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Adiabatic theory of generation and rescattering of vortex electrons in strong-field ionization
by elliptically polarized pulses
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The adiabatic theory of strong-field ionization is extended to the specific configuration in which ionization
occurs from a vortex orbital in an axially symmetric target by an elliptically polarized pulse with small ellipticity
and the major axis of the polarization ellipse directed along the vortex axis of the initial state. Generation of
vortex electrons in the continuum, their propagation in the laser field, and subsequent rescattering on the
parent ion are described. Adiabatic asymptotics of the rescattering parts of the solution to the time-dependent
Schrödinger equation and the ionization amplitude are obtained. On the basis of these results, the factorization
formula giving the photoelectron momentum distribution (PEMD) in the vicinity of a backward rescattering
caustic is derived. Our interest in the present configuration stems from the fact that, because of the nonzero
ellipticity of the field, liberated vortex electrons arrive for rescattering with a nonzero impact parameter. The cor-
responding scattering amplitude generalizes the recently introduced vortex scattering amplitude characterizing
head-on vortex-target rescattering in the linear polarization case [O. I. Tolstikhin and T. Morishita, Phys. Rev.
A 99, 063415 (2019)]. Using the factorization formula, one can extract the absolute value of this generalized
scattering amplitude from the observable PEMD, which opens a new window for target structure imaging
in strong-field physics. The theory is illustrated by calculations for two atomic targets, He+(2p, m = 1) and
Xe(5p, m = 1). We show that in the case of the initial π orbital and nonzero ellipticity not only the absolute
values of two head-on scattering amplitudes with m = 0 and 1, but also their phase difference as functions of the
scattering angle can be extracted from the PEMD.
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I. INTRODUCTION

An electron liberated from an atom or a molecule by a
strong laser field returns to the parent ion and undergoes
rescattering [1]. The rescattered electron carries information
about the target structure, and this information is thus en-
coded in the observable photoelectron momentum distribution
(PEMD) [2]. Rescattering photoelectron spectroscopy aims at
extracting this information from the PEMD. In particular, a
fruitful approach enabling one to extract the differential cross
section (DCS) for elastic electron-parent ion collision was
proposed [3] and demonstrated [4–16]. This approach is based
on the observation that in the region of the photoelectron
momentum space dominated by rescattered photoelectrons the
PEMD factorizes into the DCS and a returning photoelectron
wave packet (RWP) [3,17–20]. The factorization formula for
the PEMD was derived and the explicit analytical expres-
sion for the RWP was obtained within the adiabatic theory
of strong-field ionization [21] in Ref. [22], which has ele-
vated the approach initiated in Ref. [3] to a quantitative level
[23–27].

Recently, the theory of Ref. [22] has been extended to
target structure imaging with vortex electrons [28]. In a vor-
tex state an electron has a nonzero projection of its orbital
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angular momentum on a given axis. Bound states in axially
symmetric potentials characterized by a nonzero magnetic
quantum number give an example of vortex states famil-
iar from atomic and molecular physics. Less familiar vortex
states of free electrons have attracted much attention in
recent years, reviews on the theory and applications of
such states can be found in Refs. [29–31]. Of particular
interest in the context of rescattering are papers devel-
oping the theory of collisions of vortex electrons with
atoms [32–36] and molecules [37]; see also a review ar-
ticle [38] and references therein. The interaction of free
vortex electrons with strong electromagnetic fields was con-
sidered in Refs. [39,40]. Vortex electrons in strong-field
physics, which involves their interaction with both the par-
ent ion and a laser field, were discussed theoretically [28,
41–51]. In experimental studies so far they were detected only
indirectly by observing effects due to vorticity of the initial
bound [52,53] and final continuum [54–56] states.

Returning to Ref. [28], the imaging procedure using vor-
tex electrons proposed therein is similar to that based on
rescattering of plane-wave electrons [22]. The factorization
formulas derived in Refs. [22,28] hold in the vicinity of a
backward rescattering caustic. Given the PEMD at the caustic
and knowing the RWP, one can extract the target-dependent
factor describing rescattering. In the plane-wave case, this
factor is the DCS given by the absolute value squared of
the usual scattering amplitude known from scattering theory
[57,58]. In the case of vortex rescattering, this factor is the
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absolute value squared of a generalized scattering amplitude.
In the configuration analyzed in Ref. [28], vortex electrons
are generated in strong-field ionization from an initial vortex
orbital by a laser field linearly polarized along its axis. In this
case the vortex axis is conserved in time and photoelectrons
undergo head-on vortex rescattering on the parent ion. The
scattering amplitude characterizing this process in the adia-
batic regime was introduced in Ref. [28]. The absolute value
of this amplitude can be extracted from the PEMD. Note that
while the DCS in principle can be measured independently in
collision experiments, the head-on vortex scattering amplitude
is accessible only through the imaging procedure discussed in
Ref. [28].

In this paper we further extend the theory of Refs. [22,28]
to the configuration in which strong-field ionization occurs
from a vortex orbital by an elliptically polarized laser pulse.
In contrast to the linear polarization case [28], in the case
of elliptic polarization liberated vortex electrons return for
rescattering with a nonzero impact parameter. The corre-
sponding scattering amplitude generalizes the head-on vortex
scattering amplitude introduced in Ref. [28]. This amplitude
is encoded in the PEMD. Our goal is to show that the target
structure information represented by this amplitude can be
extracted from the PEMD.

The paper is organized as follows. In Sec. II, we discuss
the specificity of the present configuration in the general
context of the adiabatic theory [21]. To describe strong-field
ionization from a vortex orbital by an ecliptically polarized
field the theory should be redeveloped. Tunneling ionization,
propagation, and rescattering stages of strong-field ionization
dynamics should be reconsidered. This is done in Secs. III–
V, respectively. Based on the results obtained, in Sec. VI
we derive the factorization formula for the present configu-
ration. In Sec. VII, we illustrate the theory by calculations
for two atomic targets, He+(2p, m = 1) and Xe(5p, m = 1).
Section VIII concludes the paper. A method to calculate vor-
tex scattering amplitudes for spherically symmetric potentials
is presented in the Appendix.

II. FORMULATION OF THE PROBLEM

Consider an electron interacting with a target potential
V (r) and a strong laser field F(t ). The time-dependent
Schrödinger equation describing the system in the dipole ap-
proximation and length gauge reads (atomic units are used
throughout)

i
∂ψ(r, t )

∂t
=

[
−1

2
� + V (r) + F(t )r

]
ψ(r, t ). (1)

The field is assumed to satisfy F(t → ±∞) = 0. The initial
condition for Eq. (1) is

ψ(r, t → −∞) = φ0(r)e−iE0t , (2)

where E0 < 0 and φ0(r) are the energy and wave function
of a bound state of the field-free target. The interaction with
the field causes ionization of the target. The amplitude of
ionization with photoelectron momentum k is given by

I (k) =
∫ [

ψ(−)
k (r)e−ik2t/2

]∗
ψ(r, t )dr|t→∞, (3)

where ψ(−)
k (r) is the out scattering state of the field-free target

with asymptotic momentum k normalized by 〈ψ(−)
k |ψ(−)

k′ 〉 =
(2π )3δ(k − k′) [57,58]. It defines the observable PEMD

P(k) = |I (k)|2. (4)

The evaluation and analysis of this function for different target
potentials and fields is one of the central problems in strong-
field physics [59].

The adiabatic theory developed in Ref. [21] amounts to the
asymptotic solution of this problem in the limit

ε → 0, (5)

where ε is the adiabatic parameter given by the ratio of
time scales characterizing electronic motion in the target and
variation of the field. For neutral targets in the ground state
(|E0| ∼ 0.5) and low-frequency laser pulses typically used in
strong-field physics (ω ∼ 0.057) this parameter can be esti-
mated as ε ∼ ω/|E0| ∼ 0.1, which belongs to the adiabatic
regime. In the adiabatic approximation the solution to Eq. (1)
can be presented in the form [21]

ψ(r, t ) = ψa(r, t ) + ψr (r, t ). (6)

The adiabatic part ψa(r, t ) of the wave function describes the
initial bound state distorted by the instantaneous laser field
F(t ) and adiabatically following its variation in time. Elec-
trons liberated from the target by tunneling through a barrier
formed by the target potential and the field are described by
the outgoing wave in the asymptotic part of ψa(r, t ). The
rescattering part ψr (r, t ) of the wave function describes lib-
erated electrons which after propagation driven by the field
return to the target for rescattering. The division of ψ(r, t )
into the adiabatic and rescattering parts is justified in the limit
(5) by the fact that the two terms in Eq. (6) have amplitudes
O(ε0) and O(ε3/2) and phases O(ε−1) and O(ε−3), respec-
tively. Equation (6) holds in the quasistationary zone whose
radius scales as O(ε−2). Substituting Eq. (6) into Eq. (3) gives

I (k) = Ia(k) + Ir (k). (7)

The adiabatic part Ia(k) of the ionization amplitude describes
direct electrons which do not interact with the target after tun-
neling. The rescattering part Ir (k) of the ionization amplitude
describes electrons which undergo rescattering before arriving
at the detector measuring the PEMD. Explicit formulas giving
the asymptotics of all the terms in Eqs. (6) and (7) in the
adiabatic regime (5) were obtained in Ref. [21].

The adiabatic theory applies to arbitrary potential, ini-
tial state, and polarization of the laser field. However, while
the asymptotics of the adiabatic parts ψa(r, t ) and Ia(k)
obtained in Ref. [21] are generally valid, the asymptotics of
the rescattering parts ψr (r, t ) and Ir (k) involve an additional
assumption which does not hold in certain specific situations.
Namely, the derivation in Ref. [21] assumes that an electron
arriving for rescattering is represented by a plane wave. But
this is not the case, e.g., for rescattering of vortex electrons
generated in the configuration analyzed in Ref. [28].

In this paper we consider a more general configuration. We
assume that the potential in Eq. (1) is axially symmetric about
the z axis of the laboratory coordinate frame and the initial
bound state in Eq. (2) has a nonzero projection M > 0 of the
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angular momentum on this axis,

V (r) = V (r⊥, z), φ0(r) = φ0(r⊥, z)eiMϕ, (8)

where r⊥ =
√

x2 + y2. In other words, we consider an atom or
a linear molecule aligned along the z axis treated in the single-
active-electron approximation. These two specifications are
consistent with Ref. [28]. The difference is in the polarization
of the laser field. In Ref. [28], the field was assumed to be
linearly polarized along the z axis. In this case, the projection
M is conserved in time and the problem admits a simplified
treatment. Here, we consider an elliptically polarized pulse,

F(t ) = F0 f (t )(ε sin ωt, 0, cos ωt ), (9)

characterized by the amplitude F0, frequency ω, ellipticity ε,
and envelope f (t ) > 0 satisfying max[ f (t )] = 1. We assume
that the ellipticity is small, ε 
 1. The relation between the
ellipticity and adiabatic parameters is specified by

ε = O(ε2). (10)

As shown below, pulses with such a small ellipticity are most
interesting from the experimental point of view since this is
the case where valuable information on rescattering of vortex
electrons is imprinted in the PEMD. The nonzero ellipticity
adds flexibility and significantly enriches the scheme of target
structure imaging with vortex electrons discussed in Ref. [28].
To extend the analysis of Ref. [28] to elliptically polarized
pulses we need to return to the general theory [21] and red-
erive the asymptotics of ψr (r, t ) and Ir (k) for the case of
vortex electrons. This problem is treated in Secs. III–V.

