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Nondipole signatures in ionization and high-order harmonic generation
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We analyze nondipole effects arising in ionization and high-order harmonic generation for a two-dimensional
hydrogen atom irradiated with either low- or high-frequency laser pulses. In the low-frequency case, the electron
wave packet dynamics is dominated by rescattering processes within the laser pulse. Here both odd- and even-
order harmonics are generated in the direction of the laser field propagation and polarization, respectively. For
high-frequency pulses, such rescattering processes can be neglected. We demonstrate that a significant portion of
photoelectrons is detected opposite to the laser pulse propagation direction as a consequence of their postpulse
wave packet spreading and interaction with the parent ion. This is accompanied by rich interference structures
formed in the momentum distributions of photoelectrons. Our results follow from the numerical solution of the
time-dependent Schrödinger equation, which is based on the Suzuki-Trotter scheme with the split-step Fourier
approach. The method relies on a Hamiltonian decomposition, where except for the components depending
exclusively on the momentum or on the position operators, there are also terms depending on both momentum
and position operators in particular configurations. We demonstrate that, as long as the latter does not depend
on noncommuting coordinates of the momentum and position operators, nondipole effects in laser-matter
interactions can be studied without applying extra approximations and unitary operations.
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I. INTRODUCTION

With the construction of the laser, scientists acquired an ex-
ceptional tool to generate coherent and intense beams of light.
This source of radiation allows the observation of highly non-
linear phenomena such as above-threshold ionization (ATI)
[1] or high-order harmonic generation (HHG) [2]. In these
processes, the electron interaction with the electromagnetic
radiation is comparable in strength to the binding Coulomb
forces inside the atom. Hence, the traditionally used pertur-
bation theory is not applicable to the description of such
processes. Novel theoretical approaches were therefore de-
veloped, including the strong-field approximation (SFA) in
ATI [3–5], the semiclassical three-step model [6–10], and the
Lewenstein model in HHG [11]. In the SFA the exact electron
scattering state is approximated by the Volkov state in the laser
field [12], i.e., the Coulomb interaction is neglected once the
electron is promoted to the continuum. Such an approximation
is fully justified in high-energy ionization of neutral atoms
(when the Born approximation for the final scattering state
can be applied) or in photodetachment from negative ions (as
discussed in Refs. [13–16]). However, at low photoelectron
energies or when the initial target is a positively charged
ion, the Coulomb interaction modifies the electron evolution
importantly. Similarly, the Lewenstein model considers a free
electron moving under the action of the electric field during
its excursion to the continuum and before it recombines with
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the parent ion. It is the recombination process that leads to the
emission of photons with energies that are integer multiples
of the driving photon’s energy, provided the laser pulse is
sufficiently long.

With the development of modern computers, another
approach, arising from the first principles of quantum me-
chanics, was established. This is by solving numerically the
time-dependent Schrödinger equation (TDSE). It is typically
based on the application of the finite-difference method and
the Crank-Nicolson propagator while space and time vari-
ables are discretized [17]. This approach was used to analyze
quantum effects in diverse scattering processes [17–20], to
explore the ATI from hydrogen [21], and to study multiphoton
ionization in a one-dimensional atomic model [22]. Other
propagation methods include the Peaceman-Rachford method
(see Refs. [23–25] and references therein) and the Suzuki-
Trotter approach [26–30], among others. Contrary to the SFA,
the numerical solution of the TDSE does not offer analyt-
ical expressions for the probability amplitudes and requires
substantial computational effort, particularly when projecting
the exact scattering state onto the field-free eigenstates of
the atomic Hamiltonian. Nevertheless, the TDSE offers an
accurate description of quantum effects (for some limited
laser pulse parameters) including rescattering, spreading of
the electron wave packet, and Coulomb modifications of the
electron trajectories. For this reason, this ab initio method
is particularly useful in describing ionization from atoms or
positively charged ions or in analyzing processes where the
above-mentioned quantum signatures are important.

In order to reduce the complexity of the above theoreti-
cal methods, the dipole approximation is typically used. In
this approximation, while the laser field varies in time, it is
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homogeneously distributed in space [31] (i.e., the laser field
does not propagate). This is justified provided the wavelength
of the laser wave is considerably larger than the dimensions
of atomic targets and so it breaks down for high-frequency
fields. In addition, the influence of the magnetic component of
the laser pulse on the electron dynamics has to be negligible
compared to that of the electric field. This in turn is satisfied
for driving fields with low to moderate intensities. Note that in
ionization by ultraintense laser pulses the magnetic field plays
an important role in the evolution of the electron wave packet
[32–37]. Also, the assumption of nonpropagating laser fields
and the absence of a magnetic component render impossible
the treatment of effects such as radiation pressure, where
photons transfer momentum to the system in the direction
of field propagation [38,39]. Furthermore, it has been shown
both experimentally and theoretically (see Refs. [40–42] and
references therein) that photoionization by near-infrared laser
pulses of moderate intensities already exhibits signatures of
radiation pressure. This imposes a low-frequency limit on the
applicability of the dipole approximation.

With the invention of the chirped-pulse amplification
technique by Strickland and Mourou [43] and with the de-
velopment of free-electron lasers (FELs), extremely intense
laser pulses with frequencies ranging from the x-ray regime
down to the infrared regime could be obtained. For instance,
in the HERCULES project, a 300-TW Ti:sapphire laser pulse
is tightly focused such that an intensity of I ∼ 2×1022 W/cm2

can be achieved [44,45]. In addition, x-ray FELs can pro-
duce coherent pulses of radiation with wavelengths down to
λ ∼ 0.1 nm and intensities I ∼ 1×1020 W/cm2 [46]. Also,
intense laser pulses in the long-wave infrared regime have
been obtained, with wavelengths of the order of λ ∼ 9 µm
[47]. It is clear that laser-matter interactions in those high-
or low-frequency and high-intensity regimes are beyond the
applicability of the dipole approximation.

Signatures of radiation pressure have been observed in ion-
ization by high-intensity long-wavelength laser pulses. Such
signatures appear as asymmetries in angular distributions
of photoelectrons in the direction of laser field propagation
[40,48–50] (i.e., ionized electrons are detected with an ad-
ditional momentum in that direction). Interestingly, under
certain circumstances, a combination of Coulomb focusing
and nondipole effects in elliptically polarized fields leads to
a shift of the photoelectron distribution towards the laser
source [48,49,51] (see also Ref. [52]). Further, in photoioniza-
tion by ultraintense laser pulses important relativistic effects
take place. For this reason, the electron dynamics should
be described by the Dirac or Klein-Gordon equations rather
than by the Schrödinger equation. To this end, the relativistic
strong-field approximation [53] makes use of the relativis-
tic Volkov solution [12] while accounting for effects such
as radiation pressure and spin dynamics. It is also possible
to introduce certain corrections in the expressions derived
from the original SFA in order to account for relativistic
effects. Such an approach is known as the quasirelativistic
SFA [54,55]. Among those corrections we mention (i) recoil
or higher-order Nordsieck corrections [56], which account for
radiation pressure effects, (ii) retardation correction, which
reflects the fact that the laser field is a propagating wave,
and (iii) relativistic mass correction, related to the relativistic

variation of the electron mass. Thus, it is possible to account
for nondipole effects within the nonrelativistic framework.
Other approaches, which have been successfully applied to
analyze nondipole effects in both ATI [57–59] and HHG [60],
consist in formulating an asymptotic solution of the Coulomb-
free Schrödinger equation outside the dipole approximation.
In such cases, the continuum states in the SFA (modified
Volkov solutions) contain important nondipole signatures (see
also the derivations in Refs. [61–65] for electron scattering
and atomic motion in multimode laser fields). Moreover, the
nondipole dynamics in tunneling ionization was recently stud-
ied in [66,67] and the strong-field ionization of atoms by an
elliptically polarized laser field was discussed in [68]. We note
that nondipole effects have also been analyzed in few-photon
ionization under the framework of the perturbation theory
and the numerical solution of TDSE (see, e.g., [69–71]).
Other theoretical approaches, including classical analysis in
conjunction with the Monte Carlo method, were thoroughly
discussed in the review article in [72].

The plan of this paper is as follows. In Sec. II we intro-
duce the analytical framework together with the algorithm
employed in our investigation. In Sec. III A we describe
the two-dimensional Coulomb-like central potential used to
model the target atom. Section III B relates to the Hamilto-
nian decomposition for the Suzuki-Trotter method, in both
the dipole and nondipole regimes. In Sec. III C we define the
laser pulse. The numerical parameters used to solve the time-
dependent Schrödinger equation are presented in Sec. IV. The
application of this model to describe physical phenomena is
discussed in Sec. V. By introducing the mean values of posi-
tion and velocity operators, we compare the electron dynamics
with and without the dipole approximation. In particular, in
Sec. V A the nondipole effects in HHG are explored for the
low-frequency laser pulses and in Sec. V B we analyze the
radiation pressure effects and forward drift of the electron
wave packet in the high-frequency pulses. Section VI con-
cerns the backward electron propagation which, according to
our investigation, is a consequence of the postpulse electron
wave packet spreading and its interaction with the parent ion.
The convergence of the numerical scheme and the electron
probability currents are studied in Sec. VII. The photoelectron
momentum distributions are discussed in Sec. VIII. A sum-
mary is given in Sec. IX.

