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Nonlinear spectral features of the relativistic interaction between electron and ultrashort laser pulse
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Features of the radiation spectra are investigated with the quantum electrodynamic theory for the nonlinear
scattering interaction between relativistic electron and few-cycle linearly polarized laser pulse. The angle
between the moving direction of the electron and that of the laser pulse affects the scattered radiation char-
acteristics. When the electron has a head-on collision with the laser pulse having a carrier envelope phase as
zero, the angular distribution of the scattered radiation spectrum is symmetrical with respect to the laser pulse
propagation direction. Such a symmetry disappears when the electron collides with the laser obliquely and
the direction of most of the radiation energy shifts at an acute angle towards the electron direction. The CEP
has significant effects on the spectral angular distribution. The CEP influence is determined by the exertion of
the electromagnetic field on the motion of the electron, whose trajectory overlap in phase space leads to the
interference between scattered radiation in different intervals of the interaction process. The supercontinuum
radiation could be produced under certain CEPs. An external electrostatic field applied as the environment for
the laser-electron interaction is another important factor affecting the scattered radiation features by modulating
the harmonic components and their angular distribution. This study may help the analysis of the spectral data
from relativistic laser-solid target experiments.
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I. INTRODUCTION

The process of strong-field quantum electrodynamics can
be studied by investigating ultrarelativistic electron collisions
with relativistically intense laser pulses, such as nonlinear
scattering (NCS) [1–4], nonlinear Breit-Wheeler pair pro-
duction [5–12], electron-positron annihilation [13], etc. The
nonlinear quantum effects can be described by the dimension-
less parameter χ = (kL p)ξL/|e|Ec, where ξL = |e|EL/mωL is
the classical intensity parameter with the electron mass m and
charge e < 0, Ec = m2/|e| is the Schwinger critical field of
∼1.3 × 1016 V/m [11,12,14], and kL p is the product of the
laser four-wave-vector kμ

L and the electrons four-momentum
pμ under Minkowski metric, where Greek indices μ run over
0, 1, 2, 3. Natural units with h̄ = c = 1 are utilized above and
will be used throughout the whole context unless otherwise
specified.

The leading-order process of NCS is the nonlinear single
Compton scattering (NSCS), in which an electron scatters
multilaser photons into one higher-energy photon. The pro-
cess in a classical manner is usually named as the nonlinear
Thomson scattering, which needs to be corrected as χ → 1
when the quantum effects become important [15–18]. For
an electron interacting with a monochromatic plane wave,
the radiation frequency spectrum is discrete [19]. When the
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interacting electromagnetic field is a pulsed plane wave, the
harmonic peaks of the nonlinear Compton spectrum become
broader and present numerous subpeaks [18,20–22]. For an
electron interacting with a one-cycle laser pulse, the multi-
photon peaks are significantly broadened [23]. The electric
and magnetic field distribution in the laser temporal envelope
of this kind of laser pulse, which is characterized by the
carrier envelope phase (CEP), determines the whole process
of the interaction with electrons. In the interaction, the an-
gular distribution of the Compton radiation energy obtained
by integrating within the plane perpendicular to the laser
polarization becomes asymmetrical, which is the consequence
of asymmetry of the laser vector potential with respect to the
change of the electric component direction [24]. Mackenroth
and co-authors used the angular distribution of the radiation
in multiphoton Compton scattering to determine the CEP of
the ultrarelativistic few-cycle laser pulse [25]. The scattering
direction of the high-energy photons is closely related to the
interacting laser intensity, the increment of which from the
nonrelativistic to relativistic regime changes the dominant
scattering direction from that perpendicular to the laser po-
larization to the parallel direction [26].