III. IONIZATION

In the adiabatic regime, ionization in a slowly varying laser
field F(t ) proceeds as if the field were static and equal to its
instantaneous value. The adiabatic part in Eq. (6) describing
tunneling ionization dynamics is given by [21]

ψa(r, t ) = φ(r; t )e−is(t ), (11)

where

s(t ) = E0t +
∫ t

−∞
[E (t ′) − E0] dt ′. (12)

Here E (t ) = E (F(t )) and φ(r; t ) = φ(r; F(t )) are expressed
in terms of the eigenvalue E (F) and eigenfunction φ(r; F) of
a Siegert state (SS) in a static electric field F satisfying the
stationary Schrödinger equation[− 1

2� + V (r) + Fr − E (F)
]
φ(r; F) = 0 (13)

supplemented by the regularity and outgoing-wave boundary
conditions [60]. The SS defining ψa(r, t ) is the solution to
Eq. (13) which coincides with the initial bound state as the
field is turned off,

E (F)|F→0 = E0, φ(r; F)|F→0 = φ0(r). (14)

According to Eq. (9), we are interested in fields of the form

F = F (sin β, 0, cos β ), (15)

where β = O(ε) is a small angle. In this section we ana-
lyze the dependence of the structure of the ionization flux
described by the outgoing wave in the asymptotic part of

φ(r; F) in the direction opposite to that of F on β, which is
needed for the following. We do this assuming that the field
F is sufficiently weak, so that the weak-field asymptotic the-
ory (WFAT) of tunneling ionization [61] applies.

Let us introduce a coordinate frame (x′, y′ = y, z′) rotated
with respect to the laboratory frame (x, y, z) by the angle β

clockwise in the (x, z) plane, so that the z′ axis is directed
along F. The ionization flux is described by the asymptotics
of the solution to Eq. (13) given by [60,61]

φ(r; F)|z′→−∞ =
∫

A(k⊥; β )eik⊥r′
⊥g(z′, k⊥)

dk⊥
(2π )2

, (16)

where r′
⊥ = (x′, y′) and z′ are functions of r defined by the

rotation, the function

g(z′, k⊥) = 1

|2Fz′|1/4
exp

[
iF 1/2|2z′|3/2

3
− i(κ2 + k2

⊥)|z′|1/2

(2F )1/2

]

(17)

represents a wave going away from the target in the direction
of −F, and A(k⊥; β ) is the transverse momentum distribution
(TMD) amplitude defining the structure of the ionization flux
in the plane (x′, y′) perpendicular to F. The appearance of κ =√

2|E0| in Eq. (17) in the weak-field case results from the first
of Eqs. (14). Within the WFAT, the TMD amplitude is given
by [61]

A(k⊥; β ) = 2iπ1/2

F 1/2

∑
ν

fν (β )φ(0)
ν

(
k2
⊥

F

)
eimϕk . (18)

Here k⊥ = k⊥(cos ϕk, sin ϕk ), ν = (nξ , m) enumerates ioniza-
tion channels identified by parabolic quantum numbers nξ =
0, 1, . . . and m = 0,±1, . . . , and

φ(0)
ν (ξ ) = κ

1/2(κξ )|m|/2e−κξ/2

√
nξ !

(nξ + |m|)!L(|m|)
nξ

(κξ ),

(19)

where L(α)
n (x) are the generalized Laguerre polynomials [62].

The partial ionization amplitudes fν (β ) in Eq. (18) are given
by [61]

fν (β ) = κ
1/2gν (β )

21/2

(
4κ

2

F

)β (0)
ν /κ

× exp

[
iπ

4
+ iπβ (0)

ν

κ

− κμ cos β − κ
3

3F

]
, (20)

where gν (β ) are the asymptotic coefficients characterizing
the initial state (we discuss them below), β (0)

ν = Z − κ[nξ +
(|m| + 1)/2], Z = −rV (r)|r→∞ is the Coulomb charge in the
asymptotic tail of the potential, and μ = −〈φ0|z|φ0〉 is the
dipole moment in the initial state. For |z′| → ∞, the integral
in Eq. (16) can be calculated using the saddle-point method.
We thus obtain

φ(r; F)|z′→−∞ = g(z′, 0)

|2πz′|1/2
exp

[
iF 1/2r′2

⊥
2|2z′|1/2

]

×
∑

ν

fν (β )φ(0)
ν

(
r′2
⊥

2|z′|
)

eimϕ′
, (21)

053114-3



KIRILL V. BAZAROV AND OLEG I. TOLSTIKHIN PHYSICAL REVIEW A 107, 053114 (2023)

where r′
⊥ = r′

⊥(cos ϕ′, sin ϕ′). This asymptotics holds in
the region r′

⊥ = O(|z′|1/2). The transverse structure of the
ionization flux is described by the sum factor in Eq. (21). Let
us discuss it in more detail.

The relative role of the different channels in the sum is
determined by the dependence of fν (β ) on F and β. First,
we note that the exponential factor in Eq. (20) has the same
absolute value for all channels, while the preexponential fac-
tor depends on F as F nξ +(|m|+1)/2. Thus in the weak-field case
channels with nξ > 0 are suppressed compared to the one with
nξ = 0 for the same m, and we neglect their contributions.
Consider channels ν = (0, m) with different m. On the one
hand, the preexponential factor in Eq. (20) decreases as |m|
grows, so it is sufficient to retain only channels with the
smallest |m| present in the sum. On the other hand, only a
few channels survive in the sum at small β. Indeed, the differ-
ence in the dependence on β originates from the asymptotic
coefficient g0m(β ). At β = 0, because of the symmetry of the
initial state, see Eq. (8), only one coefficient with m = M dif-
fers from zero. At small β, coefficients with m �= M become
nonzero, but their distribution in m still peaks at m = M. Let
us analyze this behavior by deriving g0M±1(β ).

Since the asymptotic coefficients g0m(β ) are a property of
the initial state and their dependence on β is caused by the
rotation of the coordinate frame (x, y, z) → (x′, y′, z′), it is
convenient to use the asymptotic form of φ0(r) in spherical
coordinates. In the laboratory frame we have

φ0(r)|r→∞ = rZ/κ−1e−κr
∞∑

l=M

ClYlM (θ, ϕ). (22)

The coefficient g0M (0) is given in terms of the coefficients Cl

by [61]

g0M (0) = 21−Z/κ

√
κ

M+1M!

∞∑
l=M

(−1)lClQ(l, M ), (23)

where

Q(l, m) = (−1)(|m|−m)/2

√
(2l + 1)(l + |m|)!

2(l − |m|)! . (24)

The rotation of Eq. (22) by an angle β about the y axis
can be performed in the standard way using Wigner rotation
matrices [63]. However, being interested only in small β, it is
easier to develop the expansion in β using the explicit relation
Ylm(θ, ϕ) = eiβ l̂yYlm(θ ′, ϕ′). In the first order we obtain

Ylm(θ, ϕ) =Ylm(θ ′, ϕ′) + β

2
R(l, m)Ylm+1(θ ′, ϕ′)

− β

2
R(l,−m)Ylm−1(θ ′, ϕ′) + O(β2), (25)

where R(l, m) = √
(l − m)(l + m + 1). Substituting this into

Eq. (22) and proceeding as in the derivation of Eq. (23) in
[61], for the leading-order channel m = M we obtain

g0M (β ) = g0M (0) + O(β2). (26)

For the next to the leading-order channels m = M ± 1 we find

g0M±1(β ) = ±2−Z/κβ√
κ

M±1+1(M ± 1)!

∞∑
l=M

(−1)lR(l,±M )

× ClQ(l, M ± 1) + O(β3). (27)

This shows that g0M±1(β ) = O(β1). By retaining higher-order
terms in Eq. (25), it can be shown that g0m(β ) = O(β |m−M|).
Thus, indeed, g0m(β ) quickly decay as |m − M| grows.

Summarizing the discussion, at small β it is sufficient to
retain in Eq. (21) only one channel ν = (0, M ) with f0M (β )
substituted by f0M = f0M (0). The result is

φ(r; F)|z′→−∞ = −iAM (F )

2π

F 1/2g(z′, 0)

|2z′|1/2

(
Fr′2

⊥
2|z′|

)M/2

× exp

[
iF 1/2r′2

⊥
2|2z′|1/2

− κr′2
⊥

4|z′|
]

eiMϕ′
, (28)

where

AM (F ) = e−iMϕk A(k⊥; 0)

kM
⊥

∣∣∣∣
k⊥→0

= 2iπ1/2 f0M√
M!

(
κ

F

)(M+1)/2

.

(29)

The function (28) describes a flux of electrons liberated from
the target and moving in the direction z′ → −∞ opposite to
that of F. The first term in the exponent accounts for the
fact that the wave front of the flux has a parabolic shape
[61], which leads to the appearance of an outgoing radial
flux in the plane (x′, y′). The second term in the exponent
defines the envelope of the flux in the transverse direction.
The factor r′M

⊥ eiMϕ′
defines the transverse structure of the

ionization flux and is of main interest here. One can see that
for M = 0 the liberated electrons are described by a locally
plane wave near the maximum of the envelope at r′

⊥ = 0. But
for M > 0 they are in a vortex state. This is obvious for β = 0,
which corresponds to the linear polarization case considered
in Ref. [28]. The present analysis shows that this also holds
for small nonzero β in the case of elliptic polarization.

IV. PROPAGATION

As an electron is liberated from the target, its further
motion until rescattering is driven by the field. Since the
pioneering paper by Keldysh [64], this propagation stage of
the strong-field ionization dynamics is described by Volkov
states [65]. In this section we generalize Volkov states to the
case of vortex electrons and obtain the electron wave packet
arriving for rescattering at the end of propagation.

A. Vortex Volkov states

Is is helpful to preface the analysis of propagation in the
present problem by a general discussion of Volkov states.
In the context of nonrelativistic strong-field physics, Volkov
states are defined as solutions to Eq. (1) with the potential
energy term omitted,

i
∂�(r, t )

∂t
=

[
−1

2
� + F(t )r

]
�(r, t ). (30)

In this section we consider an arbitrary field not restricted by
Eq. (9). The different solutions to Eq. (30) are specified by the
initial condition at t = ti. We are interested in a class of the
solutions representing vortex electrons.