In our numerical analysis, we use the atomic units of mo-
mentum p0 = αmec, energy E0 = α2mec2, length a0 = h̄/p0,
time t0 = h̄/E0, and electric-field strength E0 = α3m2

ec3/|e|h̄,
where me and e = −|e| are the electron rest mass and charge,
and α is the fine-structure constant. In analytical formulas we
set h̄ = 1 while keeping explicitly the remaining fundamental
constants.

II. THEORETICAL BACKGROUND

The dynamics of a quantum system is governed by the
wave equation

i∂t |ψ (t )〉 = Ĥ ( p̂, x̂, t )|ψ (t )〉, (1)

where Ĥ ( p̂, x̂, t ) is the Hamiltonian of the system under
consideration, with p̂ and x̂ the momentum and position op-
erators, respectively. They fulfill the Heisenberg commutation
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relations

[x̂ j, p̂�] = iδ j�, j, � = 1, . . . , D, (2)

where D is the spatial dimensionality of the system. Depend-
ing on the form of the Hamiltonian, Eq. (1) is called the
Schrödinger, Pauli, or Dirac equation.

The time evolution of an initial state |ψ (t0)〉 is given by the
unitary operator Û (t, t0),

|ψ (t )〉 = Û (t, t0)|ψ (t0)〉, (3)

which satisfies an identical wave equation

i∂tÛ (t, t0) = Ĥ ( p̂, x̂, t )Û (t, t0), (4)

with the initial condition Û (t0, t0) = Î , where Î is the identity
operator. The formal solution of this equation can be presented
in the form

Û (t, t0) = T̂
[

exp

(
− i

∫ t

t0

dτ Ĥ ( p̂, x̂, τ )

)]
, (5)

where T̂ is the Dyson time-ordering operator. As follows from
this expression, the evolution operator fulfills the decomposi-
tion relation

Û (t, t0) = Û (t, t ′)Û (t ′, t0), t0 < t ′ < t, (6)

which is the basis of the numerical integration of the wave
equation (1). Indeed, by introducing the time discretization

tn = t0 + nδt, n = 0, 1, . . . , N, δt = t − t0
N

, (7)

we obtain

Û (t, t0) = Û (tN , tN−1) · · · Û (t1, t0) =
N−1∏
n=0

Û (tn+1, tn). (8)

For a sufficiently small time increment δt (or sufficiently large
number of time steps N), we can use the approximation

Û (tn+1, tn) = e−iδt Ĥ ( p̂,x̂,t̄n ), (9)

with some properly chosen t̄n ∈ [tn, tn+1].
Let us further assume that the Hamiltonian is the sum of

two terms

Ĥ ( p̂, x̂, t ) = Ĥ1( p̂, x̂, t ) + ĥ2( p̂, x̂, t ). (10)

Then, as follows from the analysis presented in Refs. [26–28],
we can approximate the evolution operator for infinitesimally
small times Û (tn+1, tn) as

Û (tn+1, tn) = ÛST2(tn+1, tn) + O((δt )3), (11)

where

ÛST2(tn+1, tn) = e−i(δt/2)Ĥ1( p̂,x̂,t̄n )e−iδt ĥ2( p̂,x̂,t̄n )e−i(δt/2)Ĥ1( p̂,x̂,t̄n )

(12)

and t̄n = (tn + tn+1)/2. Such an approximation is the essence
of the Suzuki-Trotter method for the numerical solution of the
TDSE.

Further, we assume that ĥ2( p̂, x̂, t ) also consists of two
separate terms, i.e.,

ĥ2( p̂, x̂, t ) = Ĥ2( p̂, x̂, t ) + ĥ3( p̂, x̂, t ). (13)

In this case, according to the Suzuki-Trotter method, the in-
finitesimal evolution operator reads

Û (tn+1, tn) = ÛST3(tn+1, tn) + O((δt )3), (14)

with

ÛST3(tn+1, tn) = e−i(δt/2)Ĥ1( p̂,x̂,t̄n )e−i(δt/2)Ĥ2( p̂,x̂,t̄n )

×e−iδt ĥ3( p̂,x̂,t̄n )e−i(δt/2)Ĥ2( p̂,x̂,t̄n )

×e−i(δt/2)Ĥ1( p̂,x̂,t̄n ). (15)

If desired, such a procedure can be sequentially repeated K
times in order to account for K decompositions of the initial
Hamiltonian. To identify the number of those decompositions,
in Eqs. (11)–(15) we use the subscript STK, with K = 2 or 3
and ST indicating that the Suzuki-Trotter approximation is
used. Finally, from Eq. (8) we arrive at an expression for the
evolution operator with the Hamiltonian decomposed into K
parts,

Û (t, t0) =
N−1∏
n=0

ÛSTK(tn+1, tn) + O((δt )2). (16)

Note that the overall error of this method is of the order of
(δt )2. It can be made smaller by applying additional correc-
tions [28,29,73,74], in particular those proposed by Suzuki
[75] and Yoshida [76]. Here it is also important to note that
the approximations introduced above preserve the unitarity of
the evolution operator, provided the Hamiltonian is Hermitian.

The power of the Suzuki-Trotter approximation is that the
action of each exponent operator can be efficiently applied
over any state of the system. For this to happen, the Hamilto-
nian decompositions should have some particular properties.
For instance, if in Eq. (10) the operators Ĥ1 and ĥ2 depend
only on momentum and position operators, respectively, the
fast Fourier transform algorithm [77–79] can be applied. In
order to proceed further, let us denote by |x; X 〉 and |p; P〉 the
eigenstates of the position and momentum operators

x̂|x; X 〉 = x|x; X 〉, p̂|p; P〉 = p|p; P〉, (17)

which, in a D-dimensional space, satisfy the orthogonality and
completeness relations

〈x′; X |x; X 〉 = δ(D)(x − x′),

〈p′; P|p; P〉 = (2π )Dδ(D)(p − p′), (18)

Î =
∫

dDx|x; X 〉〈x; X | =
∫

dD p

(2π )D
|p; P〉〈p; P|, (19)

together with

〈x; X |p; P〉 = eip·x. (20)

Therefore, for any state |φ〉 we can write

〈x; X |e−iδt ĥ2(x̂,t )|φ〉 = e−iδth2 (x,t )〈x; X |φ〉 (21)

and

〈p; P|e−iδt Ĥ1( p̂,t )|φ〉 = e−iδtH1(p,t )〈p; P|φ〉, (22)
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FIG. 1. Scheme A for the Suzuki-Trotter split-step Fourier
method with a Hamiltonian divided into two terms [see Eq. (12)].
It is assumed that each Hamiltonian component depends either on
the momentum or on the position operator [Eq. (24)] and that the
wave function describing the quantum state of the system at time tn,
|ψ (tn)〉, is known. In this scheme, we illustrate the steps that lead to
|ψ (tn+1)〉 in position representation. Note that this type of algorithm
is commonly used within the dipole approximation.

where the functions 〈x; X |φ〉 and 〈p; P|φ〉 are related through
the Fourier transform

〈p; P|φ〉 =
∫

dDxe−ip·x〈x; X |φ〉. (23)

Hence, we can determine the evolution operator given by
Eqs. (11) and (12). In order to illustrate this, in Fig. 1 we show
the steps for the temporal evolution of a system according
to the Suzuki-Trotter split-step Fourier method (scheme A).
It is assumed that such a system is originally found in the
state |ψ (tn)〉 and that the Hamiltonian can be decomposed
into two parts (K = 2). We also assume that each Hamiltonian
term depends exclusively on either position or momentum
operators, i.e., we write

Ĥ ( p̂, x̂, t ) = Ĥ1( p̂, t ) + ĥ2(x̂, t ). (24)

In our notation, F̂ and F̂−1 represent the Fourier transform
(FT) and its inverse (IFT), respectively. Note that, by applying
the procedure shown in Fig. 1, we start with the wave func-
tion |ψ (tn)〉 and end up with |ψ (tn+1)〉, both in the position
representation.

The algorithm presented in scheme A (Fig. 1) is broadly
used in strong-field physics when applying the dipole approx-
imation (see, e.g., Refs. [38,80–83]). If, however, nondipole
effects are going to be studied, this scheme has to be suitably
modified. This is done by applying additional approximations,
the validity of which has to be investigated. To this end, we
present below an extension of this scheme toward a triply
decomposed Hamiltonian (K = 3). Such an extension is based

on the approximation given by Eqs. (14) and (15). First, we
assume that Ĥ1 and Ĥ2 in Eqs. (10) and (13) depend only on
the momentum p̂ and the position x̂ operators, respectively.
However, the third term ĥ3( p̂, x̂, t ) depends on both of them.
Therefore, the full Hamiltonian Ĥ ( p̂, x̂, t ) reads

Ĥ ( p̂, x̂, t ) = Ĥ1( p̂, t ) + Ĥ2(x̂, t ) + ĥ3( p̂, x̂, t ). (25)

It is also assumed that the term with mixed operators
ĥ3( p̂, x̂, t ) is expressed exclusively by commuting compo-
nents of p̂ and x̂, i.e., it is written in a particular configuration.
This configuration is defined by a multi-index σ ,

σ = (σ1, σ2, . . . , σD), (26)

where σ j = 0 or 1 for j = 1, . . . , D. Introducing now the
operators

x̂σ = ((1 − σ1)x̂1, . . . , (1 − σD)x̂D) (27)

and

p̂σ = (σ1 p̂1, . . . , σD p̂D), (28)

we see that all components of x̂σ and p̂σ commute with each
other. Moreover, the configuration σ defines the position and
momentum vectors (xσ and pσ , respectively) such that their
scalar product vanishes, pσ · xσ = 0. For the purpose of our
further analysis, we define also the scalar product in the σ

configuration as

(pσ , xσ ) =
D∑

j=1

σ j p jx j =
∑
σ j=1

p jx j . (29)