The relativistic interaction between electrons and elec-
tromagnetic fields is governed by the second-order Dirac
equation, which describes electrons in the so-called Volkov
state [27,28]. When the initial electron is in a superposi-
tion of states, the different momentum components do not
interfere with each other, and the net effects of this on the
angular-resolved emission spectrum are the peak broadening
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and smoothing, which dominates over the effects of the un-
certainty in laser frequency [29]. For an electron inside a laser
propagating in plasmas with refractive index n < 1 [30–33] or
in a rotating electric field [34,35], the Dirac equation has no
general solution since the dispersion relation (kL )2 �= 0, indi-
cating that the second-order Dirac equation cannot be reduced
to the first-order one. The multiple-scale perturbation theory
was used to resolve the equation for electron states when the
laser travels in a plasma. But the influence of plasma on the
electron was ignored in the case with cold and collisionless
plasma [30].

The above-mentioned works mainly focus on head-on
collision between energetic electrons with γe � 1 and ultrain-
tense laser pulses with ξL � 1. The main presented results are
the angular distribution of radiated energy or the spectra at a
fixed observation direction along the initial electron direction.
The NSCS in the case of laser-electron oblique collision inside
an electrostatic field has not yet been reported.

In this paper, we report details of the angular-distributed
spectra of the scattered radiation from interactions between
laser pulses at moderate intensity (ξL = 2) and electrons with
not-so-high energies (γe = 2) when they head-on or obliquely
collide in an electrostatic field. The subject is closely related
to present studies about attosecond laser pulse generation in
laser-solid target interaction through the coherent synchrotron
emission (CSE) mechanism, in which the laser-electron colli-
sion has an angle and the electron also feels the electrostatic
field resulted from the charge separation [36–39]. Section II
presents characteristics of the angular distribution of the ra-
diation spectra when the laser pulse collides with electrons
head on and obliquely. The results in the case of head-on
collision reproduce previous achievements of the radiation
energy angular distribution and the spectra when we take
the frequency integration and the angular integration, respec-
tively. Comparisons between results from classical theory and
Quantum electrodynamics (QED) are also given in this sec-
tion. Section III presents results from laser-electron collisions
in an electrostatic field.

II. LASER-ELECTRON HEAD-ON AND OBLIQUE
COLLISION

A. Basic equations

The laser pulse propagating along the z axis is
described as a plane wave linearly polarized along
the y axis. Its classical four-vector potential is Aμ

L =
ψL(φL )aμ

L = [0, 0,−ψL (φL )mξL/e, 0], where ψL(φL ) =
sin4(φL/2N ) sin(φL + φcep) in φL ∈ [0, 2πN] and zero for
other φL, with φcep as the carrier envelope phase (CEP),
N as the number of oscillation cycles, and φL = ωL(t − z)
as the laser phase. In the following, we will take N = 2,
ωL = 1.55 eV. The fast Fourier transform on the laser electric
field profile gives the central frequency of the electric field
spectrum as about 1.94 eV. An initial electron with an energy
of 1 MeV is assumed to propagate at δ = 0 or θ = 135o with
respect to the negative z direction, as shown in Figs. 1(a)
and 1(b), which are situations of laser-electron head-on and
oblique collision, respectively.

FIG. 1. Schematic illustration of laser-electron interaction scene
for (a) head-on collision and (b) oblique collision.

Within the Furry picture [40], the interaction between the
electron and the strong laser field is taken into account exactly,
but the interaction between the electron and emitted photons
is treated as a perturbation. The contribution of the scattering
process to the whole spectra decreases as αn, where α = e2 ≈
1/137 is the fine-structure constant under additional Gaussian
units and n is the number of emitted photons [23,41]. Thus,
we only consider NSCS and neglect the high-order processes.
The scattering amplitude of NSCS is written as [42]

S f i = −ie
∫ +∞

−∞
ψ p′ /A∗

k′ψp d4x, (1)

where ψp with four-momentum pμ is the initial electron’s
Volkov states [27], ψ p′ is the Dirac conjugate of the final
Volkov states, and Aμ

k′ with four-wave-vector k′μ is the emitted
photon’s wave function. Throughout the paper, the Feynman
slash notation is used.

