*, i.e.,
they are symmetric under the simultaneous operation of space
inversion and spin flip. Clearly, for the formation of periodic
density modulation, a couple of plane waves are enough (e.g.,
only two plane waves with opposite momenta are used in
the ansatz of Ref. [32]). Nevertheless, the eigenstates of the
nonlinear equations should in general contain infinitely many
plane waves because, e.g., starting from two plane waves
with opposite momenta, the mean-field interaction term will
become an effective periodic potential, which further induces
coupling between more plane waves whose momenta differ
by the reciprocal lattice vector (2k here). So, in principle, the
eigenstates should contain infinitely many plane waves similar
to Bloch waves in periodic potentials, although in realistic
calculations a finite cutoff L has to be taken. Plugging the
above expansion into the stationary GP equation, one arrives
at a set of nonlinear equations that the variables a,, b,, and
w satisfy. By solving the set of nonlinear equations, one can
simultaneously obtain the nonlinear dispersion, i.e., u as a
function of &, and also the coefficients a, and b,, of stripe wave
function.

Figure 1 shows the nonlinear dispersion of both the chem-
ical potential (k) and energy E(k). It is clear that, at an
optimal wave number k,,, the energy of the stripe state is the
lowest. Here k,, is close to the one determined in the nonin-
teracting model, i.e., k,, = kov' 1 — Q2 /4kg [32]. In addition,
k,, corresponds to an optimal period d,, of stripe density
modulation, and since the minimum wave number of the
stripe density is 2k,,, one obtains the relation d,, = 7 /k,,.
Away from k,,, the energy of the stripe state increases, and
a loop or swallowtail structure appears in pu(k) near k =0
for small €2, as shown in Fig. 1(c), similar to the plane-wave
case [34]. The density contrast of the stripe state, defined as
C= (nmax — Hmin )/(nmax + nmin), with Nmax (nmin) the local
density maximum (minimum), at different & is also indicated
by color. One can observe that stripes with small £ or a long
period have larger density contrast. Note that in this system,
to experimentally confirm the existence of a supersolid, a
direct measurement of the superfluid response is also required,

e.g., using the method in Ref. [35], besides the detection of
density modulation. We also find that the detailed structure of
dispersion (k) depends on the cutoff L, but the lower branch
of dispersion near k,, does not, which is the range of k we are
interested in.

Previous studies only considered the stripe state with this
optimal wave number k,. Here we loosen this constraint
and consider a general stripe with arbitrary k, corresponding
to the ground state or excited states depending on whether
k = k. For k > k,,, the stripe is effectively compressed with
shorter period; otherwise, it is stretched. Since for k # k,,
these stripes are in the excited state, it is natural to ask whether
or not these stripes are stable. In other words, does there exist
a metastable supersolid? This is the issue we will address in
the following section.

III. STABILITY OF SUPERSOLIDS

The stability of stripes in the excited state, or k # k,,, can
be examined by studying their Bogoliubov excitation spectra.
If the excitation spectrum at all excitation momenta is real and
non-negative, these stripes are stable; otherwise, they suffer
from Landau instability or dynamical instability [36].

We start from the time-dependent GP equation

O (W) _ (Hin 3 (%)
lat (\yl> N ( % H¢¢> "pl (5)

and study the stability of these stripe states with respect to
weak perturbations. Due to periodic modulation of the density,
the eigenmodes of perturbation take the form of Bloch waves

21
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where u] ) and v} ) are perturbation amplitudes for the
spin-up (-down) component and ¢ is the excitation mo-
mentum. Writing W, = W, + §W¥,, plugging W/ into the
time-dependent GP equation, and only retaining the linear
term of perturbation, one arrives at the Bogoliubov equa-
tion that u] ¥ and v! V) satisfy and obtains the excitation
spectrum &(q) as well.