The quantum dynamics of an electron in a homogeneous
arbitrarily time-dependent electric field can be exactly de-
scribed in purely classical terms [66]. Let us introduce a
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reference classical trajectory with the velocity v(t ) and co-
ordinate r(t ) defined by

v̇(t ) = −F(t ), ṙ(t ) = v(t ), (31a)

v(t → −∞) = 0, r(t → −∞) = 0. (31b)

All the classical quantities needed for solving Eq. (30) can
be expressed in terms of this trajectory. Indeed, the evolution
operator Û (t, ti ) which propagates the solutions from ti to t is
given by

Û (t, ti ) = eiS(r,t )e−ip̂q(t )−ip̂2(t−ti )/2. (32)

Here p̂ = −i∇, q(t ) is the trajectory satisfying Eq. (31a) with
the initial conditions q̇(ti ) = q(ti ) = 0 given explicitly by

q(t ) = r(t ) − r(ti ) − v(ti )(t − ti ), (33)

and

S (r, t ) = [v(t ) − v(ti )]r − 1

2

∫ t

ti

[v(t ′) − v(ti )]
2dt ′ (34)

is the classical action accumulated along a trajectory shifted
with respect to q(t ) in such a way that at time t it passes
through the point r. It can be easily checked that the operator
(32) satisfies Eq. (30) with the initial condition Û (ti, ti ) = 1.

One class of Volkov states is specified by �(r, ti ) = eiur.
Using Eq. (32), we obtain

�u(r, t ) = exp

[
iu f (t, ti, u)r − i

2

∫ t

ti

u2
f (t ′, ti, u) dt ′

]
,

(35)

where u f (t, ti, u) = v(t ) − v(ti ) + u is the final velocity at
time t for the trajectory that begins at time ti with velocity u.
At each t > ti, function (35) is a plane wave whose momen-
tum varies with time and the phase varies accordingly. Such
Volkov states are commonly used in strong-field physics.

Consider another class of Volkov states satisfying

�(r, ti ) = Jm(u⊥r⊥)eimϕeiuzz. (36)

This function describes a vortex state of a free electron, with
the vortex axis coinciding with the z axis. The vortex is char-
acterized by the projection of the angular momentum on its
axis m, transverse momentum u⊥, and longitudinal momen-
tum uz. Applying the operator (32) and taking into account
that p̂2�(r, ti ) = u2�(r, ti ), where u2 = u2

⊥ + u2
z , we obtain

�mu⊥uz (r, t ) = eiS(r,t )−iu2 (t−ti )/2Jm(u⊥R⊥)eim�eiuzZ . (37)

Here

R = r − q(t ) (38)

is the electron coordinate measured relative to q(t )
decomposed in the form R = R⊥ + Zez, where R⊥ =
R⊥(cos �, sin �) and Z are its components perpendicular and
parallel to the z axis, respectively. At each t > ti, function (37)
presents a vortex. The quantum number m of the vortex is
conserved in time. The vortex axis defined by R⊥ = 0 remains
parallel to the z axis, but is shifted in the transverse direction
by q⊥(t ), that is, it crosses the (x, y) plane at r⊥ = q⊥(t ). We
find it remarkable that the axis is not deformed or tilted, only
shifted, which is not evident a priori. The shift originates from

the transverse component of the field F(t ) and does not appear
if the field is linearly polarized along the vortex axis. We call
the solutions to Eq. (30) given by Eq. (37) vortex Volkov
states. Near the vortex axis, the initial state (36) behaves as
r|m|
⊥ eimϕ , which complies with the vortex factor in Eq. (28). In

Eq. (37), the vortex axis is shifted by q⊥(t ) and the vortex
factor becomes R|m|

⊥ eim�. This shows what happens with a
vortex as it propagates in a laser field. Vortex Volkov states of
a relativistic electron obtained by solving the Dirac equation
were constructed in Ref. [40].

B. From ionization to rescattering

We now turn to the discussion of propagation between the
ionization and rescattering events in the present problem. As
a result of tunneling, the target continuously emits a flux of
electrons described by Eq. (28) in the direction opposite to that
of the instantaneous field F(t ). A part of this flux returns to the
target and undergoes rescattering. The goal of this section is
to derive the wave packet arriving for rescattering.

This can be done using Green’s formula

ψ(r, t ) = 1

2

∫ t

−∞
dt ′

∫
�′

[G(r, t ; r′, t ′)∇′ψ(t ′, r′)

− ψ(t ′, r′)∇′G(r, t ; r′, t ′)]d�′, (39)

where ψ(t, r) is the solution to Eq. (1) and G(r, t ; r′, t ′) is the
retarded Green’s function for Eq. (30) given by [66]

G(r, t ; r′, t ′) = e3iπ/4θ (t − t ′)
[2π (t − t ′)]3/2

eiS(r,t ;r′,t ′ ), (40)

where [21]

S (r, t ; r′, t ′) = v(t )r − v(t ′)r′ + [r(t ) − r(t ′) − �r]2

2(t − t ′)

− 1

2

∫ t

t ′
v2(t ′′) dt ′′ (41)

is the classical action accumulated along a trajectory con-
necting space-time points (r′, t ′) and (r, t ) and �r = r − r′.
The spatial integration in Eq. (39) goes over r′ ∈ �′, where
�′ is a surface enclosing the region beyond which the target
potential can be neglected, d�′ = n′d�′, n′ is the external
unit normal vector to �′, and r lies outside �′. Equation (39)
is obtained by subtracting the equation for ψ(r′, t ′) multiplied
by G(r, t ; r′, t ′) from the equation for G(r, t ; r′, t ′) as a func-
tion of r′ and t ′ multiplied by ψ(r′, t ′) and integrating over t ′
and r′ lying outside �′. It expresses the wave function ψ(r, t )
at time t outside the surface �′ in terms of its values at all
previous times t ′ < t on the surface �′.

We substitute the adiabatic part of the wave function (11)
for ψ(t ′, r′) into the right-hand side of Eq. (39). Follow-
ing Ref. [21], the result on the left-hand side is denoted by
ψ(a)

r (r, t ); in the next section we show that this function gives
an incident wave packet from which the rescattering part in
Eq. (6) emerges. The derivation is similar to that of Eq. (94)
in Ref. [21], so we only outline its main steps omitting
the details. We begin by calculating the surface integral in
Eq. (39). At a given t ′, we introduce a rotated coordinate frame
(x′, y′ = y, z′) with the z′ axis directed along F(t ′), as dis-
cussed in Sec. III. Then the asymptotics of the SS in Eq. (11)
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is given by Eq. (28). The surface integral is accumulated near
the direction z′ → −∞, where �′ crosses the outgoing flux
in Eq. (28). We choose �′ in this region to coincide with a
plane z′ = const perpendicular to F(t ′) and such that |z′| � a,
where a is the range of the potential; the latter condition is
needed for the applicability of Eq. (28). Then d�′ = −ez′dr′

⊥
and the surface integral over r′

⊥ = (x′, y′) can be calculated
analytically. The remaining integral over t ′ is calculated using
the saddle-point method. The phase of the integrand is a sum
of the classical action S (r, t ; z′ez′ , t ′) remaining in Eq. (40)
after integration over r′

⊥ and the quantum action −s(t ) from
Eq. (11). We recall that in the adiabatic regime (5) all clas-
sical quantities scale as some powers of ε [21]. In particular,
the velocity and coordinate for the reference trajectory scale
as v(t ) = O(ε−1) and r(t ) = O(ε−2). The action (41) scales
as O(ε−3); this justifies the application of the saddle-point
method to the time integral in Eq. (39) and determines the
order of the phase of the rescattering part in Eq. (6). The
result of the integration over t ′ depends on the value of r.
The requirement that r must be located outside �′ leads to the
condition r � a = O(ε0). At the same time, being interested
in the form of the wave packet returning for rescattering, we
want to obtain ψ(a)

r (r, t ) near the target. To fulfill both condi-
tions we consider the region r = O(ε0). Note that this region
belongs to the quasistationary zone where Eq. (6) holds. Let us
present the field in the form F(t ) = F (t )e(t ), where F (t ) > 0
is the field strength and e(t ) denotes a unit polarization vector.
Then in the leading order in ε the result of the integration is
determined by the behavior of the phase of the integrand near
a reference point defined by

e(t ′)ui(t, t ′) = 0 → t ′ = ti(t ), (42a)

ui⊥(t, ti(t )) = O(ε1), (42b)

where

ui(t, t ′) = v(t ′) − r(t ) − r(t ′)
t − t ′ (43)

is the initial velocity for a closed rescattering trajectory begin-
ning at time t ′ and returning to the initial point at time t [21].
Equation (42a) may have several solutions, depending on the
shape of the pulse. The solutions are times at which ionization
should occur for the rescattering to occur at a given time t .
In the adiabatic regime the propagation time t − ti(t ) as well
as the intervals between the different ionization times ti(t )
scale as O(ε−1). Near each ti(t ), there exist two saddle points
lying at a distance O(ε0) from ti(t ), but only one of them
contributes to the integral. After evaluating its contribution
and calculating the derivatives in Eq. (39) using ez′∇′ = ∂/∂z′
the dependence on z′ disappears. The result is

ψ(a)
r (r, t ) = −i

2π

∑
i

AM (ti )R′M
⊥ eiM�′

eiS(r,t )−is(ti )

(t − ti )3/2+MF 1/2(ti )
. (44)

Here AM (t ) = AM (F (t )), see Eq. (29), R is the shifted
electron coordinate (38), R′

⊥ = R′
⊥(cos �′, sin �′) is its com-

ponent perpendicular to e(ti ), one should substitute ti = ti(t )
throughout, including Eqs. (33) and (34), which makes R′

⊥,
�′, and S (r, t ) implicitly dependent on i, and the summation
runs over the different solutions to Eq. (42a). Each term in the
sum has the form of a vortex Volkov state, Eq. (37), with the

vortex factor R′M
⊥ eiM�′

, the action S (r, t ), and the other factors
defining the amplitude of the state. From Eq. (42a) we have
e(ti )q(t ) = 0, which means that, for a given i, the vector q(t )
lies in the plane passing through the origin and perpendicular
to e(ti ). The vortex axis is parallel to e(ti ) and crosses this
plane at q(t ). The longitudinal momentum uz in Eq. (37) is
zero in the present case, because of Eq. (42a). According
to Eq. (42b), the transverse momentum u⊥ is O(ε1). The
condition (42b) ensures that the vortex axis is shifted from the
origin by q(t ) = O(ε0), and hence R′

⊥ = O(ε0). In this case
the argument of the Bessel function in Eq. (37) is O(ε1) and
this function can be replaced by the first term of its expansion
near zero, as in Eq. (44).