For the convenience to calculate the integral, the light-
cone coordinates with the notations q− = q0 − qz, q+ = q0 +
qz and q⊥ = (qx, qy) for any four-vector qμ are introduced.
While the integrals of x, y, and t − z lead to three delta func-
tions indicating energy momentum conservation relations, the
remaining integral on φL = kLx contains

fn =
∫ +∞

−∞
ψn

L (φL )ei{ζφL+∫ φL
0 [αψ (φ′

L )+βψ2(φ′
L )]dφ′

L}dφL,

n = {0, 1, 2}, (2)

with

ζ = p′+ + k′+ − p+

2ωL
,

α = e(ap′)
kp′ − e(ap)

kp
, β = e2a2

2kp
− e2a2

2kp′ . (3)

Multiplying the squared modulus of the scattering ampli-
tude by the number of states of the final particle in the phase
space, the energy emission rate is obtained after averaging
over initial electron spins and summing over the final electron
spins and the emitted photon polarization states. Thus, in unit
solid angle � and unit frequency interval ω′, the emitted
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photon energy spectrum can be written as

dE ′

d�dω′ = e2ω′2

ω2
L p− p′−(2π )2

[(
pp′ − 2m2

)| f0|2 +
(−e2a2

L(kL p′)
2kL p

+ −e2a2
L(kL p)

2kL p′

)
| f1|2

+ e2a2
LRe( f0 f ∗

2 ) +
(

e[(aL p′)(kL p) − (aL p)(kL p′)]
kL p′ + e[(aL p)(kL p′) − (aL p′)(kL p)]

kL p

)
Re( f0 f ∗

1 )

]
. (4)

Here, the scalar product aL p does not equal zero in the
laser-electron oblique collision. For the laser-electron head-on
collision, Eq. (4) reduces to Eq. (28) in Ref. [23].

B. Results for head-on collision

Figure 2 shows the angular-distributed spectra for an elec-
tron head-on collision with a laser pulse of CEP = 0 and
χ ∼ 2.3 × 10−5. The shape of the vector potential of the laser
pulse exhibits symmetry with the change of the polarization
vector direction ε1 → −ε1 when CEP = 0, which causes the
symmetry of the angular distribution with respect to δ = 0 in
Fig. 2.

In the direction of δ = 0, the emitted photons around 11 eV,
33 eV, 55 eV et al. are harmonics with a certain frequency
width resulted from the fact that the ultrashort laser pulse
has a certain frequency width [18,23]. In the directions de-
viating from δ = 0, for the nth-order harmonic, the relation
between the radiating angle and frequency of the emitted
photons shows a parabolic shape and the profile’s opening
angle decreases with the harmonic order n.

For the case of monochromatic laser field, the frequency of
the nth harmonic can be written as [29,41]

ω′
n[n′(δ)] = n(kp)

(q + nk)n′ = n(kp)(
p + m2ξ 2

L
4(kp) k

)
n′ + n(kn′)

, (5)

where n′(δ) = [1, 0, sin(δ),− cos(|δ|)] is the observation di-
rection, and |δ| is the angle deviation from the initial electron
moving direction. k = (ω0, 0, 0, ω0) is the four-wave-vector

FIG. 2. Angular spectra in the laser polarization plane (yoz) for
Laser-electron head-on collision. The parameters of the laser pulse
are N = 2, CEP = 0, and ξL = 2, and the initial electron energy is 1
MeV. The dashed lines are plotted from Eq. (5).

of the monochromatic plane wave and q is the quasimomen-
tum of electron.

