
PHYSICAL REVIEW A 107, 053103 (2023)

Sub-barrier recollisions and the three classes of tunneling time delays in strong-field ionization
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Tunneling ionization is characterized by a negative time delay, observed asymptotically as a specific shift
of the photoelectron momentum distribution, which is caused by the interference of the sub-barrier recolliding
and direct ionization paths. In contrast, a Gedankenexperiment following the peak of the wave function shows
a positive tunneling time delay at the tunnel exit, considering only the direct ionization path. In this paper we
investigate the effects of sub-barrier recollisions on the time delay pattern at the tunnel exit. We conclude that the
interference of the direct and recolliding trajectories decreases the tunneling time delay at the exit by the value
equal to the asymptotic time delay, maintaining, however, its sizable positive value. Finally, we discuss the recent
experiment [Yu et al., Light Sci. Appl. 11, 215 (2022)] addressing the tunneling time in a modified two-color
attoclock setup. The analysis of the experimental findings with our theoretical model indicates the physical
necessity to introduce an additional time characteristic for tunneling ionization—the time delay describing the
initiation of the tunneling wave packet.

DOI: 10.1103/PhysRevA.107.053103

I. INTRODUCTION

Tunneling ionization is at the heart of attoscience [1,2]. The
state-of-the-art attoclock technique [3,4] provides an excep-
tional time resolution of the order of tens of attoseconds via
mapping the time to the attoclock offset angle in the angular
streaking process. This allows for an experimental investiga-
tion of the time delay problem during the quantum tunneling
process [5–9]. This fundamental question raised an extensive
discussion [5–46], which can be more appreciated in the con-
text of the general problem of the tunneling time [47–62], with
different tunneling time definitions corresponding to different
type of measurements: Eisenbud-Wigner [48–51], Büttiker-
Landauer [53], Pollak-Miller [54], and Larmor [52] tunneling
times, the latter being recently measured for cold atoms [63].

Two definitions of the tunneling time delay are dis-
cussed in strong-field ionization, which are related to the
Eisenbud-Wigner time. The first is the asymptotic time delay
(ATD), which is investigated in the attoclock experiments, and
the second is the time delay near the tunnel exit, exit time
delay (ETD), which is only observable in a Gedankenexperi-
ment with a virtual detector [64,65]. The signal of the virtual
detector can be derived from the numerical solution of the
time-dependent Schrödinger equation (TDSE) calculating the
current density of the tunneled electron wave packet. The time
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delay at the tunneling exit calculated numerically with the
virtual detector method [9–12] has been shown to be positive.

The ATD is extracted from the photoelectron momentum
distribution (PMD) as a shift of PMD with respect to the
expected distribution with the assumption of a vanishing time
delay. The extraction of the ATD can be implemented using
the method of classical backpropagation [19–22]. In the deep
tunneling regime the ATD is vanishing [12,13]. However, near
the over-the-barrier ionization (OTBI) regime it is nonnegligi-
ble and negative [18–20,46]. This negative ATD is explained
as arising due to interference of direct and under-the-barrier
recolliding trajectories [29]. Note that the depletion of the
bound state also induces a negative time delay. When in-
vestigating the time delay problem experimentally or via the
numerical solution of the time-dependent Schrödinger equa-
tion, the depletion effect should be estimated separately and
subtracted from the total time delay. In the strong-field ap-
proximation (SFA) theory the depletion of the bound state is
not included. This is an advantage offered by the SFA theory:
the emergence of the time delay can be investigated avoiding
any complications stemming from the depletion effect.

The notion of a third time delay related to tunneling ioniza-
tion, physically different from ATD and ETD, can be deduced
from a recent experiment [45]. It is devoted to measuring the
tunneling time delay in a setup where the attoclock is aug-
mented by a second-harmonic laser field of linear polarization.
In this setup, the ionization yield is modulated with respect to
variation in the time delay between the two components of the
laser field. The experiment showed that the yield is maximal
at vanishing time delay between the field components, i.e.,
when the total field of the two-color laser field has the largest
amplitude. From the latter it has been concluded that the
tunneling time is vanishing. We analyzed the given exper-
imental results to clarify the physical interpretation of the
obtained vanishing tunneling time. Our analysis within the
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FIG. 1. Time delays related to the tunneling ionization: initiation
time delay (ITD), describing the emergence of tunneling ionization
wave packet inside the barrier (it is vanishing); exit time delay
(ETD), describing the peak of the tunneling wave packet near
the tunnel exit (it is positive); and asymptotic time delay (ATD),
deduced from the asymptotic PMD (it is negative). VSR is the short-
range atomic potential, VSR − xE0 is the tunneling ionization barrier
through the laser field modified atomic potential, and −Ip is the
bound state energy.

