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Strong-field nonsequential double photoionization using virtual-detector
theory with path summation
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We present an ab initio study of the nonsequential strong-field ionization dynamics of a model two-electron
atom with helium character. Single- and double-ionization events are characterized and displayed using detector
signals extracted at different points in the two-electron two-dimensional space. The double photoelectron
momentum distribution is calculated via coherent path-summation over virtual-particle trajectories. A compar-
ison is made between the momentum distributions obtained with the virtual-detector method, the Schrödinger
wave function, and the time-dependent surface flux method developed by Tao and Scrinzi [New J. Phys. 14,
013021 (2012)]. Insights into different ionization and electron recollision pathways are gained from detailed
virtual-particle tracking and energy-time readouts. This study demonstrates the extension of virtual-detector
theory to strong-field multielectron quantum dynamics and highlights the importance of the evolving quantum
phase in quasiclassical electron propagation.

DOI: 10.1103/PhysRevA.107.053117

I. INTRODUCTION

Ionization is the necessary precursor to many strong-field
phenomena, including above-threshold ionization [1–7], non-
sequential multiple ionization [8–10], high-harmonic genera-
tion [11–14], and laser-induced electron rescattering [15,16].
Many aspects of the single-active-electron ionization process
are accessible theoretically on the basis of radiative per-
turbation theory and the strong-field approximation, or the
Keldysh-Faisal-Reiss theory [17–19] (see [20] for a recent
review). In this approach, the scattered electron + field system
is treated as a Volkov state [21], and the effect of the atomic
potential is included perturbatively.

Nonsequential multiple ionization [7] is characterized by
strong interelectron correlations that can promote cooperative
electron exit dynamics [8–10]. It is predominantly initiated
when the first electron tunnels through the field-suppressed
Coulombic barrier and, in the next field half cycle, is acceler-
ated and field driven back toward the nucleus. Exchange of
momentum with the residual bound electrons increases the
likelihood of excitation or tunnel ionization thereafter. The
result is an anomalous ionization yield that can greatly exceed
what is predicted by the sequential theory [22].

Due to the possibility of such interelectron correlations,
ab initio numerical methods are indispensable in laser-
atom interaction studies involving field intensities close to
or greater than the atomic unit I � 1016 W/cm2. For a
two-electron model atom, direct numerical integration of
the time-dependent Schrödinger equation (TDSE) in full
dimensions is the most accurate approach, but it is compu-
tationally expensive beyond three wave-function degrees of
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freedom [23,24] because the number of grid points in the
discretely sampled volume grows exponentially with each
added dimension. The development of ad hoc models to treat
the two-electron wave function in reduced dimensionality
is ongoing. For instance, in Ref. [25] a three-dimensional
coordinate system was introduced which accounts for inter-
electron correlations in full dimensionality while restricting
the center-of-mass motion to the field polarization axis. At-
tractive alternate schemes to TDSE integration include the
quantum trajectory method [26,27], which represents the
wave function as a collection of fluid elements obeying the
Madelung-Bohm quantum hydrodynamic equations [28,29],
and the classical ensemble method [30–32], which considers
a large collection of particles whose initial conditions and sta-
tistical properties are determined by the initial wave function.
Classical and semiclassical models are particularly useful for
performing trajectory analysis of specific features that appear
in the correlated photoelectron momentum distribution [33].

More recently, a hybrid quantum-classical approach known
as the virtual-detector method was initiated by Feuerstein
and Thumm [34] and has been extended to include virtual
particles [35,36] and their quantum phase information [37].
In the virtual-particle calculation, one introduces an enclosure
of purely numerical “detectors” around the region where the
TDSE is integrated. The exterior of the enclosure is relatively
far from the ionization inception, and the result of each de-
tection can be interpreted as the creation of a virtual particle
with calculated momentum and phase that carries information
about the quantum state (see Fig. 1). The motion of the virtual
particle is then described classically. In this way, the accuracy
of the fully quantum-mechanical solution on a grid close to
the atomic nucleus can be combined with the efficiency of
classical propagation beyond the enclosure, where additional
quantum effects are negligible.
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FIG. 1. Illustration of the numerical detection process, in which
a “virtual detector” extracts information from incident wave packets.