The excitation spectra of stripes at different k are depicted
in Fig. 2. Due to periodic density modulation, the excitation
spectrum ¢(g) has a feature similar to the Bloch band of pe-
riodic potentials. For a stripe in the ground state, i.e., k = k,,
the excitation spectrum features two branches of real and
non-negative gapless excitations [see Fig. 2(d)], correspond-
ing to two Goldstone modes associated with spontaneous
breaking of U(1) gauge symmetry and translation symmetry
[23]. With the deviation of k from k,,, the lower branch of the
excitation spectrum becomes softer [Figs. 2(c) and 2(e)]. For
kei < k < ke, with k.; and k., the lower and upper threshold,
respectively, the feature of real and non-negative excitations
remains, which defines a metastable supersolid. When k <
ke or k > ke, the excitation spectrum becomes complex at
small ¢, signaling the dynamical instability of those stripes
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FIG. 2. (a) Dispersion u(k) with five characteristic momenta k, denoted by red dots. From left to right, they correspond to k in
(b)—(f). The dashed lines indicate the lower and upper thresholds of & of stable stripes. (b)—(f) Bogoliubov excitation spectra for stripes with
k/ky = 0.76,0.9,0.96, 1.04, 1.16 [denoted by red dots in (a)], corresponding to k < k.1, ki < k < ki, k = kiyy kyy < k < ko, and k > ke,
respectively. Excitation spectra in (c)—(e) are all real and non-negative. Dashed lines in (b) and (f) denote the imaginary parts of complex
excitation spectra. The other parameters are ig/k3 = 0.484, figi/k3 = 0.44, and Q/k3 = 0.59.

[Figs. 2(b) and 2(f)]. We find that the excitation spectrum
always turns complex starting from g — 0, indicating that
instability first appears in the long-wavelength excitation.
Note here that we do not find Landau instability or energetic
instability, i.e., real and negative excitations, and this seems
a common feature in various superfluids with counterflow
characteristic [37-39]. In addition, in practical calculations,
we have set L = 2 (six momenta in the summation) in the so-
lution of both the stripe wave function and excitation spectrum
and have checked that a larger L only introduces a negligible
difference.

Both k. and k., depend on the Raman coupling strength
and the interaction strengths g and gj,. Figure 3 shows the
change of two thresholds k.; and k., as functions of Q/kg
for two sets of interaction strengths. One can find that, in
both Figs. 3(a) and 3(b), k. and k., are getting closer to each
other with the increase of ©2/k2, when approaching the stripe
and plane-wave phase boundary [32]. In addition, k. and k.»
almost lie symmetrically on opposite sides of k,,. The range
of stable k becomes narrower, consistent with the expectation
that the stripe states are more susceptible to dynamical insta-
bility when approaching the phase boundary. A comparison
between Figs. 3(a) and 3(b) also shows that the larger ratio
g/g12 leads to a wider range of k of stable stripes.

IV. EXPERIMENTAL OBSERVATION

A stripe with k different from k,, can be accessed by ex-
citing the spin dipole mode of spin-orbit-coupled BEC, which
is associated with the temporal change of stripe period [30].

Analogously, to examine the stability of the plane-wave phase
in a spin-orbit-coupled BEC, it was previously proposed to
excite the dipole oscillation of the condensate, whose center-
of-mass momentum sweeps over a finite range around the
minimum of dispersion [29,40].

Here the spin dipole mode can be excited by first preparing
the stripe in the ground state with the perturbation —w?xyxo,
added to the Hamiltonian and then suddenly releasing the
perturbation and observing the temporal evolution of the stripe
wave function as well as oscillation of the density modulation
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FIG. 3. Change of upper and lower thresholds k., and k., with
respect to 2 denoted by lines with pink diamonds and blue circles, re-
spectively. The change of k,, is shown by the green line with squares
for comparison. Vertical orange dashed lines indicate the critical
value of €2, beyond which the stripe phase is not the ground state.
The critical Q is (a) 0.6473 and (b) 0.9123. The other parameters
are (a) fig/k? = 0.484 and 7ig;»/k? = 0.44 and (b) 7ig/k3 = 0.57 and
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FIG. 4. (a) Overall density at two moments specified in the
legend, for a small initial displacement xy = 2.5. The stripe has a
well-defined period and k in this case, with (b) momentum distri-
bution at wr /27 = 0.891. (c) Temporal oscillation of k. (d) Overall
density for a large initial x, = 25, with (e) its momentum distribution
at wt /2w = 1.273. The period and k of the stripe are not well defined
in this case. The momentum distribution is obtained by a Fourier
transform of the density, with momentum divided by 2 for com-
parison with k defined in this work. The trap frequency is w/k3 =
0.002. The other parameters are fig/k; = 0.484, figi»/k5 = 0.44, and
Q/k3 = 0.647, the same as in Fig. 3(a).