For an electron with γe � 1, the radiation is mainly in a
narrow cone along its velocity [25,26]. For the current case,
the radiation distributes in a large angle range. For δ �= 0,
py �= 0 and p0 and pz are always taken as their initial values.
When taking py = pymax = 1.55m for δ > 0, py = pymin =
−1.55m for δ < 0, n = 1, and ω0 equals the central frequency
of the laser pulse of 1.94 eV, the relation between the radiation
angle δ and the frequency ω′ of the nth harmonic photons
in Eq. (5) are shown as the red dashed lines in Fig. 2. In
the δ = 0 direction, the frequency in the red line is smaller
than the central frequency of the first harmonic, since in the
denominator of Eq. (5) the electron quasimomentum q taken
as that in the monochromatic wave case is larger than that
in the current ultrashort pulse case [18]. In Eq. (5), n(kn′)
can be neglected compared to its left item, and thus ω′

n is
proportional to the ω0. The |py| value taken in Eq. (5) controls
the opening angle the plotted line relative to δ = 0 direction.
An increase in |py| results in a decrease in the opening angle.
When taking ω0 = 2.35 eV, p0 = 1.6m, and n = 1, 2, 3, we
plot black dashed lines in Fig. 2 and find that the analytical
model coincides well with the numerical calculations.

The process of the NSCS takes places in the longitudinal
length of the order of λ0/ξL, which is λ0/2 here, with λ0 being
the central wavelength of the laser pulse [41,43]. To under-
stand the scattering process, the angular spectra in different
half-cycles are shown in Fig. 3. The angular spectra radiated
in the first laser half-cycle is calculated from Eq. (4) by inte-
grating φL over (0, π ) in Eq. (2), and the angular spectra from

FIG. 3. (a)–(d) Angular spectra from four successive half-cycles
for the case in Fig. 2.
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the second half-cycle is obtained by subtracting the spectra
during 0 < φL < 1π from the spectra during 0 < φL < 2π .
The angular spectra from the third and fourth half-cycle can be
obtained through the same method. When CEP = 0, whether
the emission locates above or below the line δ = 0 is essen-
tially determined by the direction of the vector potential. In
the first half-cycle when laser intensity ξL � 1, the radiation
is mainly focused in a cone angle of �δ ∼ 1/γe. The largest
part of the radiated energy of the whole spectra is emitted
in the second and third lasers’ half-cycles when the vector
potential is large. But the radiations from the two half-cycles
are distributed on the opposite sides of the line δ = 0. For the
radiation from the last half-cycle, the negative value of the
radiated energy at some specific frequencies and the wider
emission angle can be explained by taking consideration of
dynamics of the electron.

The electron’s motion features in the whole process are
obtained by solving the relativistic motion equation [44,45]

d py

dt
= Ey + βzBx,

d pz

dt
= −βyBx = βyEy,

γ 2
e = 1 + p2

y + p2
z , (6)

where we take the dimensionless variables

(t, y, z) = (ωt, kLy, kLz),

(py, pz ) =
( py

mc
,

pz

mc

)
,

(Ey, Bx, A) =
(
Ey, Bx, A

)
e

mcωL
. (7)

For the laser pulse, Bx = −Ey, Ey(φL ) = −ωLA′
L(φL )/c,

and AL(φL ) = −ξLψL(φL )/cωL, with dφL/dt = (1 − βz ), and
β = v/c is the electron velocity normalized to light velocity.
Equation (6) gives py and pz in the natural units as

py = py0 + ξLψa(φL ),

pz = 1 + p2
y

2C
− C

2
= 1 + [py0 + ξLψa(φL )]2

2C
− C

2
, (8)

where the constant C = γe0 − pz0, and γe0 and pz0 are the
initial relativistic factor and momentum in the z direction,
respectively. The instantaneous direction of the electron δe =
arctan(py/|pz|).

The change tendency of py is consistent with that of the
vector potential shape function ψa(φL ) and the change of pz as
a function of φL is symmetrical, which results in the asymme-
try of the instantaneous direction δe, as shown in Fig. 4. The
change of γe has bulges in the second and third half-cycle,
corresponding to the more intense radiated energy in Fig. 3.
The directions of the electron motion and the radiations in the
second half-cycle are the same as that in the fourth half-cycle.
The two overlapped radiation pulses interfere with each other,
producing the pattern shown in Fig. 3(d), where the minus
value of the radiated energy in the fourth half-cycle indicates
the energy is absorbed by the electron in the perspective of
QED.