We are interested in the situation where the vortex axis
passes through the region occupied by the target potential, that
is, where rescattering of a vortex electron by the target occurs.
For this to be the case, the vortex axis should be shifted not
too far from the origin, namely, we should have q(t ) = O(ε0).
As seen from the above discussion, this holds under the condi-
tion (42b). In the general case of elliptically polarized pulses
with arbitrary ellipticity this condition can be satisfied only at
isolated values of t . The significance of the requirement (10)
in the present analysis is explained by the fact that for pulses
with such a small ellipticity the condition (42b) is satisfied
at all times t , and therefore vortex rescattering is occurring
continuously. In this case Eq. (44) can be further simplified.
First, we neglect the difference between the directions of e(ti )
and the laboratory z axis and replace R′

⊥ and �′ by R⊥ and
� defined by the component R⊥ = R⊥(cos �, sin �) of R
perpendicular to the laboratory z axis, which incurs an error
O(ε2) in the vortex factor. Second, we neglect the transverse
with respect to the z axis component of the reference velocity
in Eq. (34), whose contribution to the action is O(ε1). Then
Eq. (44) takes the form

ψ(a)
r (r, t ) = −i

2π

∑
i

AM (ti )RM
⊥ eiM�eiu f (t )z+iS(t )−is(ti )

(t − ti )3/2+M |Fz(ti)|1/2
, (45)

where

u f (t ) = vz(t ) − vz(ti(t )) (46)

and

S (t ) = −1

2

∫ t

ti (t )
[vz(t ′) − vz(ti(t ))]2dt ′. (47)

Equation (45) describes the electron wave packet returning for
rescattering. Each term in the sum is a vortex moving with ve-
locity u f (t ) along the z axis. The vortex axis is parallel to the
z axis and crosses the (x, y) plane at r⊥ = q⊥(t ), which plays
the role of the impact parameter for the vortex-target collision.
The appearance of a nonzero impact parameter is a feature that
differs the present analysis from the case of linear polarization
considered in Ref. [28]. The impact parameter q⊥(t ) = O(ε0)
varies with time and is controlled by the transverse component
of the laser field (9). If q⊥(t ) turns to zero, then R⊥ = r⊥
and the corresponding term in Eq. (45) presents an incident
vortex wave for a head-on collision, as in Ref. [28]. If q⊥(t )
becomes much larger than the range of the target potential,
then R⊥ ≈ q⊥(t ) and the corresponding term reduces to an
incident plane wave, as in Ref. [21].
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V. RESCATTERING

As a liberated electron returns to the target, it undergoes
rescattering. Equation (45) gives an incident vortex wave
packet arriving for rescattering. In this section we introduce
vortex scattering states needed to describe the rescattering
process and obtain the rescattering parts of the wave function
in Eq. (6) and ionization amplitude in Eq. (7).

A. Vortex scattering states

Scattering states in the present axially symmetric potential
are defined by the stationary Schrödinger equation[− 1

2� + V (r⊥, z) − 1
2 k2

]
φ(r) = 0 (48)

supplemented by appropriate asymptotic boundary condi-
tions. Standard textbooks on scattering theory [58] treat only
states which take the form of an incident plane wave in the
asymptotic region. In recent years, due to the growing interest
in vortex electrons and their behavior in various physical
processes, a great progress in extending scattering theory to
incident vortex waves of different forms has occurred, see a
review [38] and references therein. In particular, in Ref. [28]
vortex scattering states with the vortex axis coinciding with
the symmetry axis of the potential, which corresponds to a
head-on vortex-target collision, and zero transverse momen-
tum, which is specific to rescattering in strong-field physics,
were introduced. These states satisfy Eq. (48) with the bound-
ary condition

φm(r; k)|r→∞

=
[

(kr⊥)|m|eikz−iγ ln k(r−z) + fm(k, θ )
eikr+iγ ln 2kr

r

]
eimϕ,

(49)

where γ = Z/k and fm(k, θ ) is the head-on vortex scatter-
ing amplitude. For m = 0, the first term in Eq. (49) reduces
to an incident plane wave, so f0(k, θ ) coincides with the
usual scattering amplitude f (k, θ ) [57,58]. We show in the
Appendix that for spherically symmetric potentials fm(k, θ )
can be expressed in terms of f (k, θ ). Here we generalize these
states to the case of a nonzero impact parameter, which is
needed for the present problem.

Let b = (bx, by) = b(cos ϕb, sin ϕb) be a vector lying in the
(x, y) plane. We introduce scattering states satisfying

φm(r; k, b)|r→∞ = (kR⊥)|m|eim�eikz−iγ ln k(r−z)

+ fm(k,�, b)
eikr+iγ ln 2kr

r
, (50)

where k > 0, R⊥ = r⊥ − b = R⊥(cos �, sin �), fm(k,�, b)
is the corresponding scattering amplitude, and � = (θ, ϕ)
are scattering angles, that is, spherical angles defining the
direction of r. The vortex axis in Eq. (50) is shifted by b
perpendicularly to the symmetry axis of the potential, so b
plays the role of the impact parameter. While φm(r; k) can
be constructed relatively easy by separating out the azimuthal
angle ϕ in Eq. (48), in the case of φm(r; k, b) such separation
of variables is not possible. It turns out that fm(k,�, b) can be
expressed in terms of fm(k, θ ), and hence there is no need to
solve Eq. (48) with the boundary condition (50) numerically.

In the general case, the scattering amplitude for a vortex state
with a given projection m and nonzero impact parameter can
be expressed using Gegenbauer’s addition theorem for the
Bessel functions [67] as an infinite sum of terms involving
scattering amplitudes for vortices with the different projec-
tions m′ and zero impact parameter [33,35]. The relation we
need here could be obtained from the general formula in the
limit of zero transverse momentum. However, this relation can
be derived in a much simpler way, which is worth document-
ing. We can represent the vortex factor in Eq. (50) in the form

R|m|
⊥ eim� = [(x − bx ) + iσ (y − by)]|m|

=
|m|∑

m′=0

(|m|
m′

)
(−bx − iσby)|m|−m′

(x + iσy)m′

=
|m|∑

m′=0

(|m|
m′

)
(−beiσϕb )|m|−m′ × rm′

⊥ eiσm′ϕ, (51)

where σ = sgn(m) and
(n

k

)
are the binomial coefficients [62].

The last factor in Eq. (51) is the vortex factor with respect to
the z axis, as in Eq. (49). Thus, we can construct φm(r; k, b)
as a linear combination of φm′ (r; k) with the coefficients from
Eq. (51). This leads to

fm(k,�, b) =
|m|∑

m′=0

(|m|
m′

)
(−kbeiσϕb )|m|−m′

fm′ (k, θ )eiσm′ϕ.

(52)

In contrast to the general case [33,35], the sum here includes a
finite number of terms. In the limit b → 0 only the term with
m′ = |m| survives in the sum, thus

fm(k,�, 0) = fm(k, θ )eimϕ, (53)

in agreement with Eq. (49). Equation (52) can be simplified
for scattering in the backward direction. At θ → π , ampli-
tudes fm′ (k, θ ) turn to zero as (π − θ )m′

, so only one term
with m′ = 0 survives in the sum, and we obtain

fm(k,�, b)|θ=π = (−kbeiσϕb )|m| f (k, π ). (54)

We note that although vortex scattering states defined by
Eq. (50) are a particular case of more general states considered
in Ref. [38], only these states are needed to describe rescatter-
ing in the adiabatic regime.

In the case of a purely Coulomb potential, V (r⊥, z) =
−Z/r, Eqs. (48) and (49) can be solved analytically by sep-
arating variables in parabolic coordinates, which gives [28]

f (C)
m (k, θ ) = �(1 + |m| − iγ )

�(1 − iγ )
[−i cot(θ/2)]|m| f (C)(k, θ ),

(55)

where f (C)(k, θ ) is the usual Coulomb scattering amplitude
for m = 0 [57,58]. This formula also follows from the general
expression for fm(k, θ ) in terms of f (k, θ ) for spherically
symmetric potentials obtained in the Appendix. It turns out
that the sum in Eq. (52) in this case can be presented in the
closed form

f (C)
m (k,�, b) = M(−|m|,−|m| + iγ ,−ikb tan(θ/2)eiσ (ϕb−ϕ) )

× f (C)
m (k, θ )eimϕ, (56)
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where M(a, b, x) is a confluent hypergeometric function [62].
Thus, in the case of a Coulomb potential, the scattering
amplitude for vortex-target collision with a nonzero impact
parameter differs from that with zero impact parameter by
the M-function factor in Eq. (56). Note that this function is a
polynomial of degree |m| of its third argument. The argument
diverges at θ = π , but this divergence is canceled by the factor
cot|m|(θ/2) in Eq. (55), so the result is finite and given by
Eq. (54).

B. Rescattering part of the wave function

The rescattering part of the wave function in Eq. (6) satis-
fies the inhomogeneous integral equation [21]

ψr (r, t ) =ψ(a)
r (r, t ) +

∫ t

−∞
dt ′

∫
G(r, t ; r′, t ′)

× V (r′)ψr (r′, t ′)dr′, (57)

where the incident wave packet (45) plays the role of the
source term. We solve this equation following Ref. [21]. Note
that the action (47) is O(ε−3), while the other terms in the
exponent in Eq. (45) are O(ε−1). Thus the factor eiS(t ) de-
scribes the fastest dependence of ψ(a)

r (r, t ) on t , and ψr (r, t )
must contain the same factor. Knowing this, it can be seen
that the integral over t ′ in Eq. (57) is accumulated in the zone
|t ′ − t | = O(ε2). Indeed, in this zone

S (r, t ; r′, t ′) = (r − r′)2

2(t − t ′)
+ O(ε2), (58a)

S (t ′) = S (t ) + 1
2 u2

f (t )(t − t ′) + O(ε2), (58b)

where u f (t ) is the incident velocity of the wave packet given
by Eq. (46). The fact that u f (t ) = O(ε−1) confirms the above
statement. Equation (58a) means that the function (40) re-
duces to the retarded Green’s function for a free electron.
Equation (58b) shows that the integral term in Eq. (57) is
proportional to eiS(t ), so this factor can be canceled from
the equation. Upon substituting Eqs. (58) into Eq. (57) the
integration over t ′ Fourier transforms G into the outgoing-
wave Green’s function for a free electron at the collision
energy u2

f (t )/2. Thus Eq. (57) reduces to the integral equa-
tion for a stationary vortex scattering state satisfying Eq. (48)
with the asymptotic boundary condition (50), where m = M,
k = u f (t ), and b = q⊥(t ). Omitting further details [21], the
solution to Eq. (57) is

ψr (r, t ) = −i

2π

∑
i

AM (ti )φM (r; u f (t ), q⊥(t )) eiS(t )−is(ti )

[u f (t )(t − ti )]M |(t − ti )3Fz(ti )|1/2
,

(59)

where ti = ti(t ) and for simplicity we assumed that u f (t ) > 0.
This formula gives the adiabatic asymptotics of the rescat-
tering part of the wave function in Eq. (6) for the case of
rescattering of vortex electrons generated by elliptically polar-
ized pulses characterized by Eq. (10). Note that in the present
case the phase of ψr (r, t ) is O(ε−3), as in the general case
[21], but its amplitude is O(ε3/2+2M ), which is suppressed by
a factor of O(ε2M ) compared to the general case.