period or k [30]. Numerically, we first find the ground state
of the system with the perturbation —w?xgxo and a harmonic
trap V (x) = w’x?/2 by evolving the GP equation in imaginary
time. In this way, the spin-up or -down component of the stripe
is shifted in opposite directions in the ground state. Subse-
quently, at time ¢t = 0, the perturbation is released and the real
time evolution of stripe is obtained with the time-dependent
GP equation

ii(wT) — HTT % <q”T)7 (7
or\¥y § HyJ\W
where  Hyp = (—idy — ko)?/2 + glW4 > + g12| W, |* + V(x)
and H,| = (—idx +ko)*/2 + gl¥, |* + g2| W4 [* + V (x).
Figures 4(a) and 4(d) depict the overall density distribution
|W|? of the stripe at two different moments for two differ-
ent initial displacements xj. Also shown are the momentum
distribution obtained by a Fourier transform of the overall
density [Figs. 4(b) and 4(e)] and the oscillation of k£ with
time [Fig. 4(c)]. We find that, for a small initial displacement
Xo, the overall profile of the density remains similar and the
momentum distribution always features a peak centered at
k, = 0 and a pair of peaks centered at k, = +k associated with
stripe period, as shown in Figs. 4(a) and 4(b). In this case, the
stripe has well-defined periodicity and the oscillation ampli-
tude of k around k,, is small, lying within the stable regime in

Fig. 3(a) (see the orange dashed line within the stable range).
The oscillation behavior of k is consistent with recent studies
[30]. On the other hand, for large initial xy, the momen-
tum distribution develops multiple peaks centered at nonzero
momentum, which means the crucial feature of the stripe is
destroyed with no definite period, as shown in Figs. 4(d) and
4(e). This behavior qualitatively confirms our expectation that,
when the oscillation magnitude of k is large for large initial
Xp, the stripe can suffer from dynamical instability, with a
significant change in the feature of the density distribution.
So the stability region of k effectively corresponds to a limit
on the amplitude of the spin dipole oscillation. Note also
that the agreement here is qualitative, as there is a harmonic
trap included in the time evolution of the GP equation but
not present in the calculation of the Bogoliubov excitation
spectrum. The agreement should be better for a weaker trap
with harmonic-oscillator length a, much larger than the stripe
period.

V. CONCLUSION

In summary, we have studied the properties of a class of
metastable supersolid stripes in spin-orbit-coupled BECs. We
found that for a stripe with a general wave number k, the non-
linear dispersion (k) can exhibit a loop structure. In addition,
when the wave number k of stripes deviates from the one in
the ground state, supersolids can still be stable with respect to
low-energy excitations. There exist two thresholds k., and k.,
and for stripes with k.; < k < k., their Bogoliubov excitation
spectra are always real and non-negative. For stripes with k
outside this regime, the excitation spectrum at long wave-
length becomes complex, signaling the dynamical instability
of those stripes. We also point out that the thresholds of k
for stable stripes are related to the stability criteria of stripes
in response to spin dipole oscillation, which is accompanied
by temporal oscillation of k. For spin dipole oscillation of
large amplitude, the dramatic change in the feature of stripe
wave functions can be qualitatively explained by the instabil-
ity mechanism we propose here. With the recent experimental
progress on compressional oscillations in dipolar supersolids
[17], it will be interesting to explore similar stability proper-
ties there.