FIG. 4. The dependence of the py (solid black curve), pz (dotted
black curve), γe (dashed black curve), and δe (solid red curve) on the
laser pulse phase φL .

C. Results for oblique collision

Figure 5(a) shows the angular-distributed spectra of the
radiation for the case of laser-electron oblique collision at
θ = 135o. The laser CEP = 0. Figure 5(b) shows the corre-
sponding kinetic properties of the electron in the frame of
�′. The new frame �′(x′y′z′) in Fig. 1(b) is obtained after
rotating the yoz plane by 45o counterclockwise. The angu-
lar spectra of the radiation loses its symmetry with respect
to the initial laser propagation direction θ = 135o. The rate
of change of θ with respect to ω′ when θ > 135o is larger
than that when θ < 135o. This phenomenon is caused by the
faster change of electron motion direction θe during θ > 135o.
When θe < 135o, pymax = 1.78, and when θe > 135o, pymin =
−1.25. When taking py = 1.7 for θ < 138o, py = −1.35 for
θ < 138o, and ω0 = 2.03 eV in Eq. (5), the analytical relation
between θ and ω′ is drawn as the dashed lines in Fig. 5(a) and
coincides well with the numerical results.

The location angle of the radiation beam axle gradually
moves from the larger side to the lower side of θ ∼ 135o

when the CEP changes from −π/2 to π/2 as seen in Fig. 6.
When the CEP varies from 0 to −π/2 or π/2, the harmon-
ics gradually exhibit a discrete structure, with each order
spectral line becoming more continuous. This is because

FIG. 5. (a) Angular-distributed spectra for laser-electron oblique
collision with CEP = 0. (b) The dynamic parameters of the electron
in the �′ frame py′ (solid black curve), pz′ (dotted black curve), γe

(dashed black curve), and θe (solid red curve) as a function of laser
phase.
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FIG. 6. Energy emission spectra for laser-electron oblique col-
lision with different carrier envelope phases. All color bars are the
same as in (f).

the electron motion direction θe has no overlap between
θe > 135o and θe < 135o (see red line in Fig. 7) when φL ∈
[1.5π, 2.5π ] and other phase ranges and thus the interference
effect does not occur. The larger gamma factor during φL ∈
[0, 1.5π ] ∪ [2.5π, 4π ] (φL ∈ [1.5π, 2.5π ]) corresponding to
θe ∈ [115o, 135o] (θe ∈ [90o, 135o]) for CEP = −π/2 and
π/2 shown in Fig. 7 causes the different angular range of the
more intense radiation energy distribution shown in Figs. 6(c)
and 6(f).

Due to χ � 1, the classical calculation results are simi-
lar to the quantum results as expected, and will be revisited
when an electrostatic field is utilized as shown in Fig. 10. In
Fig. 8, we set γ = 2 × 104 and χ ∼ 0.1. There are obvious
differences between quantum (red dotted line) and classical
(blue line) results at higher emission frequencies. The quan-
tum emission spectra have a divergent point at ω′ = 10 GeV,
the energy of cutoff frequency mγ as derived in the head-
on collision case [18,23]. The classical calculation, however,

FIG. 7. The change of the dynamic parameters of the electron in
the �′ frame for (a) CEP = −π/2 and (b) π/2. Each line has the
same meaning as in Fig. 5(b).

FIG. 8. Energy emission spectra for ξL = 2, CEP = 0, γ = 104,
and emission angle θ = 135o. The red dotted line and blue line have
been obtained from quantum and classical calculations, respectively.

gives nonphysical extension beyond the energy cutoff point,
and decays slowly to the high-energy end.