C. Rescattering part of the ionization amplitude

The rescattering part of the ionization amplitude in Eq. (7)
is given by [21]

Ir (k) = −i

2

∫ ∞

−∞
dt

∫
�

[e−iS(r,t ;k)∇ψr (r, t )

− ψr (r, t )∇e−iS(r,t ;k)]d�, (60)

where the spatial integration goes over a surface � enclosing
the region occupied by the target potential, d� = nd�, and n
is the external unit normal vector to �. The action in Eq. (60)
is given by

S (r, t ; k) = ui(t, k)r − 1

2

∫ t

0
u2

i (t ′, k)dt ′, (61)

where ui(t, k) = k − v∞ + v(t ) is the initial velocity with
which an electron should begin its classical motion at time t to
end with a given asymptotic velocity k and v∞ = v(t → ∞).
We choose � to be a sphere of sufficiently large radius r,
so that upon substituting Eq. (59) into Eq. (60) the scattering
state can be replaced by its asymptotic form given by Eq. (50).
The first term in Eq. (50) does not contribute to Eq. (60), so
the vorticity of the incident wave does not reveal itself and the
integrals can be calculated in the same way as in Ref. [21]. The
surface integral is calculated using Eq. (137) from Ref. [21].
The time integral is evaluated using the saddle-point method,
the corresponding action is

Sr (t, k) = 1

2

∫ t

0
u2

i (t ′, k)dt ′ − S (t ) − s(ti). (62)

In the leading order in ε the result of the integration is deter-
mined by the behavior of this function near a reference point
defined by

u2
i (t, k) = u2

f (t ) → t = tr (k). (63)

The incident velocity of rescattering is u f (t )ez, the final ve-
locity after rescattering for a given k should be ui(t, k), thus
Eq. (63) ensures the conservation of energy in the rescattering
event and this defines the rescattering time tr (k). Omitting
further details, the result is

Ir (k) =
∑

ir

eiπ/4(2π )1/2AM (ti )eiSr (tr ,k)

[u f (tr )(tr − ti )]M |(tr − ti )3Fz(ti )S′′
r |1/2

× fM
(
u f (tr ),�i, q⊥(tr )

)
, (64)

where

S′′
r = Fz(tr )[u f (tr ) − uiz(tr, k)] + u2

f (tr )

tr − ti
. (65)

Here ti = ti(tr (k)) and tr = tr (k) are the ionization and
rescattering times for a given k, �i = (θi, ϕi ) are spherical
angles defining the direction of ui(tr, k), and the summa-
tion runs over the different solutions to Eqs. (42) and (63).
Equation (64) generalizes the adiabatic asymptotics of Ir (k)
obtained in Ref. [21] to the specific configuration of the
present problem. This completes the derivation indicated in
the end of Sec. II.
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VI. IMAGING

The problem of imaging, that is, extracting target structure
information from the observable PEMD, attracts much atten-
tion in strong-field physics. A fruitful approach to imaging
was proposed in Ref. [3]. It was recognized that in a certain
region of the photoelectron momentum space the PEMD is
proportional to the DCS for elastic scattering of a photo-
electron on the parent ion. The DCS given by the absolute
value squared of the corresponding scattering amplitude is the
information that can be extracted. The uniform treatment of
rescattering developed on the basis of the adiabatic theory
[21] in Ref. [22] turned the idea of Ref. [3] into a powerful
quantitative method [23–27]. In Ref. [28] this method was
generalized to rescattering of vortex electrons generated by
linearly polarized pulses. In this case it yields the absolute
value squared of the head-on vortex scattering amplitude
fm(k, θ ) defined by Eq. (49). Here we further generalize the
method by showing that imaging with vortex electrons gen-
erated by elliptically polarized pulses enables one to extract
the absolute value squared of the vortex scattering ampli-
tude fm(k,�, b) with a nonzero impact parameter defined by
Eq. (50).

Having constructed the rescattering part of the wave func-
tion, Eq. (59), we can extend the theory developed in Ref. [22]
to the present configuration. Two main objects appearing in
the theory are a backward rescattering caustic and the factor-
ization formula. We begin with the discussion of the caustic.
The classical caustic is a surface in the space of photoelectron
momenta k where a pair of long and short backward rescat-
tering trajectories originating from the same half-cycle of the
laser field coalesce [68]. It can be defined for the general case
of elliptic polarization. However, we restrict our treatment
here to small ellipticities satisfying Eq. (10). In this case the
caustic approximately coincides with that for a linearly polar-
ized field with the same Fz(t ), the difference scales as O(ε2)
and can be neglected in the adiabatic regime (5). We adopt
this approximation below. It is convenient to parametrize the
caustic by scattering angles � = (θ, ϕ) characterizing the co-
alesced trajectories. The ionization ti and rescattering tr times
at the caustic satisfy [22]

uiz(tr, ti ) = 0, (66a)

2Fz(tr ) sin2(θ/2) + u f (tr )

tr − ti
= 0. (66b)

These equations define functions ti(θ ) and tr (θ ), and hence
the incident velocity u f (θ ) = u f (tr (θ )) and impact parameter
q⊥(θ ) = q⊥(tr (θ )) for rescattering at the caustic. In the rest
of this section we omit the argument θ of these functions,
implying that all the kinematic characteristics of rescattering
are taken at the caustic. The classical caustic is a surface of
revolution about the kz axis having the form [22]

kc(�) = (k⊥(θ ) cos ϕ, k⊥(θ ) sin ϕ, kz(θ )), (67)

where

k⊥(θ ) = |u f | sin θ, (68a)

kz(θ ) = u f cos θ + v∞ − vz(tr ). (68b)

In arriving at Eq. (64) the integral over time in Eq. (60) was
calculated using the saddle-point method. Each saddle point
is associated with a rescattering trajectory satisfying Eqs. (42)
and (63). The coalescence of two such trajectories at a classi-
cal caustic results in the coalescence of two saddle points at
the corresponding quantum caustic. The difference between
the two caustics is caused by a quantum term s(ti) in the action
(62). The quantum caustic is given by

kq(�) = kc(�) + q(θ )ν(�), (69)

where

q(θ ) = −E (ti )

(tr − ti )|Fz(ti )| (70)

and ν(�) is the external unit normal vector to the surface
kc(�). The quantum shift (70) between the caustics was ob-
served experimentally [26]. Note that it is generally complex,
since the SS energy eigenvalue E (t ) is complex. Also note that
q(θ ) = O(ε1), so the caustics merge in the limit (5).

We now turn to the factorization formula. The asymptotics
(64) is obtained by calculating individual contributions from
each saddle point to the time integral in Eq. (60). However,
in the region of the photoelectron momentum space near a
caustic the two coalescing saddle points cannot be treated
separately. The uniform asymptotics of their collective con-
tribution Ic(k) to Ir (k) in this region can be calculated using
Eq. (59) and following Ref. [22]. Consider the outermost
caustic either in the positive or negative direction of the kz

axis. In the vicinity of the caustic photoelectron momenta can
be presented in the form

k = kc(�) + �kν(�). (71)

Thus the set (�,�k) can be used as curvilinear coordinates
near the caustic, with � defining the position at the caustic and
�k giving the distance from the caustic along the normal ν(�)
to it. The corresponding Ic(k) is the only contribution to the
total ionization amplitude (7) in this region, so the PEMD is
given by Pc(k) = |Ic(k)|2. Omitting further details, we obtain

Pc(k) = ∣∣ fM
(
u f ,�, q⊥

)∣∣2
WM (θ,�k), (72)

where

WM (θ,�k) = |Ai(α[�k − q(θ )])|2
∣∣∣∣ 2

S′′′
r

∣∣∣∣
2/3

× 4π2|AM (ti )|2
u2M

f (tr− ti )3+2M |Fz(ti )| exp

[
−

∫ ti

−∞
�(t ) dt

]
.

(73)

Here Ai(x) is the Airy function [62], α = (2/S′′′
r )1/3|u f |,

where the explicit form of S′′′
r is given in Ref. [22], �(t ) =

−2Im[E (t )] is the instantaneous ionization rate, and we recall
that ti, tr , u f , and q⊥ are functions of θ taken at the classical
caustic. Equation (72) is the factorization formula. It holds
in the vicinity of the classical caustic of width �k = o(ε−1)
[22] including the quantum caustic. Note that at the quantum
caustic �k = q(θ ), so the argument of the Airy function in
Eq. (73) turns to zero. The factor (73) is called the RWP.
Knowing this factor, one can find the first factor in Eq. (72)
from a given PEMD, which establishes a method of target
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structure imaging. The factorization formula (72) differs from
that for vortex electrons in the linear polarization case derived
in Ref. [22] only by the scattering amplitude, the RWP (73)
remains the same because of the small ellipticity. This differ-
ence, however, is essential since it opens a new window for
imaging providing a view on the target structure information
contained in the amplitude fM (u f ,�, q⊥).

VII. ILLUSTRATIVE RESULTS AND DISCUSSION

To illustrate the theory, we consider ionization from
an active π orbital in two atomic systems: a one-electron
ion He+(2p, m = 1) and a many-electron neutral atom
Xe(5p, m = 1) treated in the single-active-electron approx-
imation. PEMDs for these systems generated by ionization
from initial orbitals with m = 0 and 1 in the linear polarization
case were compared in Ref. [28]. We recall that the present
theory is an asymptotics which applies under the conditions
(5) and (10). This means that its predictions converge to the
exact results as the adiabatic parameter ε tends to zero. The
calculations discussed below are done for pulses (9) with
frequency ω = 0.057 (wavelength λ = 800 nm), which cor-
responds to ε ∼ 0.1. The good quantitative performance of
the adiabatic theory in this case was demonstrated, e.g., in
Refs. [21,22,28]. From Eq. (10) we obtain ε ∼ 0.01, which
determines the range of ellipticities to be treated. We consider
pulses with a Gaussian envelope

f (t ) = − exp[−(2t/T )2]. (74)

The duration of the pulse T is specified by ωT = 2πnoc,
where noc is the number of optical cycles in the pulse. In all the
calculations we set noc = 2. In this case the outermost caustic
in the region kz < 0 is well separated from other caustics
as well as from the region where the adiabatic part of the
ionization amplitude (7) dominates, and hence Eq. (72) gives
the total PEMD in the vicinity of the caustic [22,28]. The
goal of the calculations is to illustrate novel features in the
structure of the PEMD near the caustic resulting from vortex
rescattering with a nonzero impact parameter. Since these fea-
tures manifest themselves in the dependence of the PEMD on
the scattering angles � = (θ, ϕ), that is, in its behavior at the
caustic, while the dependence on the coordinate �k normal to
the caustic is described by the same universal Airy-function
factor in the RWP (73) as in Refs. [22,28], we consider only
the behavior of Pc(k) at the quantum caustic.