SFA model confirms the experimental finding that the PMD
peak is the largest when the maximum of the total field is
the largest. At the same time, we confirm that the PMD shift
due to the sub-barrier recollision, or the equivalent ATD, is
still available. Therefore, we conclude that the vanishing time
delay measured in the experiment of Ref. [45] provides no in-
formation on ATD, although it is derived from the asymptotic
PMD.

Can one introduce a time delay that describes the result
of this experiment? To this end let us recall the quantum
orbit picture of strong-field ionization [66], where ioniz-
ing complex trajectories start in the under-the-barrier region
at a complex time ts, asymptotically becoming classical
trajectories. One can call ts(p) the time of initiation of the
ionization wave packet around the asymptotic momentum p.
The delay of Re{ts(pm)} corresponding to the peak of PMD
p = pm with respect to the peak of the laser field, we may
define as the tunneling initiation time delay (ITD). With this
definition, the result of Ref. [45] can be interpreted as the
measurement of ITD to be vanishing, see the tunneling time
delay scheme in Fig. 1. Retrospectively, we can interpret the
trajectory-free tunneling time calculated in Ref. [30], using
the saddle point of the numerical solution of TDSE expressed
via the Green function as the calculation of ITD, and show-
ing it to be vanishing, similar to the experimental result of
Ref. [45]. While ETD is determined by the peak of the elec-
tron wave packet near the tunnel exit, ATD, by the shift of the
peak of the asymptotic PMD, the ITD is determined by the
emerging time ts(pm) of the quantum orbit corresponding to
the peak of PMD.

Recently, we have investigated the time delay in tunneling
ionization using the first-order SFA within the virtual detector
approach [67]. The calculation of the SFA wave function
based on the direct ionization amplitude showed a positive
time delay in the region of the tunnel exit, without invoking
recollisions. It has been confirmed that reflections of the elec-
tron wave packet under the tunneling barrier are responsible

for this nonzero time delay around the tunnel exit. While
the ETD is not directly measurable in an experiment, it is
amenable to measurement in a numerical experiment via a
solution of the TDSE. In Ref. [29] it has been clarified that the
nonnegligible negative ATD emerges due to the interference
of the direct and sub-barrier recolliding paths; however, the
relationship between asymptotic and exit time delays was
not clear. In the present paper, we address the issue of the
quantitative relationship between ATD and ETD.

In this paper we continue the investigation of the time delay
in tunneling ionization within SFA. Our aim is to analyze
the role of under-the-barrier recollisions for the tunneling
time delay at the tunnel exit. To this end we calculate the wave
function of the tunneling electron with an accuracy up to the
second-order SFA, which includes the recolliding quantum
orbits. The Wigner trajectory is constructed corresponding to
the peak of the ionized part of the wave function, and the time
delay is extracted from the latter. While already the Wigner
trajectory based on the first-order SFA wave function shows a
positive ETD [67], here we examine how it is perturbed by the
sub-barrier recollisions. Firstly, we employ the same simple
model for tunnel ionization as in the previous study [67], con-
sidering a one-dimensional (1D) atom, with an electron bound
by a short-range potential, which is ionized by a half-cycle
laser pulse. This simple model contains major features of the
tunneling ionization and allows a fully analytical treatment.
The 1D treatment is justified as the ionization occurs mainly
in the direction of the electric field. The use of a half-cycle
laser pulse excludes recollisions via the electron continuum
dynamics that are not related to the tunneling time delay. We
consider the regime close to the OTBI regime. In this regime
the ATD induced by sub-barrier recollisions is not vanishing,
in contrast to the deep tunneling regime discussed in Ref. [67].
Secondly, we extend the 1D model into three dimensions,
keeping the short-range character of the binding potential, and
show that the qualitative features of the tunneling time delay
are maintained in the three-dimensional (3D) case. Finally, we
discuss the recent experiment [45] measuring the tunneling
time delay in a two-color attoclock setup. Our SFA model
confirms the experimental findings, but shows that the latter
provides no information on the ATD, and an additional defini-
tion of a time delay (ITD) is necessary to physically interpret
the experimental results.