III. LASER-ELECTRON OBLIQUE COLLISION
IN AN ELECTROSTATIC FIELD

A. Description of the scenario

For an electron in both a laser field and an electrostatic
field, we describe the electrostatic potential by a scalar po-
tential, and its four-vector potential is described by Aμ

E =
[−ψE (φE )mξE/e, 0, 0, 0], which do not satisfy the Lorentz
gauge, causing kE AE �= 0. In this case, the Dirac equa-
tion is written as γμ(i∂μ − eAμ − m)ψ = 0, where Aμ =
Aμ

L + Aμ
E , Aμ

L describes the laser field as above and γ μ are
the Dirac gamma matrices. The squared Dirac equation is
derived as

[−∂μ∂μ − 2ieAμ∂μ − ie(∂μAμ) + e2A2

− ie/kL /A′
L − ie(/kE /A′

E − kE A′
E ) − m2]ψ = 0, (9)

where the tag symbol means the derivative with respect to
phase φL or φE .

The solution is assumed to have the form ψ =
e−ipxZ (φL, φE ). For the laser propagating in a diluted plasma
as proposed in Ref. [33], the dispersion relations can be ap-
proximated to (kL )2 → 0 and (kE )2 → 0. Then, the above
equation is reduced to

(2ikL p − 2iekLAE )
∂Z

∂φL
+ (2ikE p − 2iekE A)

∂Z

∂φE

+ (−2eAL p + e2A2
L − ie/kL /A′

L

− 2eAE p + e2A2
E − ie/kE /A′

E )Z = 0. (10)

Using the method of variable separation, we set Z =
L(φL )T (φE ) and transform the above equation into

∂L

∂φL

1

L
(2ikL p − 2iekLAE ) + I1 = λ

∂T

∂φE

1

T
(2ikE p − 2iekE A) + I2 = −λ (11)
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FIG. 9. Schematic illustration for laser-electron oblique collision
within an electrostatic field.

with

I1 = −2eAL p + e2A2
L − ie/kL /A′

L,

I2 = −2eAE p + e2A2
E − ie/kE /A′

E ,

where λ is an arbitrary constant and can be taken as zero.
Solving Eq. (11), we get the electron state as

ψ =
(

1 + e/kL /AL

2(kL p − ekLAE )

)
exp

[
e/kE /AE

2(kE p − ekE A)

]

× u√
2p0

eiS(φL,φE ) (12)

with

S(φL, φE ) = − px −
∫ φL 2eAL p − e2A2

L

2kL p − 2ekLAE
dφ′

L

−
∫ φE 2eAE p − e2A2

E

2kE p − 2ekE A
dφ′

E . (13)

Figure 9 shows the interaction scenario, and the electro-
static field has an angle ϑ to the negative laser direction.
In order to facilitate the calculation of the integral in the
scattering amplitude, the approximation φE ∼ φL is made for
ϑ � 30o, under which ωE = ωL. The range of φE is set to
be the same as φL ∈ [0, 4π ], otherwise ψE (φE ) = 0, which
ensures that the electron is subjected to the electrostatic force
while interacting with the laser pulse. The shape function
ψE (φE ) ≈ −φL and kE = (ωE , 0,−ωE sin ϑ,ωE cos ϑ ).

We choose the small value of ξE and ϑ to make the approx-
imation that

kL p − ekLAE ≈ kL p, (14)

exp

[
e/kE /AE

2(kE p − ekE A)

]
≈ 1 + e/kE /AE

2kE p
, (15)

to further simplify the electron state Eq. (12) to

ψ =
(

1 + e/kL /AL

2kL p
+ e/kE /AE

2kE p

)
u√
2p0

eiS(φL ), (16)

where the second-order term e2/kL /AL/kE /AE/4(kL p)(kE p) has
been omitted.