A. He+(2p, m = 1)

We first discuss ionization from the 2p1 state of He+. In
this case Z = 2, M = 1, E0 = −0.5, and g01 = 1. The scat-
tering amplitudes are calculated using Eqs. (A7), (55), and
(56). We begin with a pulse with F0 = 0.1 and ω = 0.057. The
sections of the classical and quantum caustics by a half-plane
(k⊥, kz ) calculated for this pulse are shown in Fig. 1. We
consider caustics in the interval 90◦ � θ � 180◦; at smaller
θ they enter the region in the photoelectron momentum space
where other contributions to the PEMD cannot be neglected
[22,28]. The top panel in Fig. 2 shows the incident velocity
u f (θ ) of rescattering at the classical caustic. The sign in
Eq. (74) is chosen such that u f (θ ) > 0. For pulses polarized in
the (x, z) plane, as in Eq. (9), we have q⊥(θ ) = q⊥(θ )ex. The
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FIG. 1. Solid (blue) and dashed (red) lines show sections of the
classical [Eq. (67)] and quantum [Eq. (69)] caustics, respectively, by
a half-plane (k⊥, kz ). The caustics are calculated for a two-cycle pulse
with F0 = 0.1 and ω = 0.057. The target-dependent quantum shift
(70) between them is calculated for He+(2p1). The sections of the
caustics are parameterized by the scattering angle θ , see Eq. (68).

middle panel shows the impact parameter q⊥(θ ) calculated
with ε = 0.0015. For the present choice of the sign of Fx(t )
in Eq. (9) the impact parameter is positive, which corresponds
to ϕb = 0 in Eq. (52). The value of q⊥(θ ) scales as ε/ω2 =
O(ε0), so even for such a small ellipticity it is of the order of
one atomic unit at the frequency considered. Note that both
u f (θ ) and q⊥(θ ) only slightly vary along the caustic. These
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FIG. 2. The incident velocity uf (θ ) (top) and impact parameter
q⊥(θ ) (middle) for rescattering at the classical caustic and the RWP
(73) at the quantum caustic (bottom) as functions of the scattering
angle θ calculated for He+(2p1) interacting with a pulse with F0 =
0.1 and ω = 0.057, as in Fig. 1. The impact parameter is calculated
with ε = 0.0015.
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FIG. 3. PEMDs for He+(2p1) as functions of the scattering angles θ and ϕ at the quantum caustic calculated using Eq. (72) for three pulses
with F0 = 0.1 and ω = 0.057, as in Figs. 1 and 2, and different ellipticities. The radial coordinate in the plots is θ varying from 180◦ at the
center of the circular region to 90◦ at its boundary. Dashed circles indicate intermediate values θ = 150◦ and 120◦, as shown in (a). The polar
angle is ϕ; radial dashed lines indicate its values in degrees. The solid black circles indicate the zero of the PEMD.

kinematic quantities are fully determined by the field. The
bottom panel in Fig. 2 shows the target-dependent RWP (73)
at the quantum caustic. It is a smooth structureless function,
which means that all peculiarities in the behavior of the PEMD
at the caustic, if any, are caused by the first factor in Eq. (72).

Figure 3 shows PEMDs as functions of the scattering an-
gles θ and ϕ at the quantum caustic calculated using Eq. (72)
for three pulses with the same F0 = 0.1 and ω = 0.057 as in
Figs. 1 and 2 and different ellipticities. The plots show the
azimuthal equidistant projection (like on the emblem of
the United Nations) of the caustic centered at θ = 180◦, with
the radial coordinate giving the value of 180◦ − θ (in degrees)
and the polar angle equal to ϕ. For ε = 0, the PEMD is
axially symmetric about the kz axis and does not depend on
ϕ. For ε > 0, it becomes dependent on ϕ. For the present
case of a purely Coulomb potential the behavior of the PEMD
at the caustic is rather smooth and simple. The only feature
attracting attention is a zero indicated in Fig. 3 by solid black
circles. The zero is located at θ = 180◦ for ε = 0 and moves
to smaller θ in the direction of ϕ ≈ 132◦ as ε grows. Let us
discuss this feature in more detail.

The Coulomb scattering amplitude (56) turns to zero at the
zeros of the M-function factor. This factor is a polynomial of
degree |m|, so in the present case it has one zero. The scatter-
ing amplitude in Eq. (72) turns to zero under the condition

Z + iu f (θ ) + e−iϕ tan(θ/2)q⊥(θ )u2
f (θ ) = 0. (75)

The solution of this complex equation with respect to two real
variables θ and ϕ defines scattering angles θ0 and ϕ0 giving
the position of the zero of the PEMD at the caustic. Solid
(navy) lines in Fig. 4 show the dependence of θ0 and ϕ0 on ε

varying continuously for pulses with the same F0 = 0.1 and
ω = 0.057 as in Fig. 3. In the interval of ε considered, θ0

decreases from 180◦–90◦, while ϕ0 varies very little staying
near 132◦. To understand this behavior, we recall that u f (θ )
and q⊥(θ ) remain almost constant along the caustic, see Fig. 2.
Therefore these functions can be replaced in Eq. (75) by their
values at θ = π , which leads to the approximate solution

θ0 ≈ 2 arctan

√
Z2 + u2

f (π )

q⊥(π )u2
f (π )

, (76a)

ϕ0 ≈ π − arctan
u f (π )

Z
. (76b)

We call this the θ = π approximation. Its results are shown by
dashed (red) lines in Fig. 4. Taking into account that q⊥(π ) ∝
ε while the other quantities in Eq. (76) are independent of ε,
these equations explain the behavior seen in Fig. 4.

We next discuss the dependence of θ0 and ϕ0 on the fre-
quency and amplitude of the pulse. Figure 5 illustrates the
dependence on ω for three values of F0 at a fixed ellipticity
ε = 0.0015. Both angles are seen to strongly depend on the
pulse parameters. They vary in wide ranges in the intervals of
ω and F0 considered which are typical for strong-field physics.
This can be used for extracting the pulse parameters, partic-
ularly the pulse amplitude F0, which is usually not known
exactly in experiments [26], from the position of the zero of
the PEMD. Note that the approximation given by Eq. (76)
works very well.

However, of main interest for us is the target structure
information that can be extracted from the PEMD. This infor-
mation is represented by the first factor in Eq. (72). In the case
of a purely Coulomb potential the corresponding scattering
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FIG. 4. Scattering angles θ0 and ϕ0 giving the position of the zero
of the PEMD for He+(2p1) as functions of the ellipticity ε for pulses
with F0 = 0.1 and ω = 0.057, as in Fig. 3. Solid (navy) lines show
the exact results obtained by solving Eq. (75). Dashed (red) lines
denoted by θ = π show approximate results from Eq. (76).
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FIG. 5. Similar to Fig. 4, but now θ0 and ϕ0 are shown as func-
tions of pulse frequency ω (the top axis shows the corresponding
wavelength λ) calculated for three amplitudes F0 indicated in the
figure at a fixed ellipticity ε = 0.0015. The dashed (red) lines ob-
tained in the θ = π approximation lie on the top of the solid (navy)
lines showing the exact results.

amplitude is known analytically, see Eq. (56). We emphasize
that this amplitude cannot be measured in the usual collision
experiment with a plane-wave front of the incident electron
beam. The only parameter characterizing the Coulomb po-
tential is the nuclear charge Z , and in the present model
Z = 2. As can be seen from Eq. (76), both angles θ0 and ϕ0

strongly depend on Z . This gives an example of how a specific

property of the target is encoded in and can be extracted from
the PEMD.

B. Xe(5p, m = 1)

To illustrate the sensitivity of the behavior of the PEMD
at the caustic on the target, we discuss ionization from the
5p1 orbital in Xe. It should be noted that in the present
configuration tunneling ionization from the 5p0 orbital in Xe
dominates. A more realistic target for which predictions of our
theory could be observed experimentally is a linear molecule
with an active π orbital (like NO) aligned along the major
axis of polarization of the laser field. We consider Xe(5p1) as
a simple model for such a molecule. The ionizing 5p1 orbital
in Xe is calculated using a one-electron potential defined in
Ref. [69]; the same potential was used in previous calculations
[22,28] and in the analysis of experiments [23,26]. In this case
Z = 1, M = 1, E0 = −0.446, and g01 = 3.6. The scattering
amplitudes are calculated using Eqs. (A9), (A10), and (52).

Figure 6 shows PEMDs at the quantum caustic calculated
using Eq. (72) for six pulses with F0 = 0.1 and ω = 0.057 and
different ellipticities. In the present case the PEMD exhibits a
much richer structure. It has a zero similar to the one discussed
in the previous subsection. This zero is located in the center
of Fig. 6(a) at θ = 180◦ for ε = 0 and moves to smaller θ in
the direction of ϕ ≈ 270◦ as the ellipticity grows. We note
that regions near zeros of the PEMD are shown in Fig. 6
by white color; this color is located below the blue color
in color bar scales, but is not seen there. In addition, there
exist other zeros, local minima, and maxima and all these
structures rapidly vary with the elipticity. The structure of
the PEMD can be understood by considering the behavior of
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FIG. 6. PEMDs for Xe(5p1) at the quantum caustic calculated using Eq. (72) for six pulses with F0 = 0.1 and ω = 0.057 and different
ellipticities. The coordinates in the plots are related to the scattering angles θ and ϕ as explained in the caption to Fig. 3. The white and black
lines in (e) show angles ϕmin and ϕmax, see Eq. (78), giving the positions of the minimum and maximum, respectively, of the PEMD as a
function of ϕ at a fixed θ . The imaging procedure applies at these lines.
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FIG. 7. Absolute values (top) and phases (bottom) of the head-
on vortex scattering amplitudes fm(uf (θ ), θ ) = | fm|eiαm with m = 0
(solid green lines) and 1 (dashed orange lines) for the potential
modeling Xe(5p1) in the single-active-electron approximation as
functions of the scattering angle θ at the caustic. The dash-dotted
(magenta) line in the bottom panel shows the phase difference �α =
α1 − α0. The imaging procedure discussed in the text yields the
values of | f0|, | f1|, and �α.

the head-on vortex scattering amplitudes with m = 0 and 1 as
functions of θ shown in Fig. 7. For ε = 0, the scattering ampli-
tude in Eq. (72) coincides with the head-on vortex amplitude
f1(u f (θ ), θ ). The absolute value of this amplitude turns to
zero at θ = 180◦ and has a pronounced minimum at θ ≈ 124◦.
This minimum is seen as a circular blue ravine in Fig. 6(a). For
ε > 0, a nonzero contribution from the plane-wave amplitude
f0(u f (θ ), θ ) appears in Eq. (52). The interference of the two
amplitudes produces the structures seen Fig. 6. As ε grows,
the ravine becomes asymmetric and acquires a minimum at
ϕ ≈ 158◦, see Fig. 6(b). Then the value of the PEMD at the
minimum turns to zero and the zero splits into two zeros,
which quickly depart from each other in the ϕ direction, see
Fig. 6(c). Further increase of ε results in the relative motion
of these two zeros also in the θ direction and appearance
of one more zero at ϕ ≈ 173◦, see Fig. 6(d). In Figs. 6(e)
and 6(f) two of the zeros coalesce. The rapid dependence
on ε is explained by the fact that in the expression for the
scattering amplitude in Eq. (72) following from Eq. (52)
the plane-wave amplitude f0(u f (θ ), θ ) appears multiplied
by the impact parameter q⊥(θ ) which is proportional to ε.
Thus the behavior of the first factor in Eq. (72) at the caustic
can be controlled by varying ε.