This allows us to introduce the partial Fourier transform, de-
noted by F̂σ , such that for any state |φ〉 we have

〈x; X |φ〉 F̂σ−→ 〈pσ , xσ |φ〉, (30)

with

〈pσ , xσ |φ〉 =
∫ [∏

σ j=1

dx j

]
e−i(pσ ,xσ )〈x; X |φ〉, (31)

which leads to the mixed position-momentum representation
of a quantum state |φ〉. Similarly to the relations (21) and (22),
for the Hamiltonian ĥ3( p̂σ , x̂σ , t ) we arrive at

〈pσ , xσ |e−iδt ĥ3( p̂σ ,x̂σ ,t )|φ〉 = e−iδth3(pσ ,xσ ,t )〈pσ , xσ |φ〉. (32)

This leads to the Suzuki-Trotter algorithm presented in
scheme B (Fig. 2). Here F̂σ is the partial Fourier transform
and F̂−1

σ is its inverse calculated in the σ configuration ac-
cording to Eqs. (30) and (31). Note that this scheme can be
easily expanded if the Hamiltonian contains more than one
term in a given configuration. It has been tested by comparing
its predictions with the exactly solvable model of a harmonic
oscillator interacting with electric and magnetic fields [84].
In this model, the frequencies of the harmonic oscillator and
both fields arbitrarily depend on time. If the initial state is a
Gaussian function, then one can either find a solution of the
Schrödinger equation in an analytical form or the problem can
be reduced to the solution of a system of ordinary differential
equations.
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FIG. 2. Scheme B for the Suzuki-Trotter split-step Fourier
method with a Hamiltonian divided into three terms [see Eq. (15)].
It is assumed that the first term Ĥ1( p̂, t ) and the second term Ĥ2(x̂, t )
depend on the momentum and position operators, respectively. How-
ever, the third component ĥ3( p̂σ , x̂σ , t ) contains mixed operators and
it is presented in the σ configuration [see Eqs. (27) and (28)]. While
F̂ and F̂−1 represent the FT and IFT, F̂σ and F̂−1

σ are the partial
Fourier transform and its inverse in the σ configuration, respectively
[Eqs. (30) and (31)].

In closing this section we note that a similar approach has
been used recently in Refs. [85,86].

III. PHYSICAL SYSTEM

Our aim is to investigate the nondipole signatures in ion-
ization and high-order harmonic generation by strong laser
pulses. For this purpose, we are going to apply the numerical
schemes A and B presented in Sec. II to solve the one-electron
Schrödinger equation. When solving the TDSE numerically,
calculations are always limited to finite regions. However, in
order to avoid the occurrence of unphysical reflection effects
from boundaries, this area should be large enough and some
absorbing boundary conditions should be imposed. This sig-
nificantly affects the memory being used and the computation
time. For this reason, the theoretical analysis is often limited
to one- (1D) or two-dimensional (2D) spaces. Since nondipole
effects (attributed to the presence of the magnetic field) do
not occur in 1D spaces, we investigate ionization and high-
order harmonic generation of a single-electron atom in two
dimensions.

A. Atomic system

Let us consider a 2D hydrogenlike atom with a binding
soft-core Coulomb potential

V (x) = − Z√
x2 + a2 exp(−x/a)

, (33)

where Z is the atomic number, x = (x1, x2) is the two-
dimensional position vector, and x = |x| =

√
x2

1 + x2
2 repre-

sents its norm. To avoid the presence of quadrupole and
higher multipole terms, we have introduced the exponential
term a2 exp(−x/a) in the denominator of Eq. (33) (a > 0).
Note that in our model V (x) tends asymptotically to the pure
Coulomb potential for large x,

V (x) = −Z
x

+ O

(
e−x/a

x3

)
. (34)

Setting a = 1.106 09a0 and Z = 1, the ground-state energy
in the potential (33) turns out to be identical to that for a
3D hydrogen atom, EB = −0.5E0. Moreover, the ground-state
wave function ψB(x) is determined by applying either the
shooting method for the radial differential equation or the
Feynman-Kac method for imaginary times. Both approaches
give nearly the same results for EB and ψB(x). Then the func-
tion ψB(x) is used as the initial state for the time propagation
of the Schrödinger equation (1) with the atomic Hamiltonian

Ĥat ( p̂, x̂) = 1

2me
p̂2 + V (x̂). (35)

As we have checked, by choosing δt = 0.01t0 in scheme A
(Fig. 1), the state ψB(x) acquires the phase factor exp(−iEBt )
for 0 < t < 100t0. Thus, ψB(x) is in fact the eigenstate of the
atomic Hamiltonian (35) with eigenvalue EB.

B. Hamiltonian decomposition

The electron interaction with the laser field is accounted
for by applying the standard minimal coupling prescription

Ĥ ( p̂, x̂, t ) = 1

2me
[ p̂ − eA(x̂, t )]2 + V (x̂), (36)

where e is the electron charge and the vector potential A(x̂, t )
describes the laser pulse. For our numerical illustrations we
choose

A(x̂, t ) = [A(t − x̂2/c), 0], (37)

which corresponds to a laser pulse propagating in the x2 direc-
tion and polarized linearly in the x1 direction. Hence, the total
Hamiltonian in Eq. (36) can be written in the form

Ĥ ( p̂, x̂, t ) = Ĥ1( p̂, t ) + Ĥ2(x̂, t ) + ĥ3( p̂σ , x̂σ , t ), (38)

with

Ĥ1( p̂, t ) = 1

2me
p̂2, Ĥ2(x̂, t ) = 1

2me
[eA(t − x̂2/c)]2 + V (x̂),

(39)

and

ĥ3( p̂σ , x̂σ , t ) = − e

me
A(t − x̂2/c) · p̂1. (40)
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This means that, according to our classification, ĥ3 is in
the configuration σ = (1, 0); thus, the numerical scheme B
(Fig. 2) can be applied. In contrast, in the dipole approxima-
tion, the operator A(t − x̂2/c) is replaced by the function A(t ).
In this case, the Hamiltonian (36) becomes

Ĥd ( p̂, x̂, t ) = 1

2me

{
[ p̂1 − eA(t )]2 + p̂2

2

} + V (x̂), (41)

which defines the splitting required for the application of
scheme A.

To account for nondipole corrections in the lowest order,
we make an approximation

A(t − x̂2/c) = A(t ) + 1

c
x̂2E (t ) + O(1/c2), (42)

where E (t ) = −Ȧ(t ) is the electric component of the laser
pulse in the dipole approximation. Hence, the Hamiltonian
(36), excluding the term proportional to 1/c2, becomes

Ĥd1( p̂, x̂, t ) = Ĥ ′
1( p̂, t ) + Ĥ ′

2(x̂, t ) + ĥ′
3( p̂σ , x̂σ , t ), (43)

with

Ĥ ′
1( p̂, t ) = 1

2me
p̂2,

Ĥ ′
2(x̂, t ) = 1

2me
[eA(t )]2 + 1

mec
e2A(t )E (t )x̂2 + V (x̂), (44)

and

ĥ′
3( p̂σ , x̂σ , t ) = − e

me

(
A(t ) + 1

c
E (t )x̂2

)
· p̂1. (45)

Note that, due to the properties of scheme B, it is not necessary
to perform an additional unitary transformation in order to get
rid of the term x̂2 p̂1 in Eq. (45). Since our analysis is carried
out in the inertial reference frame, in which the center of the
binding potential is at rest and no noninertial forces act on
photoelectrons, the interpretation of the results that follow
from our numerical analysis is relatively simple. Moreover,
higher nondipole terms, as well as the relativistic mass correc-
tions, can be easily accounted for without substantial changes
in the algorithm shown in scheme B.

C. Laser pulse

In this work we limit our consideration to ionization
and high-order harmonic generation driven by flat-top pulses
which are smoothly turned on and off. This allows us to study,
for instance, effects that are typically observed for monochro-
matic plane waves, provided the pulses are long enough. For
example, such pulses can be described by a super-Gaussian
envelope of the type exp[−(t/τ )Nenv ], where Nenv is an integer
much larger than 2, as this function is nearly constant for
|t | < τ . Thus, we assume that A(t ) is of the form

A(t ) = A0 exp

[
−

(
η

ωt − πNosc

πNosc

)Nenv
]

sin(ωt + χ ). (46)

Note that the function A(t ) relates not only to the electric-field
strength E (t ), as mentioned before, but also to the electron
displacement in the laser field αD(t ) [87,88],

αD(t ) = − e

me

∫ t

−∞
dτA(τ ). (47)

In our further analysis we choose η = 1.35 and Nenv = 12 in
Eq. (46), as for such parameters A(t ), αD(t ), and E (t ) vanish
for t < 0 and t > 2πNosc/ω within the accuracy of our numer-
ical calculations. This property is illustrated in Figs. 3 and 6
below. Moreover, ω and χ in Eq. (46) are the carrier frequency
and the carrier envelope phase of the pulse, respectively, and
A0 sets up the maximum amplitude of field oscillations.