The use of the virtual-detector method has proven suc-
cessful in a variety of ways. Originally, it was developed to
extract photoelectron momentum data from outward-bound
wave packets at the computation domain boundary, similar to
the time-dependent surface flux method (tSURFF) [38–40],
which will be discussed in more detail in Sec. III C. However,
the virtual detectors can be placed in any region of interest
and have in the past been employed to extract key information
close to the atomic nucleus as well. For example, in analyzing
an ionization event independent of a tunneling assumption,
the virtual-detector method allows one to obtain centrally im-
portant features of ionization, including those associated with
the popular tunneling picture, such as the tunneling entrance
and exit positions and the electron’s effective tunneling rate
(see cautions by Ivanov et al. [41]; see also [42,43]). The
strong-field recollision scenario relies on determinations of
such quantities, which virtual detectors have been able, some-
times uniquely, to provide.

In this article, we extend the theory based on virtual de-
tection to two-electron atomic systems. The generalization to
three or more interacting electrons readily follows from our
reformulation of virtual-detector theory. For concreteness, we
demonstrate the calculation for a model helium atom and its
nonsequential ionization dynamics under strong-field irradia-
tion. We employ the aligned-electron approximation [44–46]
wherein the motion of each electron is constrained to the
field polarization axis. Thus, our two-dimensional system
consists of two one-dimensional electrons identified by their
positions (x1, x2) and momenta (p1, p2) on two such inde-
pendent polarization-aligned coordinates. A comparison will
be made between the photoelectron momentum distributions
calculated using the virtual-detector method, the Schrödinger
wave function, and the tSURFF method. Accordingly, the
TDSE integration volume in our calculation will be larger than
the virtual-detector boundary in order to retain the ionized
wave-function components for benchmarking.

The rest of this article is organized as follows. In Sec. II,
we review the numerical methods relevant to the calcula-
tion and discuss the two-electron extension of virtual-detector
theory. In Sec. III, we present and analyze the calculation
results of the evolving wave function, virtual-detector signals,
photoelectron momentum distributions, and virtual-particle

trajectories. In Sec. IV, we summarize and conclude this work.
Atomic units (a.u.) are employed except where indicated
otherwise.

II. METHOD

The virtual-detector method is a hybrid quantum-classical
approach. As such, the first step is to numerically integrate
the time-dependent Schrödinger equation i∂�/∂t = H� on a
discrete space-time mesh. In our case, this is accomplished
using the Peaceman-Rachford alternating-direction implicit
method [47,48] which interleaves Crank-Nicolson propaga-
tion in the two spatial dimensions:
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where Hn ≡ − 1
2 [∂2/∂x2

n − V (�x, t )] are sub-Hamiltonians,
with V (�x, t ) being the total potential energy. Scheme (1) prop-
agates the wave function forth one time-step interval δt with
a single-step error of O(δt3). It must be noted that it violates
unitarity depending on the degree of noncommutativity be-
tween H1 and H2. For the Hamiltonian considered in this work
(given below), we have verified that [H1, H2] ≈ 0 to within
numerical error, and therefore, unitarity is preserved well.

As the wave function �(�x, t ) evolves, virtual detectors
densely arranged along the enclosure net intercept it and per-
form nondestructive numerical detections at their respective
positions �xd for every calculation time step td . The features
extracted in the detection are the local phase, probability cur-
rent, and momentum:

φ0 = arctan(Im �/Re �)|(�xd ,td ), (2)

�j0 = i

2
(�∇�∗ − �∗∇�)|(�xd ,td ), (3)

�p0 = ∇φ ≡ �j0/ρ|(�xd ,td ), (4)

where ρ = |�|2 is the two-electron probability density. Since
the detectors generally lie between numerical grid points,
�(�x, t ) must be interpolated to each point �xd in these expres-
sions.