Let us analyze the interference of the two amplitudes dis-
cussed above more quantitatively. Using Eq. (52), the first
factor in Eq. (72) at the caustic takes the form

|u f (θ )q⊥(θ ) f0(u f (θ ), θ ) − f1(u f (θ ), θ )eiϕ |2

= |u f q⊥ f0|2 + | f1|2 − 2|u f q⊥ f0 f1| cos(�α + ϕ). (77)

In the second line scattering amplitudes are presented in the
form fm = | fm|eiαm , were αm is the phase of fm, �α = α1 −
α0 is their phase difference, and for brevity we omit argu-
ments of the functions. Equation (77) suggests the following

imaging procedure. Given a calculated or measured PEMD at
the caustic for a nonzero ellipticity, it should be considered
as a function of ϕ at a fixed θ . One should find the minimum
and maximum of this function. The white and black lines in
Fig. 6(e) show their positions ϕmin and ϕmax, respectively, as
functions of θ for the present model. From Eq. (77) we obtain

ϕmin = −�α, ϕmax = ϕmin + π, (78)

where both angles are defined modulo 2π . Thus knowing any
one of these angles one can find �α. Simultaneously with ϕmin

and ϕmax one finds the values of the PEMD at the minimum
and maximum According to Eqs. (72) and (77), they are
given by

Pmin = (|u f q⊥ f0| − | f1|)2W1,

Pmax = (|u f q⊥ f0| + | f1|)2W1, (79)

where W1 is the RWP (73). Following Refs. [22,28], we as-
sume that the values of u f and q⊥ determined by the field as
well as of W1, which depends on the target only through the
SS energy eigenvalue E (t ), are known. Then knowing Pmin

and Pmax one can find the combinations ||u f q⊥ f0| − | f1|| and
|u f q⊥ f0| + | f1|. From them, taking into account that f1 turns
to zero at θ = π , one can find | f0| and | f1|. Summarizing, the
procedure yields a rich set of target structure information con-
sisting of the absolute values of two head-on vortex scattering
amplitudes, f0(u f (θ ), θ ) and f1(u f (θ ), θ ), and their phase
difference �α(θ ) as functions of the scattering angle θ in the
interval covered by the PEMD. This is a remarkable result.
For comparison, we mention that a similar imaging procedure
with plane-wave electrons yields only | f0(u f (θ ), θ )| [22] and
that with vortex electrons in the linear polarization case yields
| fm(u f (θ ), θ )| for a single m determined by the initial state
[28]. The nonzero ellipticity activates the dependence of the
PEMD on ϕ, and through this dependence more information
becomes accessible.

We mention that similar reasoning can be applied
to imaging using vortex electrons with M > 1. Consider
fM (u f ,�, q⊥) as a function of ϕ at a fixed θ . Equation (52)
gives the Fourier expansion of this function containing ex-
ponents eim′ϕ with m′ = 0, . . . , M. Substituting Eq. (52) into
Eq. (72), one obtains the Fourier expansion of the PEMD con-
taining exponents with m′ = −M, . . . , M. On the one hand,
the 2M + 1 coefficients in this expansion can be extracted
from the PEMD. On the other hand, these coefficients are de-
termined by M + 1 absolute values of the head-on amplitudes
fm′ with m′ = 0, . . . , M and M values of their relative phases.
This suggests a great potential for imaging.

VIII. CONCLUSION

We have extended the adiabatic theory [21] to the specific
configuration defined by Eqs. (8)–(10) in which strong-field
ionization occurs from a vortex orbital by an elliptically po-
larized pulse with small ellipticity and the major axis of the
polarization ellipse directed along the vortex axis of the initial
state. Generation, propagation, and rescattering of vortex elec-
trons in this configuration are described. To this end we have
introduced vortex Volkov states in an arbitrary time-dependent
homogeneous electric field, Eq. (37), and vortex scattering
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states with zero transverse momentum and nonzero impact pa-
rameter, Eq. (50), generalizing similar states with zero impact
parameter, Eq. (49), introduced in Ref. [28]. Adiabatic asymp-
totics of the rescattering parts of the wave function, Eq. (59),
and the ionization amplitude, Eq. (64), for the present config-
uration are obtained and the factorization formula, Eq. (72),
giving the PEMD in the vicinity of a backward rescattering
caustic is derived. The factorization formula generalizes sim-
ilar formulas derived in Refs. [22,28] to rescattering of vortex
electrons with a nonzero impact parameter. It enables one to
extract the absolute value of the generalized vortex scattering
amplitude defined by Eq. (50) from the observable PEMD,
thus extending the approach to target structure imaging initi-
ated in Ref. [3] to yet another target property. The generalized
scattering amplitude appearing in the factorization formula
(72) is expressed in terms of the head-on vortex scattering
amplitudes, Eq. (52). We have shown that in the case of elliptic
polarization and the initial π orbital a rich set of information
consisting of the absolute values of two head-on amplitudes
with m = 0 and 1 and their phase difference as functions
of the scattering angle θ can be extracted from the PEMD,
while in configurations considered previously [22,28] only the
absolute value of one scattering amplitude is accessible. We
thus conclude that the theory developed in this paper opens a
new window for target structure imaging and is expected to
find applications in strong-field physics.
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APPENDIX: HEAD-ON VORTEX SCATTERING
AMPLITUDE FOR SPHERICALLY SYMMETRIC

POTENTIALS

For spherically symmetric potentials the head-on vortex
scattering amplitude fm(k, θ ) defined by Eqs. (48) and (49)
can be expressed in terms of the usual scattering ampli-
tude f (k, θ ) ≡ f0(k, θ ) known from scattering theory [57,58].
Here we discuss the relation.

Consider a spherically symmetric potential V (r) which
may have a Coulomb tail, V (r)|r→∞ = −Z/r. The usual
scattering states for an arbitrary direction of the momentum
k of the incident plane wave are the solutions of the stationary
Schrödinger equation[− 1

2� + V (r) − 1
2 k2

]
φ(r; k) = 0 (A1)

satisfying the boundary condition

φ(r; k)
∣∣
r→∞ = eikr−iγ ln(kr−kr) + f (k, θ ′)

eikr+iγ ln 2kr

r
, (A2)

where γ = Z/k and θ ′ is the angle between vectors r and k.
Similarly to the first line in Eq. (51), we have r|m|

⊥ eimϕ = (x +
iσy)|m|, where σ = sgn(m). Thus

(kr⊥)|m|eimϕeikz = (−ik)|m|
(

∂

∂kx
+ iσ

∂

∂ky

)|m|
eikr

∣∣∣∣∣
k=kez

.

(A3)

Using this and comparing Eqs. (49) and (A2), we find

fm(k, θ )eimϕ = (−ik)|m|
(

∂

∂kx
+ iσ

∂

∂ky

)|m|
f (k, θ ′)

∣∣∣∣∣
θ ′=θ

.

(A4)

We recall that θ is the angle between r and the z axis. In
calculating the derivatives in Eq. (A4) k can be treated as a
constant. Then f (k, θ ′) can be considered as a function of a
single variable cos θ ′ = nnk , where n = r/r and nk = k/k.
Note that the following operators are equal from the point of
view of their action on this function:

∂

∂kx
+ iσ

∂

∂ky
=

[
∂ (nnk )

∂kx
+ iσ

∂ (nnk )

∂ky

]
∂

∂ (nnk )

= 1

k
sin θeiσϕ ∂

∂ cos θ ′ . (A5)

We thus obtain

fm(k, θ ) = (−i sin θ )|m| ∂ |m|

(∂ cos θ )|m| f (k, θ ). (A6)

This formula enables one to calculate fm(k, θ ) by differen-
tiating the usual amplitude f (k, θ ). For a purely Coulomb
potential, V (r) = −Z/r, the usual amplitude is given
by [57,58]

f (C)(k, θ ) = Ze2iγ ln sin(θ/2)+2iη0

2k2 sin2(θ/2)
, (A7)

where

ηl = arg �(l + 1 − iγ ). (A8)

Substituting this into Eq. (A6) leads to Eq. (55), which was
obtained in Ref. [28] by explicitly solving Eq. (A1) with
the boundary condition (49). For a general potential with a
Coulomb tail Eqs. (A1) and (A2) can be solved using the
partial-wave expansion [70]. The scattering amplitude in this
case can be presented in the form [57,58]

f (k, θ ) = f (C)(k, θ ) + 1

2ik

∞∑
l=0

(2l + 1)

× e2iηl (e2iδl − 1)Pl (cos θ ), (A9)

where δl are phases appearing in the asymptotics
∝ r−1 sin(kr + γ ln2kr − 1

2π l + ηl + δl ) of radial functions
and Pl (x) are the Legendre polynomials [62]. Substituting
Eq. (A9) into Eq. (A6) gives

fm(k, θ ) = f (C)
m (k, θ ) + i|m|

2ik

∞∑
l=0

(2l + 1)

× e2iηl (e2iδl − 1)P|m|
l (cos θ ), (A10)

where Pm
l (x) are the associated Legendre polynomials [62].

This formula generalizes the partial-wave expansion (A9) of
the usual scattering amplitude [70] to the head-on vortex
scattering amplitude. It is the working formula suitable for
practical calculations of fm(k, θ ).
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[7] D. B. Milošević, W. Becker, M. Okunishi, G. Prümper, K.
Shimada, and K. Ueda, Strong-field electron spectra of rare-gas
atoms in the rescattering regime: enhanced spectral regions and
a simulation of the experiment, J. Phys. B 43, 015401 (2009).

[8] M. Okunishi, H. Niikura, R. R. Lucchese, T. Morishita, and
K. Ueda, Extracting Electron-Ion Differential Scattering Cross
Sections for Partially Aligned Molecules by Laser-Induced
Rescattering Photoelectron Spectroscopy, Phys. Rev. Lett. 106,
063001 (2011).

[9] C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P.
Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, Imag-
ing ultrafast molecular dynamics with laser-induced electron
diffraction, Nature (London) 483, 194 (2012).