The structure of the paper is as follows: in Sec. II we in-
troduce the theoretical approach based on the SFA formalism,
in particular, the applied low-frequency approximation (LFA).
The results for 1D and 3D cases are discussed in Sec. III,
the two-color experiment is analyzed in Sec. IV, and our
conclusion is given in Sec. V. Atomic units (a.u.) are used
throughout the paper.

II. THEORY

A. Statement of the problem

We consider strong-field ionization of an atom in a unipolar
laser field, aiming at the investigation of the tunneling time
delay. A short-range potential V (r) is chosen to model an
atomic potential. This allows the discussion to focus uniquely
on the presence of time delay effects, unlike angular streak-
ing experiments for which long-range Coulomb effects must
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be accounted. The ionization process is described by the
Schrödinger equation

i
∂

∂t
�(r, t ) = (H0 + Hi )�(r, t ), (1)

with the atomic Hamiltonian

H0 = −∇2

2
+ V (r), (2)

and the interaction Hamiltonian of the electron with the time-
dependent laser field E(t ) in the length gauge

Hi = r · E(t ) . (3)

A unipolar laser pulse is employed to avoid multi-half-cycle
interference effects, which could hinder the observation of the
time-delay signature. The pulse is linearly polarized and has a
Gaussian form:

E(t ) = −E0 exp[−(ω t )2]x̂, (4)

with the field strength E0, and the angular frequency ω. We
are interested in the tunneling ionization regime, when the
dimensionless Keldysh parameter [68] γ = ωκ/E0 � 1 is
much smaller than unity. Here, −Ip = −κ2/2 is the atomic
binding energy, Throughout this paper we choose γ = 0.3,
and are therefore always in the quasistatic ionization regime,
while varying the laser field strength and, accordingly, the
frequency.

B. The strong-field approximation

A formal solution to Eq. (1), is given by the time evolution
operator U (t, ti ) which unitarily evolves the wave function ac-
cording to the full Hamiltonian H = H0 + Hi, from the initial
state |ψ (ti〉 at time ti into the state |ψ (t )〉 = U (t, ti )|ψ (ti)〉 at
time t . In the interaction picture the unitary time evolution
operator obeys the Dyson equation

U (t, ti ) = U0(t, ti ) − i
∫ t

ti

dt1 U (t, t1)Hi(t1)U0(t1, ti ), (5)

where U0 is the evolution operator corresponding to the
Hamiltonian H0. We work within the well-known SFA
[68–70], which assumes that after ionization the electron dy-
namics are dominated by the laser field, treating any further
interactions with the atomic core perturbatively. That is, the
full time evolution operator is iterated with respect to the
atomic potential V [66]:

U (t, t1) = Uf (t, t1) − i
∫ t

t1

dt2 U (t, t2)V Uf (t2, t1). (6)

Here Uf (t, t1) is the time evolution operator for the electron
dynamics purely in the laser field:

Uf (t, t1) =
∫ ∞

−∞
dp |�p(t )〉〈�p(t1)|, (7)

expressed via Volkov states of the electron in the laser field
[71], |�p(t )〉 = |P(t )〉 exp[−i Sp(t )], with the kinetic mo-
mentum P(t ) = p + A(t ), the phase Sp(t ) = ∫ t dτ P(τ )2/2,
and the laser vector potential A(t ) = ∫ ∞

t E(τ ) dτ ; the

state 〈r | p〉 = exp[i p · r]/(2π )
d
2 is the d-dimensional plane

wave state.