Equations (2)–(4) initiate a virtual particle at the space-
time point of detection (�xd , td ) with initial momentum �p0 and
a statistical weight w equal to the probability density ρ at
birth. Its subsequent motion is governed by Hamilton’s clas-
sical equations (d�x/dt = ∂H/∂ �p, d �p/dt = −∂H/∂�x), which
we integrate numerically using the fourth-order Runge-Kutta
method. Thus, the representation of outward-bound wave
packets is converted from a quantum wave to a classical
particle density description, and likewise, the Hamiltonian
changes from a quantum operator to a classical function as
the interpretation switches. The evolution of one virtual par-
ticle in (x1, x2) space represents the dynamical behavior of
two classical electrons, and its trajectory signifies a possible
two-electron ionization pathway from the ensemble of cases.
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Under irradiation by high-intensity, low-frequency, and/or
long-duration pulses, the spatial domain may not be able to
accommodate the Schrödinger wave function far from the
nucleus. Thus, at the domain boundary one typically em-
ploys a masking function or negative complex potential [49]
to numerically absorb ionized wave-function components. In
contrast, the virtual-particle description of the wave function
is not restricted to a grid. Moreover, virtual particles do not
interact (but the two electrons they represent interact pair-
wise), so their time evolution also offers the advantage of
computation in parallel.

The Hamiltonian

H (�x, �p, t ) =
2∑

n=1

[
1

2
p2

n − Z0V (xn)

]

+ V (x1 − x2) + (x1 + x2)E (t ) (5)

consists of electron-nuclear (e-n) and electron-electron
(e-e) screened Coulombic potentials of the form V (x) =
1/

√
x2 + σ 2 in addition to a length-gauge field interaction

term under the dipole approximation [44,45]. Here, Z0 is the
nuclear charge, E (t ) is the laser electric field, and σ is a
screening parameter. The nonzero value for σ controls the
1/x Coulombic singularity in V (x), and it also determines
the model atomic spectrum and ionization energy. It must
be noted that the model potential in Eq. (5) does not give a
correct second ionization threshold, such that the sequential
double-ionization yield is unreasonably large. This discrep-
ancy is important for comparing numerical calculations with
experimental results [50,51] (see Sec. III C).

A. Calculation parameters

We take Z0 = +2 and σ = 0.74 a.u. for a ground-state
energy of −2.902 a.u. (≈ −79 eV), corresponding closely to
that of helium. Figure 2(a) illustrates the spatial dependence
of the total atomic potential energy and includes the detector
box, which has a side length of 60 a.u. and consists of 500
detectors distributed uniformly along its perimeter. The sepa-
ration between neighboring detectors is chosen to be finer than
the spatial resolution of the discrete wave function, making the
enclosure effectively complete in the sense that probability
current density does not pass the detector box unregistered.
Figure 2(b) is a lineout for fixed x2 which illustrates the poten-
tial experienced by an electron when the other is 75 a.u. away
from the nucleus. Last, Fig. 2(c) shows part of the eigenenergy
spectrum of this model atom.

The wavelength of the field is 780 nm (frequency ω =
0.0584 a.u.), and its peak intensity is 0.5 PW/cm2 (ampli-
tude E0 = 0.119 a.u.). These parameters correspond to the
so-called nonsequential double-ionization “knee” regime in
helium, where the e-e correlation strength is enhanced [22,52],
and to the most commonly used Ti:sapphire laser wavelength.
We take the temporal profile of the laser pulse amplitude to be
trapezoidal with a six-cycle plateau period and a two-cycle
linear turn on and turn off, equaling a total pulse duration
of 26 fs [the duration of one optical cycle (o.c.) is 2π/ω =
2.6 fs].

FIG. 2. (a) Potential-energy map of the model two-electron atom
with the virtual-detector box overlaid. One-dimensional interaction
potentials are obtained from lineouts parallel to the coordinate axes
x̂1/x̂2 as in (b). The 20 lowest eigenenergies of this model atom’s
spectrum are displayed in (c).