ACKNOWLEDGMENTS

W.-L.X., T.-T.L., and Q.Z. were supported by the Na-
tional Key Research and Development Program of China
(Grant No. 2022YFA1405304), the National Natural Science
Foundation of China (Grant No. 12004118), and the Guang-
dong Basic and Applied Basic Research Foundation (Grants
No. 2020A1515110228 and No. 2021A1515010212). L.C.
was supported by the National Natural Science Foundation
of China (Grant No. 12264061) and the Science Founda-
tion of Guizhou Science and Technology Department (Grant
No. QKHJZ[2021]033). Y.Z. was supported by the National
Natural Science Foundation of China through Grants No.
11974235 and No. 11774219.

053302-5



XIA, CHEN, LI, ZHANG, AND ZHU

PHYSICAL REVIEW A 107, 053302 (2023)

[11 E. Kim and M. H. W. Chan, Nature (London) 427, 225
(2004).

[2] E. Kim and M. H. W. Chan, Science 305, 1941 (2004).

[3] J. Day and J. Beamish, Nature (London) 450, 853 (2007).

[4] D. Y. Kim and M. H. W. Chan, Phys. Rev. Lett. 109, 155301
(2012).

[5] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett. 105,
160403 (2010).

[6] T.-L. Ho and S. Zhang, Phys. Rev. Lett. 107, 150403 (2011).

[7] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. C.
Top, A. O. Jamison, and W. Ketterle, Nature (London) 543, 91
(2017).

[8] X.-L. Chen, J. Wang, Y. Li, X.-J. Liu, and H. Hu, Phys. Rev. A
98, 013614 (2018).

[9] T. M. Bersano, J. Hou, S. Mossman, V. Gokhroo, X.-W. Luo,
K. Sun, C. Zhang, and P. Engels, Phys. Rev. A 99, 051602(R)
(2019).

[10] A. Putra, F. Salces-Carcoba, Y. Yue, S. Sugawa, and I. B.
Spielman, Phys. Rev. Lett. 124, 053605 (2020).

[11] J. Sanchez-Baena, J. Boronat, and F. Mazzanti, Phys. Rev. A
101, 043602 (2020).

[12] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T.
Donner, Nature (London) 543, 87 (2017).

[13] L. Tanzi, E. Lucioni, F. Fama, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Phys. Rev.
Lett. 122, 130405 (2019).

[14] F. Bottcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T.
Langen, and T. Pfau, Phys. Rev. X 9, 011051 (2019).

[15] L. Chomaz, D. Petter, P. Ilzhofer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen, M. J. Mark, and F. Ferlaino, Phys. Rev. X 9, 021012
(2019).

[16] M. Guo, F. Béttcher, J. Hertkorn, J.-N. Schmidt, M. Wenzel,
H. P. Biichler, T. Langen, and T. Pfau, Nature (London) 574,
386 (2019).

[17] L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Fama, A. Fioretti, C.
Gabbanini, G. Modugno, A. Recati, and S. Stringari, Nature
(London) 574, 382 (2019).

[18] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M. J.
Mark, R. N. Bisset, L. Santos, and F. Ferlaino, Nature (London)
596, 357 (2021).

[19] D. Petter, A. Patscheider, G. Natale, M. J. Mark, M. A. Baranov,
R. van Bijnen, S. M. Roccuzzo, A. Recati, B. Blakie, D.

Baillie, L. Chomaz, and F. Ferlaino, Phys. Rev. A 104, L011302
(2021).

[20] X.-L. Chen, S.-G. Peng, P. Zou, X.-J. Liu, and H. Hu, Phys. Rev.
Res. 2, 033152 (2020).

[21] K.-J. Chen, F. Wu, J. Hu, and L. He, Phys. Rev. A 102, 013316
(2020).