IV. NUMERICAL DETAILS

Before investigating the nondipole signatures in ionization
and high-order harmonic generation, let us first discuss some
relevant details of our numerical analysis. First of all, the
spatial region is defined by the parameter x0 such that −x0 �
x1, x2 < x0. The number of points in this domain is fixed by
an integer K ,

x1, j = −x0 + ( j − 1)�x, �x = 2x0

2K
, j = 1, . . . , 2K ,

(48)
and similarly for the second Cartesian coordinate x2. Thus, the
discretization in momentum space corresponds to

p1, j = −π2K

2x0
+ ( j − 1)�p, �p = π

x0
, (49)

and the same for p2.
In order to reduce the boundary reflection effects, we intro-

duce the mask function M(x) (x =
√

x2
1 + x2

2 ), which is given
by

M(x) =

⎧⎪⎨
⎪⎩

1, x < r1[
cos

(
π
2

x−r1
r2−r1

)]1/8
, r1 � x � r2

0, x > r2,

(50)

with 0 < r1 < r2 � x0. This function multiplies
exp[−iδth2(x, t̄n)] in scheme A (Fig. 1) as well as
exp[−i δt

2 H2(x, t̄n)] in scheme B (Fig. 2). As discussed in
Ref. [6], its role is equivalent to introducing an absorbing
potential at the boundaries.

The wave functions 〈x; X |ψ (t )〉, 〈p; P|ψ (t )〉, and
〈pσ , xσ |ψ (t )〉 determine the probability distributions in
the position and momentum spaces P(x, t ) and P̃(p, t ), as
well as in the mixed representation P̌(pσ , xσ , t ), respectively.
The normalization of these distributions is chosen such that

2K∑
j=1

2K∑
�=1

P(x1, j, x2,�, t )(�x)2 = 1, (51)

2K∑
j=1

2K∑
�=1

P̃(p1, j, p2,�, t )(�p)2 = 1, (52)

and

2K∑
j=1

2K∑
�=1

P̌(pσ
j , xσ

� , t )�p�x = 1. (53)

Note, however, that due to the leakage of probability from the
finite integration region, the above normalizations are strictly
fulfilled only for the initial times. With this convention, the
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FIG. 3. Laser pulse functions for |e|A0 = 1.5p0, ω = 0.057E0, Nosc = 3, Nenv = 12, χ = 0, and η = 1.35: (a) electric-field strength,
(b) vector potential, and (c) displacement function. For such parameters we deal with a pulse comprising one cycle in the flat-top portion
of the envelope. (d) Time variation of the ground-state population for the dynamics described by the Hamiltonians (38) (full nondipole
calculation, blue solid line), (41) (dipole approximation, black dotted line), and (43) (nondipole corrections, red dashed line). As we see,
for these parameters the nondipole effects are hardly visible. In the numerical analysis presented here, the following parameters have been
chosen (see Sec. IV): K = 12, x0 = 300a0, and δt = 0.01t0. For the mask function M(x) we have set r1 = 280a0 and r2 = 299a0.

averages of operators B(x̂, t ), C( p̂, t ), and D( p̂σ , x̂σ , t ) are
equal to

〈B(x̂, t )〉 = 〈ψ (t )|B(x̂, t )|ψ (t )〉

=
2K∑
j=1

2K∑
�=1

B(x1, j, x2,�, t )P(x1, j, x2,�, t )(�x)2, (54)

〈C( p̂, t )〉 = 〈ψ (t )|C( p̂, t )|ψ (t )〉

=
2K∑
j=1

2K∑
�=1

C(p1, j, p2,�, t )P̃(p1, j, p2,�, t )(�p)2,

(55)

〈D( p̂σ , x̂σ , t )〉 = 〈ψ (t )|D( p̂σ , x̂σ , t )|ψ (t )〉

=
2K∑
j=1

2K∑
�=1

D(pσ
j , xσ

� , t )P̌(pσ
j , xσ

� , t )�p�x,

(56)

thus accounting for the depletion of probability in the inte-
gration region, as no renormalization of the wave function is
applied. Moreover, the convergence of results was routinely
checked by changing the parameters of the numerical analysis.
In the calculation of the fast Fourier transform, we use the
relevant procedures from the Intel® Math Kernel Library.

Because of the finite speed of light, we always start the
time evolution at ti = −x0/c and end for times not smaller
than tf = 2πNosc/ω + x0/c. Due to this choice, the laser pulse
has not yet entered the space region for t < ti and has already
left it entirely for t > tf .

V. MEAN-VALUE CHARACTERISTICS OF ELECTRON
WAVE PACKETS

In classical mechanics the well-known signature of
nondipole effects in a linearly polarized monochromatic plane
wave is the figure-eight motion of a charged particle. This
shape describes a trajectory of a particle in the coordinate
system in which it rests on average as well as it describes
the particle acceleration, in both the plane defined by the

polarization vector and the direction of wave propagation.
This property can be derived using the relativistic Hamilton-
Jacobi equation [89] or the relativistic Newton equation with
the Lorentz force [90]. For the latter, three invariants of mo-
tion can be obtained that determine the kinetic momentum of a
particle. In the coordinate system chosen by us and neglecting
the relativistic mass corrections (which are of the order of
1/c2), these invariants lead to the relations

v1(t ) = − e

me
A(tr ), v2(t ) = 1

2c
[v1(t )]2, (57)

where tr = t − x2(t )/c. Thus, for the acceleration vector we
obtain

a1(t ) = v̇1(t ), a2(t ) = v1(t )

c
a1(t ). (58)

In particular, if v1(t ) = v0 cos(ωtr + φ0) (with an arbi-
trary phase φ0), then a1(t ) = −v0ω sin(ωtr + φ0) + O(1/c2).
Hence, after squaring the second equation in (59), we arrive at
the relation

a2
2 = 1

c2ω2

(
v2

0ω
2 − a2

1

)
a2

1, (59)

which corresponds exactly to the symmetric figure eight for
the acceleration. The above derivation neglects the influence
of the binding potential that can lead to some modifications of
this picture, as we will discuss shortly.

In quantum mechanics the analogs of the position, velocity,
and acceleration vectors are the mean values of the corre-
sponding operators. For the position we have

x(t ) = 〈ψ (t )|x̂|ψ (t )〉. (60)

For the velocity v(t ) = ẋ(t ), depending on the choice of the
Hamiltonian, we get

v(t ) =

⎧⎪⎪⎨
⎪⎪⎩

1
me

〈ψ (t )| p̂ − eA
(
t − 1

c x̂2
)|ψ (t )〉 for (38)

1
me

〈ψ (t )| p̂ − eA(t ) − e
cE (t ) · x̂2|ψ (t )〉 for (43)

1
me

〈ψ (t )| p̂ − eA(t )|ψ (t )〉 for (41).
(61)
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FIG. 4. Time variations of mean (a) and (d) positions, (b) and (e) velocities, and (c) and (f) accelerations for the laser pulse parameters
defined in the caption of Fig. 3. (g) Relation between the mean position parallel to the laser pulse propagation direction, x2(t ), and the mean
position perpendicular to it, x1(t ). The same relations are shown for the mean (h) velocities and (i) accelerations. We compare the mean values
for three Hamiltonians: (38) (full nondipole calculation, solid blue solid line), (41) (dipole approximation, dotted black dotted line), and (43)
(nondipole correction, dashed red dashed line) in panels (a), (b), and (c). Note that the black dotted lines for the dipole approximation are
not visible on these plots as they exactly coincide with the other lines. In the remaining panels the comparison is made only for Hamiltonians
(38) (blue solid line) and (43) (red dashed line), as in the dipole approximation the mean values parallel to the propagation direction vanish.
Our results demonstrate that the lowest-order nondipole corrections to the full Hamiltonian describe the dynamics of the electron wave packet
sufficiently well. In the numerical calculations, we have chosen (see Sec. IV) K = 12, x0 = 300a0, and δt = 0.01t0 and for the mask function
M(x) we have set r1 = 280a0 and r2 = 299a0.

Finally, for the acceleration we use a(t ) = v̇(t ). Note that in
the dipole approximation the components parallel to the prop-
agation direction of all these vectors vanish, i.e., x2(t ) = 0,
and the same for v2(t ) and a2(t ). Further, let us consider
two cases for which the dynamics of the mean values defined
above show different behavior.

A. Low-frequency case (ω � |EB|)
First, we consider the laser pulse of frequency ω =

0.057E0 that corresponds roughly to the wavelength of
800 nm. In Fig. 3 we present the electric-field strength,
vector potential, and displacement for the three-cycle
pulse with the super-Gaussian envelope and |eA0| = 1.5p0.
For these parameters, the ponderomotive energy equals
Up = e2A2

0/4me = 0.5625E0 and the corresponding Keldysh
parameter is γ = √|EB|/2Up = 2/3, i.e., we consider
the intermediate multiphoton-tunneling regime. In Fig. 3(d)
we demonstrate the population of the ground state during
the time evolution, which exhibits peaks when the modulus
of the electric-field strength is maximum. It is well known
that if such revivals take place, one can expect to observe
the high-order harmonics in the spectrum of emitted radiation
[8–11], as we will discuss shortly.