III. RESULTS

A. Wave-function dynamics

In this coordinate representation, the two-electron wave
function is attracted to the x1 and x2 axes by the nuclear
potential, and it is repelled away from the x1 = x2 diagonal
due to interelectron repulsion (see Fig. 2). With every half
cycle, the field tilts the total potential experienced by both
electrons, energetically raising or lowering it toward either the
positive or negative side of their axes. The four quadrants of
the position space are readily understood: population in the
x1x2 > 0 regions signifies a nonzero probability of detecting
both electrons on the same side of the nucleus, with the
converse for population in the x1x2 < 0 regions. Additionally,
a near-axis population far from the origin indicates that one
electron is bound while the other is well ionized.

A time sequence of the 2e probability density ρ(�x, t ) is
shown in Fig. 3. Here, one observes the formation of double-
ionization (DI) jets every half cycle, corresponding to the
ejection of both electrons in the same direction x1x2 > 0.
Alternatively, probability density develops in the x1x2 < 0
quadrants primarily due to sequential field ionization, i.e., to
the electrons tunneling in opposite directions during opposite
field half cycles. The subsequent dynamics can be understood
from the trajectory evolution of virtual particles. Consider the
four particles shown in Fig. 3 to be born at td = 3 (1/8) o.c.
around �xd = (15,−30) a.u., all of which represent sequen-
tially ionized electron pairs. As the field reverses direction,
the trajectories illustrate how the first electron is driven back
toward the origin, after which it scatters off the nuclear po-
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FIG. 3. Snapshots of the two-electron probability density log10 ρ(�x, t ). White arrow: instantaneous laser electric force vector −(x̂1 +
x̂2)E (t ). Yellow arrows: direction of probability current flow on the axis. The trajectories of four virtual particles initiated at 3 (1/8) o.c. are
shown, which subsequently follow the stream of probability current.

tential and contributes to the double-ionizing jet population.
This reveals that double-ionization jets are not formed solely
because of both electrons tunneling out in the same laser half
cycle. It is important to note how the virtual particles closely
mimic the wave-function probability density despite evolving
according to a classical equation of motion.

B. Virtual-detector signals

The virtual-detector signals also provide insight into the
ionization process, particularly regarding the timing of events.
In Fig. 4(a), the readouts of axial probability current j1(t ) =
�j(t ) · x̂1 from the left- and right-most detectors at �xd =
(±30, 0) a.u. are provided. With each laser half cycle, prob-
ability current signals of comparable duration are registered
and they lag the field crest by ∼1/4 of a cycle. These axial,

FIG. 4. (a) Time series of the x̂1-directed probability current den-
sity measured 30 a.u. to the right (in blue) or left (in orange) of the
atomic core. (b) Time series of the x̂1 and x̂2 components of �j(t )
(in blue and orange, respectively) measured at the detection point
(30, 14) a.u. Dashed line: laser electric force profile.

inward-directed current signals are of particular relevance to
the recollision scenario of strong-field ionization because they
are associated with the virtual particles of bound-recolliding
electron pairs (their dynamical behavior will be analyzed in
what follows). In Fig. 4(b), the two components of �j(t ) are
provided for the detector at �xd = (30, 14) a.u., which accord-
ing to Fig. 3 is in the path of a double-ionization jet. In this
case, the probability current signal lags the electric-field crest
by ∼1/8 of a cycle.

The jn(t ) signals provided in Figs. 4(a) and 4(b) repre-
sent single- and double-ionization events, respectively, due
to their associated detection points in space. Comparing the
signal amplitudes, it is seen that the current density for single
ionization is approximately two orders of magnitude stronger
than that for double ionization. Last, the subcycle oscillations
in jn(t ) are due to spatiotemporal wave-function interference,
and the signals are modulated by the laser pulse profile in
addition to the depletion of the bound population over time.