Thus, the electron wave function in the SFA is obtained as
a truncated series with respect to the atomic potential V :

|�(t )〉 = |�0(t )〉 + |�i(t )〉 + |�r (t )〉, (8)

which describes the ionization of the ground state |�0(t )〉 via
the direct path,

|�i(t )〉 = −i
∫ t

ti

dt1

∫
dp|�p(t )〉〈�p(t1) | Hi(t1) | ψ0(t1)〉,

(9)

and via the recollison path, involving one further interaction
with the atomic core, given by

|�r (t )〉 = −
∫ t

ti

dt1

∫ t

t1

dt2

∫
dp

∫
dk |�p(t )〉

× 〈�p(t2) |V | �k(t2)〉 〈�k(t1) | Hi(t1) | ψ0(t1)〉,
(10)

with each further interaction with atomic potential corre-
sponding to a higher-order term in V .

The canonical interpretation of the above term, Eq. (10), is
that it corresponds to the event of an ionized electron being
driven by the oscillating laser field back towards the core and
scattering from it. However, in the case where the electron
is not driven back towards its parent ion, in particular, in the
case of the applied unipolar laser field, this term takes on a
different meaning. In the quantum orbit picture, this additional
perturbative interaction with the atomic core is described as a
recollision in the complex (imaginary) time during the sub-
barrier dynamics [72,73].

Such processes were dubbed under-the-barrier recollisions
in Ref. [29], where it was shown that, for ionization near
the threshold for OTBI, the interference between the direct
ionization terms and under-the-barrier-recollision terms [i.e.,
between the first-order term in the SFA, Eq. (9), and higher
orders in the SFA, e.g., Eq (10)] produced a measurable shift
in the resulting asymptotic PMD.

The aim of the current work is to investigate to what extent
the time delay around the classical tunnel exit is altered due
to the under-the-barrier recollisions, i.e., due to the higher-
order terms in the SFA. To this end the time-dependent wave
function �(r, t ) is calculated and the time delay around the
classical tunnel exit is deduced via the maximum in time t of
the spatial probability |�(r, t )|2 for a given coordinate r.

For comparison, we also consider the asymptotic PMD
|M(p)|2 measurable at a detector. This is calculated by the pro-
jection of the time-dependent wave function in the momentum
representation

m(p, t ) = 〈�p(t ) | �(t )〉, (11)

on the free electron Volkov state |�p〉, in the limit of asymp-
totic times:

M(p) = lim
t→∞ m(p, t ). (12)

In terms of the SFA wave function of Eq. (8), the
amplitude m(p, t ) = m1(p, t ) + m2(p, t ), with m1(p, t ) =
〈�p(t ) | �i(t )〉 and m2(p, t ) = 〈�p(t ) | �r (t )〉, which gener-
ates the asymptotic PMD as a similar perturbation series
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M(p) = M1(p) + M2(p). The wave function via m1(p, t ) we
call 1SFA, while that via m1(p, t ) + m2(p, t ) we call 2SFA.

C. The low-frequency approximation

In the second-order SFA, recollisions are treated in the
first-order Born approximation, which is inaccurate for inter-
mediate energy electrons |p| ∼ κ . For the under-the-barrier
recollisions, given by Eq. (10), exactly this condition applies
and so the recollision treatment must be improved.

In order to do this, we make use of the LFA [74,75]. In
the LFA, the recollision matrix element in the Born approxi-
mation is replaced by the exact T (p) matrix for the field free
scattering of the zero-range potential:

〈�p(t2) |V | �k(t2)〉→ 〈�p(t2) | T [p + A(t2)] | �k(t2)〉.
(13)

In the LFA, the amplitude including recollisions with the core
is then approximated by the integral

|�r (t )〉 = −
∫ t

ti

dt1

∫ t

t1

dt2

∫
dp

∫
dk |�p(t )〉

× 〈�p(t2) | T [p + A(t2)] | �k(t2)〉
× 〈�k(t1) | Hi(t1) |ψ0(t1)〉. (14)

We simplify more LFA by correcting the second-order SFA
by the so-called LFA factor. This factor provides an analytical
estimate of the effect of the LFA in the quasistatic limit. By
considering a constant electric field E = −E0x̂, we derive
the LFA factor via the ratio of the second-order momentum
amplitude in the LFA to that in the second-order SFA:

TLFA = m2 |LFA

m2|SFA
. (15)

This is a relatively straightforward calculation, the details of
which can be found in Appendix A. In one dimension this
ratio is calculated to be

T (1D)
LFA = 1 −

√
π

2

κ3

E0
. (16)

In three dimensions, the calculation contains additional
integrations on the transversal coordinate and momentum.
Under the assumption that the final momentum lays in the
polarization axis py = pz = 0, we obtain a similar scaling,

T (3D)
LFA =

√
π

2

κ3

E0
. (17)

The LFA factor is then inserted as a prefactor into the
time-dependent second-order SFA amplitude and the latter is
calculated numerically in the quasistatic regime of γ = 0.3.