The above electron state could be put into the calculation
of the nonlinear single Compton scattering within an elec-
trostatic field. The angular-frequency distribution of radiation
can be expressed in the following form containing a tedious
calculation of trace:

dE ′

d�dω′ = e2ω′2

8p− p′−(2π )2
Tr

{∑
ε′

[(/p′ + m)Z (/p + m)Z]

}
,

(17)

where the bar operation on a matrix is defined as Z =
γ 0Z†γ 0 with

Z =
(

e/ε′∗/kL/aL

2kL p
+ e/aL/kL/ε′∗

2kL p′

)
f10 + −e2a2

L(kLε′∗)/kL

2(kL p)(kL p′)
f20

+
(

e/ε′∗/kE /aE

2kE p
+ e/aE /kE /ε′∗

2kE p′

)
f01 + e2(kLε′∗)/aE /kE /aE

2(kE p)(kE p′)
f02

+
(

e2/aL/kL/ε′∗/kE /aE

4(kL p′)(kE p)
+ e2/aE /kE /ε′∗/kL/aL

4(kE p′)(kL p)

)
f11 + /ε′∗ f00,

(18)

where

fmn =
∫ 4π

0
ψm

L (φL )ψn
E (φL )eiS1 dφL, (19)

with

S1 = ξψL + α

∫ φL

0
ψL(φ′

L )dφ′
L + β

∫ φL

0
ψ2

L (φ′
L )dφ′

L

+ κ

∫ φL

0
ψL(φ′

L )dφ′
L + λ

∫ φL

0
ψ2

L (φ′
L )dφ′

L, (20)

where

κ = e(aE p′)
kE p′ − e(aE p)

kE p
, λ = e2a2

E

2kE p
− e2a2

E

2kE p′ . (21)

The function f00 can be written in the following form:

ξ f00 = −(α f10 + β f20 + κ f01 + λ f02). (22)

B. Numerical results

Figure 10 presents comparisons between the angular dis-
tribution of spectra calculated from quantum theory and
classical theory, respectively. As shown in Figs. 10(a) and
10(b), the quantum results show obvious modulation effects
of the static field on the angular spectra, whatever the CEP
is, as compared to Fig. 6(f). In Fig. 10(b), when changing
the direction of the static field, the energy spectra intensity is
weakened and shifted to the low-energy end with the harmonic
components becoming richer. In the calculation, the spectra
is determined by the motion of the electron. The spectral
modulation in Fig. 10(a) is due to the interference caused
by the overlap of electron directions in different time inter-
vals. Figures 10(c) and 10(d) are the results calculated from
classical theory. In Fig. 10(c), the radiation spectrum moves
slightly to low frequency compared to Fig. 6(f). When ϑ in-
creases, as shown in Fig. 10(d), the radiation spectrum moves
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FIG. 10. Angular-distributed emission spectra for laser-electron
oblique collision. The case is schemed in Fig. 9 with the direction
of the electrostatic field having the angle ϑ = 0 (left) and ϑ = 30o

(right) to the negative laser direction. (a) and (b) are the results from
the quantum theory calculations, and (c) and (d) are those of classical
theory calculations. In both calculations, CEP = π/2 and ξE = 0.03.
Other parameters are the same as in Fig. 5(a). All color bars are the
same as in (d).

to the lower-energy region compared to Fig. 10(c) because
the electrostatic resistance increases. In both Figs. 10(c) and
10(d), the angular distributions of the radiation have a small
change compared to that without electrostatic field due to the

change of the electrostatic deflection force causing the change
of electron motion direction.

IV. SUMMARY

The NSCS process is investigated in the interaction of a
multi-MeV electron with a two-cycle laser pulse of relativistic
intensity in the framework of strong-field QED. For head-on
and oblique collision, the improved analytical formula for the
angular distribution of harmonic peaks agrees well with the re-
sults of the numerically resolved Dirac equation. For oblique
collision, the peaks on the spectra become smoother due to
the lack of interference among the emitted radiation from dif-
ferent time intervals of the laser pulse when the CEP-affected
electron states have no large overlap in spatial distribution.
This scenario is a simplified model of experiments about
the high harmonic generation in relativistic laser-solid-target
interaction. When the electrostatic field is utilized, it acts on
the motion of the electron and thus affects the harmonic com-
ponent and radiation angular distribution. The present study
provides theoretical help in data analysis in attosecond-pulse-
related strong laser field physic experiments.
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