C. Photoelectron momentum distribution

The 2e probability density exhibits a complex spatial inter-
ference structure arising from field-driven collisions between
different wave-packet components (as evidenced in Fig. 3).
The virtual-detector method captures this information by as-
sociating with each particle an initial phase, given by the local
wave-function phase at birth, and tracking its evolution [37].
This brings the quantum-classical correspondence between
the wave function and virtual-particle descriptions closer.

The phase calculation is based on the observation that the
quantum wave of a virtual particle may be approximated by a
Volkov state [20,21]:

�
V,�k (�x, t ) = (2π )−1 exp(i�k · �x) exp[−iS(t )], (6)

where �k is the wave vector and S(t ) = ∫
dt L is the action

integral of the Lagrangian L. In accordance with �
V,�k (�x, t ),
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the evolving virtual-particle phase is

φ(t ) = φ0 − �p(t ) · �x(t ) + S(t ), (7)

where φ0 is the initial phase from Eq. (2) and �p(t ) is the
instantaneous virtual-particle momentum. At the end of the
pulse, the photoelectron momentum distribution (PMD) is
calculated by binning the virtual-particle weights with their
path-integrated phase terms from Eq. (7):

W ( �p) =
∣∣∣∣∣

N∑
n=1

√
wn exp(iφn)

∣∣∣∣∣
2

, �pn ∈ [ �p, �p + δ �p ), (8)

where N is the total number of virtual particles and δ �p is the
vector of momentum bin widths. Virtual particles for which
either electron is still bound to the nucleus are omitted from
the summation to obtain the distribution of doubly ionized
electron pairs.

From the final position-space wave function �(�x), the
photoelectron momentum distribution can also be calculated
via Fourier transformation after applying a suitable masking
function M(�x) to filter the bound population:


( �p) = 1

2π

∫
d2x e−i �p·�x(M�)(�x). (9)

In this case, M(�x) is a cross-shaped Gaussian filter that
smoothly attenuates the bound population and all singly-
ionized wave packets within 50 a.u. of the axes. Further, a
cross-shaped momentum-space filter was applied to 
( �p) to
remove the population for which either photoelectron momen-
tum was low.

A third and related method of calculating the PMD is the
tSURFF method [38–40]. Briefly, it is based on time integrat-
ing the wave function as it passes through a surface in the far
field analogously to the virtual-detector box in Fig. 2. How-
ever, in this case the ionized wave packets are projected onto
Volkov states whose momenta correspond to the observation
values of interest. Under the aligned 2e model geometry con-
sidered here, the tSURFF momentum probability amplitude is
given by [40]

F ( �p) =
∫∫

Ri dt dϕ

×
{

r̂ · �∗
V, �p(�x, t )

[
�A(t ) − i

2
(∇ + i �p )

]
�(�x, t )

}∣∣∣∣
|�x|=Ri

,

(10)

wherein �A(t ) is the vector potential whose two components
are equal to − ∫

dt ′E (t ′), Ri is the surface integration radius,
and r̂ = (cos ϕ, sin ϕ) for ϕ = arctan(x2/x1).

In Fig. 5, the double photoelectron momentum distribu-
tions calculated using W ( �p), 
( �p), and F (p) are provided.
In Fig. 5(a), the phase-included half of W ( �p) (lower diagonal)
is sharper than its phase-omitted counterpart (upper diagonal),
and it reveals more of the speckled interference pattern exhib-
ited also by 
( �p). This calculation demonstrates one of the
key applications of the virtual-detector method; it is able to ef-
fectively encode ionized wave-packet information in the form
of virtual particles and accurately reproduce the far-field PMD
that would be obtained by full wave-function analysis. Fur-
thermore, it is advantageous for analyzing specific features in

FIG. 5. The double photoelectron momentum distribution cal-
culated using (a) 54 million virtual-electron pairs in W ( �p), (b) the
free-space wave function 
( �p), and (c) the time-dependent surface
flux amplitude F ( �p). The upper half of (a) illustrates the effect of
neglecting the virtual-particle phase.

the PMD via trajectory back-propagation. The virtual-particle
distribution is also in excellent qualitative agreement with
that obtained with the classical ensemble method in a similar
intensity and wavelength regime (see Fig. 3 in Ref. [53]).
However, the resolution is much finer in this case due to the
greater number of electron pairs that comprise the distribution,
which is on the order of 107 versus the 105 members used in
Ref. [53].