In Fig. 4 we present the mean values of the electron po-
sition, velocity, and acceleration. All these quantities in the
direction of the laser pulse polarization are nearly independent
of the choice of Hamiltonians considered in Sec. III B. The
discrepancies appear if we consider components parallel to
the pulse propagation direction, which vanish in the dipole
approximation. However, if nondipole terms in the Hamil-
tonian are accounted for, we observe the effects related to
radiation pressure that push the center of electron wave packet
in the light propagation direction. The electron trajectory
[Fig. 4(g)], if calculated in the reference frame of vanishing
averaged velocity, resembles the figure eight, whereas the
velocity dependence [Fig. 4(h)] is described quite well by the
parabola (58). The discrepancies are related to the interaction
(rescattering, within the classical or quantum theory) of the
electron with the binding potential in the laser pulse, which is
not accounted for in the classical analysis discussed above.

Even greater differences with the classical picture are man-
ifested in the time dependence of electron acceleration, shown
in Figs. 4(c) and 4(f). Here, in both cases, we observe very fast
changes caused by rescattering processes. The consequence
of these changes is that in the Fourier decomposition of mean
values many coefficients do not disappear, which leads to the
formation of a wide spectrum of high-order harmonics, as
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FIG. 5. Fourier transform modulus squared of the mean acceleration components which are parallel to either (a) the polarization vector
or (b) the pulse propagation direction. The acceleration components are calculated for different Hamiltonians, specified by Eq. (38) (full
nondipole calculation, blue solid line), Eq. (41) (dipole approximation, black dotted line), and Eq. (43) (nondipole correction, red dashed line),
by numerically differentiating the mean velocity vector (61). The laser field parameters are defined in Fig. 3. The nondipole corrections due
to the nonvanishing momenta of generated harmonics are smaller by two orders of magnitude. Vertical lines are for (a) odd and (b) even
harmonics. Note that in both panels some harmonics are shifted towards higher energies, which is the case for short driving pulses.

presented in Fig. 5. There we observe the broad distributions
of the Fourier transform modulus squared of both acceleration
components which, according to the quantum analog of the
Larmor formula, are proportional to the intensity of generated
radiation in the leading 1/c approximation (i.e., neglecting
the contributions from the nonvanishing momentum of the
generated photon). The cutoffs of both plateaus are given by
the well-known formula [7,91]

�cutoff

ω
= 1

ω
(|EB| + 3.17Up) ≈ 40. (62)

The nondipole signature in the high-order harmonic gener-
ation is that harmonics are also emitted in the direction of
light polarization. Moreover, contrary to the “ordinary” har-
monics [Fig. 5(a)], for which the spectrum consists mainly of
odd harmonics, for the spectrum generated due to nondipole
effects [Fig. 5(b)] we observe mostly even harmonics. A qual-
itative explanation of this fact can be based on the quadratic
dependence of v2(t ) on v1(t ). The latter follows directly from
Eq. (58) or from Fig. 4(h), from which we can estimate
that (in atomic units) v2(t ) ≈ 2×10−3 + [v1(t )]2/2c for times
corresponding to the flat portion of the envelope. Numerical
analysis of v1(t ) shows that in its Fourier decomposition the
modulus squared of the constant term is around one order of
magnitude smaller than the first harmonic for � = ω. Hence,
since the odd harmonics dominate in the Fourier decomposi-
tion of v1(t ) and a1(t ), in the corresponding decomposition
of a2(t ) we mostly observe even harmonics. Note, however,
that the analysis presented here only indicates the existence
of such nondipole harmonics. Investigation of their coherent
properties would require extended analysis, which is beyond
the scope of this work.

In conclusion, for low-frequency laser pulses for which the
Keldysh parameter γ is smaller than 1 (in fact, this is the
most interesting case in the context of high-order harmonic
generation), nondipole effects are hardly visible as long as
pulses contain only a few oscillations. On the other hand, if
the number of oscillations is large, the nondipole signatures
are amplified at the end of the pulse, when the mean position
of the electron wave packet [i.e., x2(t )] is far from the potential

center and the dipole approximation (41) is no longer valid.
However, this case is difficult to analyze numerically (espe-
cially for the ionization problem) because during the time
evolution a significant portion of the electron wave packet
leaks from the integration region. The results presented in this
section agree with the existing ones, up to the even harmonics
radiated in the direction of polarization. As expected, for low-
frequency laser pulses the dynamics is governed mostly by the
in-pulse rescattering processes. Additionally, the nondipole
signatures in ionization and high-order harmonic generation
by low-frequency laser fields have already been thoroughly
studied in literature. For this reason, in the remaining portion
of our paper, we focus on the high-frequency laser pulses, as
in this case we expect to find qualitatively new results.

B. High-frequency case (ω > |EB|)
The inspection of the leading-order nondipole approxima-

tion (42) shows that its validity is limited to

ω

c
|x2(t )| � 1. (63)

This condition is violated for high-frequency pulses if their
intensity or the number of cycles is sufficiently large, as
under such conditions the average position x2(t ) can reach
a significant value at the end of the pulse. For this reason,
we consider the laser pulse of frequency ω = E0 for which
|e|A0 = 50p0. Hence, the ponderomotive energy equals Up =
625E0 and the Keldysh parameter is much less than one. This
means that we investigate the over-barrier ionization regime
in which the atom is immediately ionized by the laser field.
In Fig. 6 we present the electric-field strength [Fig. 6(a)], the
vector potential [Fig. 6(b)], and the displacement function for
a three-cycle pulse [Fig. 6(c)]. In Fig. 6(d) the population of
the ground state of a 2D hydrogen atom during the interaction
with the laser field is shown. As we see, if the nondipole
corrections are accounted for, the contribution of the ground
state to the electron wave packet is significantly depleted just
in the beginning of the pulse. In addition, the ground state is
only slightly repopulated when the displacement vanishes.
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FIG. 6. Laser pulse functions for |e|A0 = 50p0, ω = E0, Nosc = 3, Nenv = 12, χ = 0, and η = 1.35: (a) electric-field strength, (b) vector
potential, and (c) displacement function. For such parameters we deal with a pulse comprising one cycle in the flat-top portion of the envelope.
(d) Time variation of the ground-state population for the dynamics described by the Hamiltonians (38) (full nondipole calculation, blue solid
line), (41) (dipole approximation, black dotted line), and (43) (nondipole corrections, red dashed line). For such pulse parameters, significant
nondipole effects are observed. In the numerical analysis presented here, the following parameters have been assumed (see Sec. IV): K = 12,
x0 = 200a0, and δt = 0.01t0. For the mask function M(x) we have chosen the values r1 = 180a0 and r2 = 199a0.

In order to gain deeper insight into the time evolution
of the electron wave packet within the laser pulse, we now
investigate the mean values. In Figs. 7(a)–7(c) we present the
mean position, velocity, and acceleration in the direction of
light polarization. By comparing these figures with the cor-
responding Figs. 6(a)–6(c) we conclude that, with very good
agreement,

x1(t ) = αD(t ), v1(t ) = − e

me
A(t ), a1(t ) = e

me
E (t ).

(64)
This suggests that the time evolution of the electron wave
packet is mainly determined by the interaction with the laser
field. Hence, for the current laser pulse parameters, the rescat-
tering with the residual ion and the Coulomb focusing effects
marginally influence the mean values. The same happens also
in the dipole approximation, for which the shift of the elec-
tron wave packet in the direction perpendicular to the laser
pulse polarization vector is zero. For all cases considered in
this paper and defined in Sec. III B, we get nearly the same
dependence on time for mean values of the position, veloc-
ity, and acceleration operators, with the gradually increasing
discrepancies between all of them as the pulse terminates.
Moreover, for longer pulses these differences become even
more significant.

The mean values of electron position, velocity, and ac-
celerations calculated in the direction of pulse propagation
are presented in Figs. 7(d)–7(f), disregarding the dipole ap-
proximation, for which all these components vanish. Here
we clearly see the differences between the time evolution
determined either by the full Hamiltonian (38) or by its
lowest-order nondipole approximation (43). This is of course
due to the large radiation pressure that moves the electron
wave packet in the direction of light propagation to such an
extent that the validity condition (63) is no longer applicable.
The breakdown of the lowest-order nondipole approximation
is clearly seen in Figs. 7(h) and 7(i). We learn from them
that for the full Hamiltonian (38) the velocity v2(t ) depends
quadratically on v1(t ) and for times corresponding to the flat
portion of the envelope the acceleration curve adopts nearly

a perfect figure-eight shape, as follows from the classical
analysis in which the interaction with the binding potential
is neglected. This is another indication that just after ion-
ization the electron wave packet moves predominantly under
the action of the laser field, with apparently small correc-
tions resulting from the interaction with the residual ion.
This means that, for the current laser field parameters, the
effects related to rescattering and Coulomb focusing can be
disregarded while the electron is still interacting with the laser
pulse.