[22] S.-G. Peng, K. Jiang, X.-L. Chen, K.-J. Chen, P. Zou, and L.
He, AAPPS Bull. 32, 36 (2022).

[23] Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari, Phys. Rev.
Lett. 110, 235302 (2013).

[24] G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J.
Mark, L. Chomaz, and F. Ferlaino, Phys. Rev. Lett. 123, 050402
(2019).

[25] G.-Q. Li, X.-W. Luo, J. Hou, and C. Zhang, Phys. Rev. A 104,
023311 (2021).

[26] K. T. Geier, G. I. Martone, P. Hauke, and S. Stringari, Phys.
Rev. Lett. 127, 115301 (2021).

[27] Q. Zhu, C. Zhang, and B. Wu, Europhys. Lett. 100, 50003
(2012).

[28] W. Zheng, Z.-Q. Yu, X. Cui, and H. Zhai, J. Phys. B 46, 134007
(2013).

[29] T. Ozawa, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 87,
063610 (2013).

[30] K. T. Geier, G. 1. Martone, P. Hauke, W. Ketterle, and S.
Stringari, Phys. Rev. Lett. 130, 156001 (2023).

[31] Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[32] Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 108,
225301 (2012).

[33] G. I. Martone, Y. Li, and S. Stringari, Phys. Rev. A 90,
041604(R) (2014).

[34] Y. Zhang, Z. Gui, and Y. Chen, Phys. Rev. A 99, 023616 (2019).

[35] R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P.
Chikkatur, and W. Ketterle, Phys. Rev. Lett. 85, 2228 (2000).

[36] B. Wu and Q. Niu, New J. Phys. 5, 104 (2003).

[37] C. K. Law, C. M. Chan, P. T. Leung, and M.-C. Chu, Phys. Rev.
A 63, 063612 (2001).

[38] S. Ishino, M. Tsubota, and H. Takeuchi, Phys. Rev. A 83,
063602 (2011).

[39] Q. Zhu, Q.-f. Sun, and B. Wu, Phys. Rev. A 91, 023633 (2015).

[40] J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan,
G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan,
Phys. Rev. Lett. 109, 115301 (2012).

053302-6


https://doi.org/10.1038/nature02220
https://doi.org/10.1126/science.1101501
https://doi.org/10.1038/nature06383
https://doi.org/10.1103/PhysRevLett.109.155301
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.107.150403
https://doi.org/10.1038/nature21431
https://doi.org/10.1103/PhysRevA.98.013614
https://doi.org/10.1103/PhysRevA.99.051602
https://doi.org/10.1103/PhysRevLett.124.053605
https://doi.org/10.1103/PhysRevA.101.043602
https://doi.org/10.1038/nature21067
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1038/s41586-019-1569-5
https://doi.org/10.1038/s41586-019-1568-6
https://doi.org/10.1038/s41586-021-03725-7
https://doi.org/10.1103/PhysRevA.104.L011302
https://doi.org/10.1103/PhysRevResearch.2.033152
https://doi.org/10.1103/PhysRevA.102.013316
https://doi.org/10.1007/s43673-022-00069-w
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevLett.123.050402
https://doi.org/10.1103/PhysRevA.104.023311
https://doi.org/10.1103/PhysRevLett.127.115301
https://doi.org/10.1209/0295-5075/100/50003
https://doi.org/10.1088/0953-4075/46/13/134007
https://doi.org/10.1103/PhysRevA.87.063610
https://doi.org/10.1103/PhysRevLett.130.156001
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRevLett.108.225301
https://doi.org/10.1103/PhysRevA.90.041604
https://doi.org/10.1103/PhysRevA.99.023616
https://doi.org/10.1103/PhysRevLett.85.2228
https://doi.org/10.1088/1367-2630/5/1/104
https://doi.org/10.1103/PhysRevA.63.063612
https://doi.org/10.1103/PhysRevA.83.063602
https://doi.org/10.1103/PhysRevA.91.023633
https://doi.org/10.1103/PhysRevLett.109.115301