The tSURFF PMD in Fig. 5(c) was calculated using 103

surface points at Ri = 90 a.u. in Eq. (10), and the integration
time step was 0.1 a.u., which corresponds to approximately
103 evaluations per field cycle. In this case, we find that
the tSURFF PMD lacks many of the fine details contained
in the virtual-particle and Schrödinger wave-function PMDs,
but qualitatively, they share a similar overall structure. This
may be due in part to a failure in the Volkov approxima-
tion when the two electrons interact strongly. Additionally,
we have found that when the tSURFF and virtual-detector
parameters are set to be equal (equating the tSURFF inte-
gration radius with the detector box size, number of surface
points with number of detectors, and so on) the tSURFF PMD
does not accurately approximate 
( �p). This suggests that
the virtual-detector method can operate on generally smaller
TDSE integration volumes than the tSURFF method.

In calculations involving single-active-electron atoms, in-
terference rings appear in the PMDs whose radii are integer
multiples of

√
2ω [37]. Thus, they correspond energetically to

local maxima in the above-threshold ionization spectrum. In
the two-electron case, the e-e interaction further complicates
the energy transfer mechanisms in the atom-field system, and
the ripplelike pattern in Fig. 5 does not have a direct inter-
pretation. Furthermore, the maximum cutoffs in the PMDs
correspond approximately to 2 a.u. ≈ E0/ω, which is the mo-
mentum amplitude of a classical electron oscillating in a plane
electromagnetic wave.

To conclude this section, we remark on the similarities and
differences between the PMDs calculated in this work and
those obtained experimentally in Refs. [50,51], which employ
the cold-target recoil-ion-momentum spectroscopy [54,55]
coincidence technique. First of all, the characteristic V shape
in the p1 p2 > 0 quadrants in experimental data is accurately
reproduced by our numerical calculations, and the momentum
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

FIG. 6. (a1)–(d1) Energy-time evolution and (a2)–(d2) position-time evolution of representative virtual-electron pairs. The latter set is
overlaid on the 1D-projected evolving wave-function probability density log10 ρ(x, t ) shown in gray scale. Initially, electron 1 (in blue) is
ionized, while electron 2 (in red) is bound. Interelectron collisions appear as sharp cusps in energy, most prominently seen in the bound electron
curves. The four sets of panels show (a) nonsequential double ionization, (b) recollision excitation with subsequent ionization, (c) bound-
ionized electron swapping, and (d) failure to double ionize after multiple collisions.

magnitudes are in good agreement as well. The field in-
tensity and wavelength considered here are both closest to
that in Ref. [50], but both experimental studies suggest a
comparatively larger probability of measuring electron pairs
with longitudinal momenta p1 ≈ p2. This discrepancy may
be due to the model screened Coulomb potential used in
Eq. (5), whose incorrect second-ionization threshold leads to
an exaggerated sequential double-ionization yield, as noted
previously. This results in a greater fraction of the popula-
tion occupying the anticorrelated p1 p2 < 0 quadrants of the
PMD. Moreover, as discussed in Ref. [46], the Coulombic
repulsion in the aligned-electron model (characterized by the
diagonal band in the potential of Fig. 2) is exaggerated and
so tends to distort the double-ionization data as it prevents
the electrons from being ejected in the same direction with
similar momenta. Attempts have been made to resolve this
deficiency in the aligned-electron approximation, such as the
Eckhardt-Sacha model [56], which leads to more accurate
ionization yield and momentum distribution data [57–59].