In order to confirm the above conclusions, let us compare
the quantum mean values with the classical trajectories of an
electron interacting only with the laser field. To this end we
have to solve the Newton equation with the Lorentz force

ẍ′(t ) = e

me
[E (x′(t ), t ) + ẋ′(t )×B(x′(t ), t )], (65)

where E (x′, t ) and B(x′, t ) are the electric and magnetic fields
of the laser pulse. In our case, this equation reduces to the
system of two ordinary differential equations

ẍ′
1(t ) = e

mec
E[t − x′

2(t )/c][c − ẋ′
2(t )],

ẍ′
2(t ) = e

mec
E[t − x′

2(t )/c]ẋ′
1(t ), (66)

which are solved numerically with the initial conditions x′(t =
0) = 0 and ẋ′(t = 0) = 0. In these equations E (t − x′

2/c) =
−∂t A(t − x′

2/c), with the vector potential function A(t ) de-
fined by Eq. (46). Note that we distinguish the classical
quantities from their quantum counterparts by adding the
prime superscript. Figures 7(j)–7(l) compare the classical and
quantum quantities which in fact cannot be distinguished
from each other. Only by comparing the numerical values
can one see the differences. For instance, for the time T1 =
2πNosc/ω + x0/c, for which the laser pulse entirely leaves the
integration space, the classical values are equal to x′(T1) =
(0, 61.6)a0, ẋ′(T1) = 0, and ẍ′(T1) = 0. On the other hand,
their quantum counterparts that also account for the binding

053112-10



NONDIPOLE SIGNATURES IN IONIZATION AND … PHYSICAL REVIEW A 107, 053112 (2023)

0 1 2 3

-80
-60
-40
-20

0

0 1 2 3
0

20

40

60

-80 -60 -40 -20 0
0

20

40

60

0 1 2 3
-50

0

50

0 1 2 3
0

2

4

6

8

-50 0 50
0

2

4

6

8

0 1 2 3
-50

0

50

0 1 2 3

-5

0

5

-50 0 50

-5

0

5

-80 -60 -40 -20 0
0

20

40

60

-50 0 50
0

2

4

6

8

-50 0 50

-5

0

5

FIG. 7. Same as in Fig. 4 but for the laser pulse parameters defined in the caption of Fig. 6. For these parameters we observe discrepancies
between the full Hamiltonian (38) (blue solid line) and its lowest-order nondipole approximation (43) (red dashed line). In addition, in (j)–(l)
we compare the quantum mean values (blue solid line) with the classical trajectories (red dotted line) resulting from the solution of the Newton
equation with the Lorentz force (65). For the full Hamiltonian, the averaged values follow very closely the classical pattern. The parameters of
the numerical analysis are the same as in Fig. 6.

potential adopt the values

x(T1) = (−1.8, 61.3)a0, ẋ(T1) = (−0.09,−0.02)(a0/t0),

ẍ(T1) = (8.2×10−6,−2.7×10−4)(a0/t2
0 ). (67)

In particular, the nonvanishing acceleration is due to the
Coulomb attraction, as in atomic units this vector is very
close to the Coulomb force −x(T1)/|x(T1)|3 = (7.8×10−6,

−2.7×10−4) [we presume that the insignificantly small differ-
ence for ẍ1(T1) is due to the fact that the electron probability
density is distributed around the center x(T1) and/or that the
acceleration has been evaluated approximately from the ve-
locity by applying the finite-difference method]. This means
that the attractive potential influences the dynamics of the
quantum mean values in the pulse but for the current laser
field parameters this effect is rather marginal.

VI. ELECTRON PROBABILITY DISTRIBUTIONS

For the high-frequency case analyzed in Sec. V B we have
chosen laser pulse parameters similar to the ones considered
in Ref. [33]. As it follows from there, contrary to the expec-
tations based on the radiation pressure phenomenon, a large
portion of electrons is emitted opposite to the field propa-
gation direction. Even more, the smaller the photoelectron
energy is, the more emission in the opposite direction is ex-
pected. This puzzle was initially explained by considering the
classical dynamics of electrons in the laser pulse and showing
that the rescattering generates electron trajectories with final
momenta opposite to the pulse propagation direction. This
seminal work spurred further investigations of the nondipole
signatures in ionization, both experimental and theoretical. In
particular, it was shown that similar effects can be expected
for the low-frequency fields. An expanded discussion of ex-
perimental works and theoretical models used in this context
can be found in Ref. [72].
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FIG. 8. Snapshots of the electron probability distribution in position space for selected times Tj = 2π jNosc/ω + x0/c, for which the
electron wave packet interacts only with the static binding potential. The numerical analysis has been carried out for x0 = 200a0, δt = 0.01t0,
K = 12, and for the mask function M(x) parameters r1 = 180a0 and r2 = 199a0, as defined in Sec. IV. The laser pulse parameters are the same
as in Fig. 6. The total probability for the electron wave packet to stay within the integration region is equal to 1 for T1 and 0.88 for the largest
time T10.

The analysis presented, for instance, in Ref. [49] shows
that rescattering and Coulomb focusing in the laser field can
explain the existence of electrons with negative momenta
when ionized by low-frequency pulses. However, for the
high-frequency fields this interpretation is in contradiction
with what we discussed in Sec. V B. Therefore, yet another
mechanism for the generation of photoelectrons of negative
momenta (especially for energies smaller than the laser fre-
quency) has to be proposed.

Note that the electron wave packet spreading significantly
affects properties of various strong-field processes. This is
due to the fact that many of them, like HHG [9,10] or gen-
eration of high-energy structures in the spectrum of emitted
electrons [92], are interpreted as the result of recombination
or rescattering of electrons returning to the Coulomb potential
center. As long as trajectories of these electrons are deter-
mined only by their interaction with the laser field and as
long as scattering is treated in the Born approximation, this
picture successfully describes the aforementioned phenom-
ena. Problems arise, however, when an attempt is made to
include the electron interaction with the Coulomb field of
the parent ion, e.g., in the eikonal approximation. Then, in
the theoretical description, certain singularities appear that
do not occur in other approaches, for example, in the Born
approximation or in the numerical solution of the Schrödinger
equation. As shown in Refs. [93,94], these singularities arise
from neglecting the electron wave packet spreading during
its interaction with the laser field which, on the other hand,
is automatically accounted for in the Born series or in the
generalized eikonal approximation [94].

As discussed in Sec. V B, no signatures (or marginally
small signatures) of returning electrons are observed during
their interaction with the high-frequency laser pulse. On the
other hand, the electron wave packet also spreads after the
interaction with the laser pulse is over. The aim of this sec-
tion is to show that such a postpulse electron wave packet
spreading together with its interaction with the parent ion
leads to the formation of momentum structures for electrons
moving opposite to the laser field propagation direction.

In Figs. 8 and 9 we present the snapshots of the postpulse
electron wave packet distributions in the position and momen-
tum spaces, respectively, for selected times

Tj = 2π jNosc/ω + x0/c. (68)

When the interaction with the laser field is over, the elec-
tron wave packet is moved far from the ionic center, with
very small signatures indicating the electron scattering by the
binding potential [see Fig. 8(a)]. Both position and momen-
tum distributions are axially symmetric (exactly as the initial
ground-state wave function) with the momentum distribution
centered at the origin [cf. Fig. 9(a)]. From this moment on,
the wave packet begins to spread, but so that its momentum
distribution remains unchanged [cf. Figs. 8(b) and 9(b)]. We
observe such a situation until the Coulomb field begins to
noticeably affect the electron quantum dynamics. It is at this
point that an interference structure in the momentum distribu-
tion of photoelectrons starts to develop due to the Coulomb
focusing. As a result, a tiny local maximum (in both the
position and momentum spaces) is formed for negative x2 and
p2, opposite to the radiation pressure action [cf. Figs. 8(d) and
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FIG. 9. Same is in Fig. 8 but in momentum space. The local maxima of these distributions are observed for p1 = 0 and for negative values
of p2 equal to p2 = −1.2p0 for T3, p2 = −0.8p0 for T5, p2 = −0.6p0 for T7, and p2 = −0.44p0 for T10. Starting from T7 these are also the
global maxima.

9(d)]. With time, this feature only gets enhanced, resulting
eventually in a pronounced maximum located at negative mo-
menta [cf. Figs. 9(e) and 9(f)]. Hence, we conclude that for
high-frequency laser pulses, the main reasons for the back-
ward (compared to the pulse propagation direction) shift of
the electron momentum distribution is the postpulse spreading
of its wave packet and the Coulomb focusing.

VII. PROBABILITY CURRENTS

The discussion presented in Sec. VI can be continued by
considering the time dependence of the electron probability
current density and its flux through a surface (for the two-
dimensional space this is a curve). This is what is in fact
measured in experiments. However, the advantage of numeri-
cal analysis is such that one can place this surface (which can
be also called the detector) very close to the studied quantum
system and investigate the dynamics of the probability flow
there.

The probability current density equals

j(x, t ) = 1
me

Im[ψ∗(x, t )∇ψ (x, t )] − e

me
A(x, t )|ψ (x, t )|2.

(69)
Next let us place the detectors on the line x2 = xD and orient
it with the normal vector n = sgn(xD)e2, i.e., the line above
the potential center is oriented in the positive x2 direction and
for the line below the potential center we choose the opposite
orientation. Here the function sgn(x) returns the sign of a real
number x. This allows us to define the probability flux through

this line as

S2(x1, x2 = xD, t ) = n · j(x1, x2 = xD, t ). (70)

The sign of S2 tells us in which direction the probability
current density flows. In our further discussion, for visual
purposes, we use the power of S2, which is defined as [S2]p =
sgn(S2)|S2|p.