[10] J. Xu, C. I. Blaga, A. D. DiChiara, E. Sistrunk, K. Zhang, Z.
Chen, A.-T. Le, T. Morishita, C. D. Lin, P. Agostini, and L. F.
DiMauro, Laser-Induced Electron Diffraction for Probing Rare
Gas Atoms, Phys. Rev. Lett. 109, 233002 (2012).

[11] C. Wang, M. Okunishi, R. R. Lucchese, T. Morishita, O. I.
Tolstikhin, L. B. Madsen, K. Shimada, D. Ding, and K. Ueda,
Extraction of electron-ion differential scattering cross sections
for C2H4 by laser-induced rescattering photoelectron spec-
troscopy, J. Phys. B 45, 131001 (2012).

[12] M. Okunishi, R. Lucchese, T. Morishita, and K. Ueda,
Rescattering photoelectron spectroscopy of small molecules, J.
Electron Spectrosc. Relat. Phenom. 195, 313 (2014).

[13] B. Wolter, M. G. Pullen, M. Baudisch, M. Sclafani, M.
Hemmer, A. Senftleben, C. D. Schröter, J. Ullrich, R.
Moshammer, and J. Biegert, Strong-Field Physics with Mid-IR
Fields, Phys. Rev. X 5, 021034 (2015).

[14] B. Wolter, M. G. Pullen, A.-T. Le, M. Baudisch, K. Doblhoff-
Dier, A. Senftleben, M. Hemmer, C. D. Schröter, J. Ullrich, T.
Pfeifer, R. Moshammer, S. Gräfe, O. Vendrell, C. D. Lin, and J.
Biegert, Ultrafast electron diffraction imaging of bond breaking
in di-ionized acetylene, Science 354, 308 (2016).

[15] K. Amini, M. Sclafani, T. Steinle, A.-T. Le, A. Sanchez, C.
Müller, J. Steinmetzer, L. Yue, J. R. Martínez Saavedra, M.
Hemmer, M. Lewenstein, R. Moshammer, T. Pfeifer, M. G.
Pullen, J. Ullrich, B. Wolter, R. Moszynski, F. J. García de
Abajo, C. D. Lin, S. Gräfe et al., Imaging the Renner-Teller
effect using laser-induced electron diffraction, Proc. Natl. Acad.
Sci. USA 116, 8173 (2019).

[16] E. T. Karamatskos, G. Goldsztejn, S. Raabe, P. Stammer,
T. Mullins, A. Trabattoni, R. R. Johansen, H. Stapelfeldt,
S. Trippel, M. J. J. Vrakking, J. Küpper, and A. Rouzée,
Atomic-resolution imaging of carbonyl sulfide by laser-
induced electron diffraction, J. Chem. Phys. 150, 244301
(2019).

[17] M. V. Frolov, N. L. Manakov, and A. F. Starace, Analytic
formulas for above-threshold ionization or detachment plateau
spectra, Phys. Rev. A 79, 033406 (2009).

[18] A. Čerkić, E. Hasović, D. B. Milošević, and W. Becker, High-
order above-threshold ionization beyond the first-order born
approximation, Phys. Rev. A 79, 033413 (2009).

[19] O. I. Tolstikhin, T. Morishita, and S. Watanabe, Adiabatic
theory of ionization of atoms by intense laser pulses: One-
dimensional zero-range-potential model, Phys. Rev. A 81,
033415 (2010).

[20] M. V. Frolov, D. V. Knyazeva, N. L. Manakov, A. M. Popov,
O. V. Tikhonova, E. A. Volkova, M.-H. Xu, L.-Y. Peng,
L.-W. Pi, and A. F. Starace, Validity of Factorization of the
High-Energy Photoelectron Yield in Above-Threshold Ioniza-
tion of an Atom by a Short Laser Pulse, Phys. Rev. Lett. 108,
213002 (2012).

[21] O. I. Tolstikhin and T. Morishita, Adiabatic theory of ionization
by intense laser pulses: Finite-range potentials, Phys. Rev. A 86,
043417 (2012).

[22] T. Morishita and O. I. Tolstikhin, Adiabatic theory of strong-
field photoelectron momentum distributions near a backward
rescattering caustic, Phys. Rev. A 96, 053416 (2017).

[23] H. Geiseler, N. Ishii, K. Kaneshima, F. Geier, T. Kanai, O. I.
Tolstikhin, T. Morishita, and J. Itatani, Carrier-envelope phase
mapping in laser-induced electron diffraction, Phys. Rev. A 94,
033417 (2016).

[24] Y. Ito, M. Okunishi, T. Morishita, O. I. Tolstikhin, and K.
Ueda, Rescattering photoelectron spectroscopy of heterodi-
atomic molecules with an analytical returning photoelectron
wave packet, Phys. Rev. A 97, 053411 (2018).

[25] M. Okunishi, Y. Ito, V. Sharma, S. Aktar, K. Ueda, R. R.
Lucchese, A. I. Dnestryan, O. I. Tolstikhin, S. Inoue, H. Matsui,
and T. Morishita, Rescattering photoelectron spectroscopy of
the CO2 molecule: Progress towards experimental discrimina-
tion between theoretical target-structure models, Phys. Rev. A
100, 053404 (2019).

[26] T. Mizuno, N. Ishii, T. Kanai, P. Rosenberger, D. Zietlow, M. F.
Kling, O. I. Tolstikhin, T. Morishita, and J. Itatani, Observa-
tion of the quantum shift of a backward rescattering caustic
by carrier-envelope phase mapping, Phys. Rev. A 103, 043121
(2021).

[27] T. Mizuno, T. Yang, T. Kurihara, N. Ishii, T. Kanai, O. I.
Tolstikhin, T. Morishita, and J. Itatani, Comparative study of
photoelectron momentum distributions from Kr and CO2 near
a backward rescattering caustic by carrier-envelope-phase map-
ping, Phys. Rev. A 107, 033101 (2023).

053114-15

https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1126/science.1157980
https://doi.org/10.1103/PhysRevLett.100.013903
https://doi.org/10.1103/PhysRevLett.100.143001
https://doi.org/10.1103/PhysRevLett.100.143002
https://doi.org/10.1103/PhysRevLett.102.073001
https://doi.org/10.1088/0953-4075/43/1/015401
https://doi.org/10.1103/PhysRevLett.106.063001
https://doi.org/10.1038/nature10820
https://doi.org/10.1103/PhysRevLett.109.233002
https://doi.org/10.1088/0953-4075/45/13/131001
https://doi.org/10.1016/j.elspec.2013.12.002
https://doi.org/10.1103/PhysRevX.5.021034
https://doi.org/10.1126/science.aah3429
https://doi.org/10.1073/pnas.1817465116
https://doi.org/10.1063/1.5093959
https://doi.org/10.1103/PhysRevA.79.033406
https://doi.org/10.1103/PhysRevA.79.033413
https://doi.org/10.1103/PhysRevA.81.033415
https://doi.org/10.1103/PhysRevLett.108.213002
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.96.053416
https://doi.org/10.1103/PhysRevA.94.033417
https://doi.org/10.1103/PhysRevA.97.053411
https://doi.org/10.1103/PhysRevA.100.053404
https://doi.org/10.1103/PhysRevA.103.043121
https://doi.org/10.1103/PhysRevA.107.033101


KIRILL V. BAZAROV AND OLEG I. TOLSTIKHIN PHYSICAL REVIEW A 107, 053114 (2023)

[28] O. I. Tolstikhin and T. Morishita, Strong-field ionization, rescat-
tering, and target structure imaging with vortex electrons, Phys.
Rev. A 99, 063415 (2019).

[29] J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni,
R. W. Boyd, and E. Karimi, Structured quantum waves, Nature
Phys. 11, 629 (2015).

[30] K. Bliokh, I. Ivanov, G. Guzzinati, L. Clark, R. Van Boxem, A.
Béché, R. Juchtmans, M. Alonso, P. Schattschneider, F. Nori,
and J. Verbeeck, Theory and applications of free-electron vortex
states, Phys. Rep. 690, 1 (2017).

[31] S. M. Lloyd, M. Babiker, G. Thirunavukkarasu, and J. Yuan,
Electron vortices: Beams with orbital angular momentum, Rev.
Mod. Phys. 89, 035004 (2017).

[32] R. Van Boxem, B. Partoens, and J. Verbeeck, Rutherford scat-
tering of electron vortices, Phys. Rev. A 89, 032715 (2014).

[33] R. Van Boxem, B. Partoens, and J. Verbeeck, Inelastic electron-
vortex-beam scattering, Phys. Rev. A 91, 032703 (2015).

[34] V. Serbo, I. P. Ivanov, S. Fritzsche, D. Seipt, and A. Surzhykov,
Scattering of twisted relativistic electrons by atoms, Phys. Rev.
A 92, 012705 (2015).

[35] I. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche, Elas-
tic scattering of vortex electrons provides direct access to the
Coulomb phase, Phys. Rev. D 94, 076001 (2016).

[36] V. P. Kosheleva, V. A. Zaytsev, A. Surzhykov, V. M. Shabaev,
and T. Stöhlker, Elastic scattering of twisted electrons by an
atomic target: Going beyond the Born approximation, Phys.
Rev. A 98, 022706 (2018).

[37] A. V. Maiorova, S. Fritzsche, R. A. Müller, and A. Surzhykov,
Elastic scattering of twisted electrons by diatomic molecules,
Phys. Rev. A 98, 042701 (2018).

[38] I. P. Ivanov, Promises and challenges of high-energy vortex
states collisions, Prog. Part. Nucl. Phys. 127, 103987 (2022).

[39] D. V. Karlovets, Electron with orbital angular momentum in a
strong laser wave, Phys. Rev. A 86, 062102 (2012).

[40] A. G. Hayrapetyan, O. Matula, A. Aiello, A. Surzhykov, and
S. Fritzsche, Interaction of Relativistic Electron-Vortex Beams
with Few-Cycle Laser Pulses, Phys. Rev. Lett. 112, 134801
(2014).

[41] J. M. Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov,
A. V. Meremianin, and A. F. Starace, Electron Vortices in Pho-
toionization by Circularly Polarized Attosecond Pulses, Phys.
Rev. Lett. 115, 113004 (2015).

[42] N. V. Larionov, D. N. Makarov, A. A. Smirnovsky, and S. Y.
Ovchinnikov, Formation of quantum vortices at the ionization
of an atom by an ultrashort laser pulse: Two- and three-
dimensional cases, JETP 129, 949 (2019).

[43] J.-H. Chen, X.-R. Xiao, S.-F. Zhao, and L.-Y. Peng, Dependence
of direct and rescattered photoelectron spectra of fluorine an-
ions on orbital symmetry in a short laser pulse, Phys. Rev. A
101, 033409 (2020).

[44] F. Cajiao Vélez, J. Z. Kamiński, and K. Krajewska, Generation
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