D. Virtual-electron trajectories

Recall that a single virtual particle in this calculation repre-
sents an interacting pair of virtual electrons. A key advantage
of the virtual-detector method is that the dynamical variables
can be tracked in time, providing a classical view into the
ionization and e-e interaction processes that is similar to the
classical ensemble method and is reminiscent of alternate
formulations of Schrödinger’s theory such as Bohmian me-
chanics [29] and the Feynman path-integral approach [60].

In this calculation, there are ∼50 million virtual parti-
cles, equal to the product of the total number of detectors
and discrete time steps used. Figures 6(a1)–6(d1) show
the energy-time evolution of a few representative virtual-
electron pairs which undergo multiple collision events. In
Figs. 6(a2)–6(d2), their corresponding position-time trajec-

tories are shown overlaid on the one-dimensional projection
of the evolving wave-function probability density ρ(x, t ) =
|∫ dx′ �(x, x′, t )|2, which in this case is symmetric between
electrons x ↔ x′. Note once more how the virtual-electron
trajectories accurately mimic the wave function’s oscillatory
behavior.

Each virtual-electron pair considered here was initialized
at (x1, x2) = (−30, 0) a.u. a few time steps apart, beginning
around the fourth field cycle. According to Fig. 4(a) (orange
curve), the probability current at this position and time is
flowing in the positive direction toward the nucleus, which
signals an upcoming bound-free e-e collision. In all cases,
the first electron is ionized, while the second electron is
still bound. In Table I, the range of initial energies and mo-
menta of each virtual-electron pair is provided to convey their
proximity. However, their subsequent dynamical behavior is
significantly different, as evidenced in Fig. 6, revealing the
high degree of sensitivity of the interaction to the initial condi-
tions which are derived from the wave function. For instance,
Fig. 6(a) illustrates the process of nonsequential double ion-
ization [22,31,52], in which a series of energetically favorable
collisions occurring approximately every half cycle causes the
bound electron to emerge into the continuum. Figure 6(b)
shows the related process of recollision excitation with sub-
sequent ionization [61], in which, following a collision event,
the bound electron occupies an excited intermediate state

TABLE I. The range of initial energies and momenta of the
virtual-electron pairs shown in Fig. 6.

Electron

1 2

Energy (a.u.) 2.13 ± 10−2 −2.67 ± 10−2

Momentum (a.u.) 2.07 ± 10−2 (−4.3 ± 0.2) × 10−2
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(in this case, between t ≈ 6 and 7 o.c.) from which it is later
field ionized.

Figure 6(c) illustrates a situation in which the bound and
ionized electrons swap following interaction, resulting in a
singly ionized atomic state. In this case, the first electron is
recaptured by the nucleus after colliding three times with the
second electron, which emerges in the continuum with more
than double the initial energy of the former. Last, Fig. 6(d)
shows multiple e-e collision events that, ultimately, fail to lib-
erate the bound electron. This suggests that double ionization
is more sensitive to the timing of energy transfers between the
electrons themselves and the electrons and the field than it is to
the overall number of collision events. Evidently, the diverse
range of correlated interelectron behavior can be interpreted
in a direct way using the virtual-detector method.

IV. CONCLUSION

We have demonstrated how the virtual-detector method
can be applied to probe the evolution of a two-electron
atom and its nonsequential ionization dynamics arising from

strong-field irradiation. The detector signals and virtual-
particle dynamical variables provide valuable insights into
the behaviors leading up to single- and double-ionization
events, and the electron trajectories accurately mimic the
wave-function evolution in space and time. Furthermore,
the virtual-particle momentum distribution including
path-integrated phase information agrees qualitatively with
the full quantum-mechanical solution based on numerical
integration of the time-dependent Schrödinger equation. Thus,
one can use the virtual-detector method to produce accurately
the momentum distribution that would be obtained by full
wave-function analysis on a comparatively large integration
volume. The possibility of applying the virtual-detector
method to elucidate other ionization-related processes may
be explored in the near future.
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