In order to investigate the convergence of our numerical
scheme, we enlarge the integration space by choosing x0 =
600a0 and setting K = 13 and δt = 0.01t0 (see Sec. IV for
the meaning of these parameters). We have checked that the
results presented in Figs. 8 and 9 stay the same also for δt =
0.02t0. Moreover, by defining the depletion function D(t ) as

D(t ) =
∣∣∣∣1 −

∫ x0

−x0

dx1

∫ x0

−x0

dx2|ψ (x1, x2, t )|2
∣∣∣∣, (71)

we find that for these new parameters D(T1) < 10−11,
D(T10) < 5×10−5, D(T15) < 2×10−3, and D(T20) < 0.012
[and for x0 = 1000a0 we get D(T20) < 2×10−4], for times Tj

defined by Eq. (68). This means that the leakage of probability
from the integration space is very small up to times T15. These
values can be read from Fig. 10(b), in which the depletion
function is written in the form D(t ) = |1 − P+(t ) − P−(t )|,
with P±(t ) the total probability for the electron to be found
in the half plane x2 > 0 or x2 < 0 for + or −, respectively.
The time dependences of these probabilities are presented
in Fig. 10(a). Here we learn that the total probability for
the electron to be found in the half plane x2 < 0 when the
laser pulse is over is less that 10−5 for times t ∈ [T1, T2],
i.e., practically it is zero. We arrive at the same conclusions
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FIG. 10. (a) Time dependence of the probabilities P+(t ) (red
dashed line) and P−(t ) (blue solid line) of finding the electron in
the half planes x2 > 0 and x2 < 0, respectively. We observe that at
the end of the laser pulse the probability P− is smaller than 10−6

and then starts growing, which is due to the postpulse wave packet
spreading discussed in Sec. VI. (b) Depletion function (71). In the
numerical analysis presented here, the following parameters have
been chosen (see Sec. IV): K = 13, x0 = 600a0, and δt = 0.01t0. For
the mask function M(x) we have selected the values r1 = 560a0 and
r2 = 599a0.

for pulses with a different number of cycles and different
envelopes (for instance, for the sin2 envelope). This means
that the contribution of the bound states is nearly zero for
times t ∈ [T1, T2]; thus one can assume that the state ψ (x, T1)
is built up only of the scattering states of Ĥat. This conclusion
is further supported by the analysis of the probability current
distribution discussed below.

In Fig. 11 we present the probability fluxes for five selected
lines; three of them are very close to the potential center.
One of them is placed at xD = 10a0 and it needs a special
discussion. In this case we present the probability flux for
times when the system interacts with the laser pulse [cf.
Fig. 11(a) in which, for visual purposes, the function S2 is
raised to the power 1/3] and for times t > T1 [cf. Fig. 11(d)]
when the pulse is over. We observe that in the laser pulse the
probability flux flows in the positive x2 direction, as expected
from the radiation pressure exerted on the electron cloud.
The probability flux changes sign for t/Tpulse ≈ 1/3, when the
displacement of the electron wave packet in the x1 direction
is maximum and the mean velocity v1(t ) changes sign. We
presume that this is due to the quantum vortices created in
the probability distribution (see, e.g., Ref. [14]), but a detailed
exploration of this effect is beyond the scope of the present
investigation. However, for later times the probability flux
again changes sign such that in the middle of the pulse only a
tiny fraction of the total probability (around 10−5) is located
below the line, i.e., in the half plane x2 < 10a0. Moreover, had
the bound states contributed to the postpulse electron wave
packet, we would have observed vortex-type structures, which
are due to the circular behavior of the electron current density
for bound states with nonvanishing angular momenta. Com-
paring Figs. 11(a) and 11(d), we see that in the time interval

FIG. 11. Probability fluxes S2(x1, x2 = xD, t ) as functions of x1 and t (in units of the pulse length Tpulse = 2πNosc/ω) for selected lines:
(a) and (d) xD = 10a0, (b) xD = −10a0, (c) xD = −20a0, (e) xD = −100a0, and (f) xD = −150a0. For our numerical calculations, we have
chosen (see Sec. IV) K = 13, x0 = 600a0, and δt = 0.01t0; for the mask function M(x), r1 = 560a0 and r2 = 599a0.
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[Tpulse/2, 2Tpulse] practically no probability flux flows through
the line x2 = 10a0. The flow reappears for t > 2Tpulse in the
negative x2 direction and up to t = 7Tpulse no interference
effects are observed in the distribution. A tiny interference
pattern shows up for later times, which can be interpreted as
the result of the postpulse backscattering of electrons by the
binding potential.

A completely different pattern is observed for lines (or
detectors) located below the potential center (x2 < 0), for
which no probability flux is detected before t = 2Tpulse. This
means that electrons in the half plane x2 < 0 cannot be created
in the laser pulse (or the probability for such a process is
marginally small), but appear there as the result of the post-
pulse dynamics. The rich interference or diffraction pattern
observed here is due to the postpulse interaction of electrons
with the binding potential (the so-called Coulomb focusing).
These results fully support our analysis presented above and
prove that the interference pattern for negative p2 momenta
shown in Fig. 9 is due to the postpulse wave packet spreading
and the diffraction of the electron wave on the obstacle, which
in this case is the binding potential.

In conclusion, we note that one can also calculate probabil-
ity fluxes for lines that are far away from the binding potential
[Figs. 11(e) and 11(f)] or very close to the boundaries of the
integration space. By doing this (for instance by choosing
xD = ±540a0 or ±500a0 for both x1 and x2), we have found
that the probability fluxes are always positive and for t = T15

are smaller than 10−9. This means that the reflection of the
wave packet from the boundaries vanishes or is marginally
small.

VIII. PHOTOELECTRON MOMENTUM DISTRIBUTION

In the analysis of the photoelectron momentum distribution
we adopt the method used in Refs. [95–97]. The method relies
on the application of the mask function (which is different
from the one used for the absorption of the wave function at
the boundaries), the role of which is to eliminate the contri-
bution of bound states (if they are present) to the solution
of the wave equation and to select sufficiently large mo-
menta. To this end, let us introduce the mask function M0(x̄)
[x̄ =

√
(x1 − xc1)2 + (x2 − xc2)2],

M0(x̄) =

⎧⎪⎨
⎪⎩

0, x̄ < R1

1
2

[
1 − cos

(
π x̄−R1

R2−R1

)]
, R1 � x̄ � R2

1, x̄ > R2,

(72)

centered around the point xc = (xc1, xc2).
In our further analysis we assume that xc = x(T1), where

x(T1) is the electron wave packet mean position after the pulse
is over [Eq. (67)]. The smaller radius R1 has to be chosen such
that the center of the binding potential lies in the interior of the
circle |x − xc| = R1 but sufficiently far from it. Additionally,
the radius R2 cannot be too close to R1; otherwise the mask
function M0(|x − xc|) rapidly changes its values from 0 to 1,
leading to unphysical effects related to the Gibbs phenomenon
(see, e.g., [98] and references therein).

Having defined the parameters of the mask function M0(x̄),
a portion of the wave function ψ (x, t ) is selected such that it
is sufficiently far away from both the initial location of the

wave packet at time T1 and the center of the binding potential,
namely,

ψ (x, t ; R1, R2) = M0(|x − xc|)ψ (x, t ) for t > T1. (73)

Next we evaluate its Fourier transform ψ̃ (p, t ; R1, R2) and
define the photoelectron momentum distribution

P̃(p, t ; R1, R2) = |ψ̃ (p, t ; R1, R2)|2. (74)

At this point let us comment on the applicability of the
adopted method. In Sec. VII we demonstrated the quantum
dynamics of the electron, initially bound in the atom, that is
ionized by the high-frequency laser pulse. We saw that even
though the electron wave packet consists practically of only
the stationary scattering states (i.e., the system is completely
ionized), the process of formation of the final momentum
distribution of photoelectrons is still ongoing after the pulse
is over. This originates from scattering of the electron wave
function by the parent ion. The scattering, although it does not
change the energy distribution of photoelectrons, significantly
modifies the angular distribution of emitted particles, leading
to rich interference structures for probability fluxes. To ac-
count for these changes, we need to study numerically the time
evolution further, but only of the electron-ion system. One can
wonder for how long such an evolution should be continued.
To estimate this time, let us assume that our goal is to deter-
mine the momentum distribution of photoelectrons with the
momenta p > 0.2p0. Since just after the end of the pulse, the
center of the electron wave packet is at a distance of 60a0

from the center of the parent ion, the time needed for electrons
of such momenta to reach the ion is not smaller than 300t0,
which approximately corresponds to the time T15. Thus, we
cannot expect that the numerically determined wave function
of the electron for time T15 correctly defines the photoelectron
momentum distribution for momenta smaller than 0.2p0, if
the method used in Refs. [95–97] is applied. In order to
describe the low-momentum probability distribution, the final
time of the evolution should be increased appropriately, thus
risking the enhancement of the probability leakage from the
numerical integration area or the possibility of reflection from
the boundaries. Having said that, we would like to stress that
such a limitation of the adopted numerical method does not
influence our main result, i.e., our interpretation of nondipole
effects in high-frequency ionization that we attribute to the
postpulse dynamics of the electron wave packet.

In Figs. 12(a) and 12(d) we present the electron wave
packet position and momentum probability distributions, re-
spectively, and in the remaining panels the photoelectron
momentum distributions [Eq. (74)] for different choices of the
mask function M0(x̄). In Fig. 12(b) the parameters (R1, R2)
have been chosen close to each other, which leads to the cre-
ation of circular rings of small values. These are the remnants
of the Gibbs oscillations present in the Fourier transform of
discontinuous functions and they should not be attributed to
the reflection of the wave packet from the boundaries. By
increasing the distance between R1 and R2, these unphysical
features can be eliminated, as presented in Fig. 12(c). More-
over, by increasing R1 and keeping R2 − R1 sufficiently large,
we select, according to the time-of-flight rule, the part of the
photoelectron distribution of larger momenta, as illustrated
in Figs. 12(e) and 12(f). Let us now return to Fig. 12(d),
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FIG. 12. Electron probability distributions in (a) position space P(x1, x2, t ) and (d) momentum space P̃(p1, p2, t ), and photoelectron
momentum distributions P̃(p1, p2, t ; R1, R2) evaluated for t = T15 = 15×2πNosc/ω + x0/c and for different choices of (R1, R2): (b) (80, 90)a0,
(c) (80, 130)a0, (e) (100, 150)a0, and (f) (150, 200)a0. In accordance with the time-of-flight rule, with the increasing R1, increasingly
larger momenta are selected. In the numerical analysis, the following parameters have been chosen (see Sec. IV): K = 13, x0 = 600a0, and
δt = 0.01t0. For the mask function M(x) we have selected the values r1 = 560a0 and r2 = 599a0.

showing the modulus squared of the Fourier transform of the
wave function, i.e., the momentum probability distribution. It
is characterized by a close similarity to the momentum dis-
tribution of photoelectrons presented in Fig. 12(c). However,
the most obvious difference is the nonvanishing probability
distribution for momenta smaller than 0.2p0. In light of the
above discussion, it corresponds to this part of the electron
wave packet in the position space that by the time T15 has
not yet reached the center of the binding potential and has
not been scattered by it. The second difference is the notched
structure for momenta greater than 0.4p0, which is the result
of taking into account the wave function in the position space
close to the potential center and shown in Fig. 12(a). If these
particular features of the momentum distribution in Fig. 12(d)
are neglected, it is qualitatively very similar to the photoelec-
tron momentum distribution presented in Fig. 12(c).

By inspecting the photoelectron momentum distributions
in Fig. 12, we observe the inner circle in which the distribution
vanishes. This is due to the fact that only electrons with
sufficiently large momenta can travel the distance R1 within
the time T15 − T1. This minimum momentum p̌(R1) can be
estimated by assuming that the electron moves freely from the
center of the wave packet at time T1,

p̌(R1) = meR1

T15 − T1
. (75)

For the chosen R1 values we get p̌(R1 = 80a0) = 0.3p0,
p̌(R1 = 100a0) = 0.38p0, and p̌(R1 = 150a0) = 0.57p0.

These values suit very well the observed pattern. Additionally,
there is a qualitative difference in these distributions for
positive and negative p2. Namely, for positive p2 and small
|p1| we do not observe the interference pattern, as it is the
case for negative p2. The explanation of this difference is due
to the postpulse wave packet spreading (discussed in Sec. VI)
and its interaction (only for negative p2) with the binding
potential. Of course, during the wave packet spreading some
electrons can be backscattered by the potential and create the
interference pattern, but these are rather secondary effects,
although observable in Fig. 12.

In Fig. 13 we present the one-dimensional distribution
P̃(p1 = 0, p2, T15; R1, R2) for three selected mask functions
M0(x̄). These distributions coincide with each other for suf-
ficiently large |p2|. In order to estimate these limiting values
of |p2|, one can again use the time-of-flight rule for a free
particle and define them as

p̄(R2) = meR2

T15 − T1
. (76)

Indeed, for |p2| > p̄(R2 = 150a0) = 0.57p0 the blue and red
lines coincide with each other, whereas for |p2| > p̄(R2 =
200a0) = 0.78p0 all lines are nearly identical.

We observe a significant difference between the distribu-
tion for negative and positive momenta p2, as the emission
of electrons with negative momenta is strongly favored for
p1 = 0. In order to quantify this asymmetry for the entire
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FIG. 13. Comparison of photoelectron momentum distributions
presented in Fig. 12 for p1 = 0 for the following parameters (R1, R2)
of the mask function (72): (80, 130)a0 (blue solid line), (100, 150)a0

(red dashed line), and (150, 200)a0 (black dotted line). The parame-
ters of the numerical analysis are the same as in Fig. 12.

photoelectron distribution, we define

P̃−(t ; R1, R2) =
∫ q0

−q0

d p1

∫ 0

−q0

d p2P̃(p, t ; R1, R2),

P̃+(t ; R1, R2) =
∫ q0

−q0

d p1

∫ q0

0
d p2P̃(p, t ; R1, R2), (77)

where (see Sec. IV) q0 = 2Kπ/2x0. Thus, the asymmetry
parameter at time t for a given mask function M0(x̄) can be
defined as the ratio

S(t ; R1, R2) = P̃−(t ; R1, R2)

P̃+(t ; R1, R2)
. (78)

For time t = T15 and for mask functions considered in
this section, we obtain that S(T15; R1, R2) = 1.2, 1.19, 1.18
for (R1, R2) = (80, 130)a0, (100, 150)a0, (150, 200)a0, re-
spectively. One can therefore see that the emission of electrons
with momenta opposite to the laser pulse propagation direc-
tion is indeed more probable. This result is compatible with
the postpulse dynamics of the electron wave packet from
which one can expect that the absolute value of the elec-
tron mean velocity v2(t ) should increase for larger times due
to the attraction of electrons by the binding potential [i.e.,
up to T7, after which the absolute value of v2(t ) starts to
decrease but such that during the entire postpulse time evo-
lution v2(t ) < 0]. Indeed, v2(T15) = −0.04a0/t0, compared to
v2(T1) = −0.02a0/t0. [Let us note that, due to the in-pulse
rescattering processes for the low-frequency case discussed
in Sec. V A, the mean value v2(T1) is positive, as presented in
Fig. 4(e). This result is consistent with other investigations.]
Since, as discussed above, after the interaction with the laser
pulse the electron wave packet practically consists of only

the stationary scattering states, the mean momentum 〈p〉(t ) =
mev(t ) for t > T1 approximates well the mean value of the
photoelecton momentum. This means that, contrary to what is
expected for the low-frequency case, for the high-frequency
pulse considered here, the averaged momentum 〈p2〉(t ) is
always negative, at least for times T1 < t < T15, for which the
depletion effects are small. We checked that the change of the
number of cycles in the pulse and/or of the envelope to sin2

does not affect these conclusions.

IX. CONCLUSION

We have introduced here the Suzuki-Trotter split-step
Fourier method to solve numerically the time-dependent
Schrödinger equation. It was shown that nondipole effects
can be efficiently treated within this scheme. This was illus-
trated while studying HHG and strong-field photoionization
by intense and finite laser pulses. According to our explo-
ration, for low-frequency pulses the nondipole effects in HHG
manifest as radiation emitted perpendicular to the laser field
propagation direction, which is characterized by the presence
of predominantly even harmonics. Furthermore, in ionization
driven by high-frequency laser pulses, the radiation pressure
causes a significant forward drift of the electron wave packet
with negligibly small signatures related to its interaction with
the binding potential (i.e., we do not observe rescattering or
Coulomb focusing effects in the light field).

A surprising effect in photoionization, i.e., a backward
(with respect to the pulse propagation direction) photoelectron
drift, has been largely discussed (see, e.g., Refs. [33,48,49]).
It was found to be caused by a modification of the electron
trajectories due to Coulomb focusing. Our numerical analysis
showed that, at least for the high-frequency pulses, in the
description of electron dynamics one has to take into account
its postpulse wave packet spreading, which is an inherently
quantum phenomenon. In fact, our analysis suggested that
for high-frequency laser fields the postpulse dynamics in
the Coulomb field is the main cause of the electron back-
ward shift, instead of an in-pulse trajectory modification. This
interpretation is compatible with the interference structures
appearing for negative momenta and a lack of them for pos-
itive momenta (with respect to the direction of the pulse
propagation). Whether this mechanism also contributes to the
creation of the photoelectron momentum structures for low-
frequency pulses still remains an open question.

ACKNOWLEDGMENT

This work was supported by the National Science Cen-
tre (Poland) under Grants No. 2018/30/Q/ST2/00236 (M.C.S.
and K.K.) and No. 2018/31/B/ST2/01251 (F.C.V. and J.Z.K.).

[1] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman,
Phys. Rev. Lett. 42, 1127 (1979).

[2] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
Phys. Rev. Lett. 7, 118 (1961).

[3] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys.
JETP 20, 1307 (1965)].

[4] F. H. M. Faisal, J. Phys. B 6, L89 (1973).
[5] H. R. Reiss, Phys. Rev. A 22, 1786 (1980).

053112-17

https://doi.org/10.1103/PhysRevLett.42.1127
https://doi.org/10.1103/PhysRevLett.7.118
https://doi.org/10.1088/0022-3700/6/4/011
https://doi.org/10.1103/PhysRevA.22.1786


M. C. SUSTER et al. PHYSICAL REVIEW A 107, 053112 (2023)

[6] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A
45, 4998 (1992).

[7] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett.
68, 3535 (1992).

[8] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander,
Phys. Rev. Lett. 70, 1599 (1993).

[9] K. C. Kulander, K. J. Schafer, and J. L. Krause, in Super-Intense
Laser-Atom Physics, edited B. Piraux, A. L’Huillier, and K.
Rzążewski (Plenum, New York, 1993), p. 95.

[10] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[11] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B.

Corkum, Phys. Rev. A 49, 2117 (1994).
[12] D. M. Wolkow, Z. Phys. 94, 250 (1935).
[13] G. F. Gribakin and M. Y. Kuchiev, Phys. Rev. A 55, 3760

(1997).
[14] F. Cajiao Vélez, L. Geng, J. Z. Kamiński, L.-Y. Peng, and K.
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Krajewska, Phys. Rev. A 102, 043117 (2020).
[16] L. Geng, F. Cajiao Vélez, J. Z. Kamiński, L.-Y. Peng, and K.
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