D. The electron wave function in momentum space

The electron wave function in momentum space m(p, t ) =
m1(p, t ) + m2(p, t ) reads in LFA

m1(p, t ) = − i
∫ t

ti

dt1〈�p(t1)|Hi(t1)|ψ0(t1)〉 (18)

TABLE I. Coefficients of the integral Eq. (24) for the first- and
second-order SFA. In the above k̃s = −[α(t2) − α(t1)]/(t2 − t1).

I1 I2

ai −i[p + A(t1)] −i[k̃s + A(t1)]
bi 0 i

2(t2−t1 )

m2(p, t ) = −TLFA

∫ t

ti

dt1

∫ t

t1

dt2

∫ ∞

−∞
dk 〈�p(t2)|V (r)|�k(t2)〉

× 〈�k(t1)|Hi(t1)|ψ0(t1)〉. (19)

In the 1D case the first-order amplitude can be expressed
as

m(1D)
1 (p, t ) =

∫ t

ti

dt1

∫ ∞

−∞
dx1 x1m̃(1D)

1 (p, x1, t1), (20)

where for convenience we define the integrand of the matrix
element

m̃(1D)
1 (p, x1, t1) = −i�∗

p (x1, t1)E (t1)ψ0(x1, t1). (21)

The second-order amplitude can be simplified via analytical
integration of the recollision coordinate x2 in the first matrix
element and the intermediate momentum k, which yields

m(1D)
2 (p, t ) =

∫ t

ti

dt1

∫ t

t1

dt2

∫ ∞

−∞
dx1 x1m̃(1D)

2 (p, x1, t1, t2)

(22)
with

m̃(1D)
2 (p, x1, t1, t2) = − iT 1D

LFA

√
2π

i(t2 − t1)
× �∗

p (0, t2)(−κ )

× �ks (0, t2) m̃(1D)
1 (ks, x1, t1), (23)

where ks = [−x1 − α(t2) + α(t1)]/(t2 − t1) and α(t ) =∫ t dτ A(τ ). Both amplitudes now are expressed via the
integral

Ii =
∫ ∞

−∞
dx1 x1 exp[ai x1 + bi x2

1 − κ | x1 |], (24)

with corresponding coefficients ai and bi for i = 1, 2, shown
in Table I.

The integral of Eq. (24) has an analytic solution

Ii =
√

πe− (ai+κ )2

4bi

4(−bi )3/2

{
e

a2κ

bi (ai − κ )

[
1 + erf

(
ai − κ

2
√−bi

)]

+ (ai + κ )

[
1 − erf

(
ai + κ

2
√−bi

)]}
; (25)

In the limit bi → 0, we have Ii = 4aiκ

(a2
i −κ2 )2 .

Finally, the amplitudes are calculated using the function I
defined above:

m(1D)
1 (p, t ) =

∫ t

ti

dt1 m̃(1D)
1 (p, 0, t1)I1(t1), (26)

m(1D)
2 (p, t ) =

∫ t

ti

dt1

∫ t

t1

dt2m̃(1D)
2 (p, 0, t1, t2)I2(t1, t2).

(27)
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TABLE II. Coefficients of the integral Eq. (24) for the first-
and second-order SFA wave function in the coordinate representa-
tion. In the above p̃s1 = [x − α(t ) + α(t1)]/(t − t1), k̃s = −[α(t2) −
α(t1)]/(t2 − t1).

I1 I2

a1 −i[ p̃s1 + A(t1)] −i[k̃s + A(t1)]
bi

i
2(t−t1 )

i
2(t2−t1 )

The derivation of the approximate SFA amplitudes in three
dimensions is given in Appendix B.

E. The electron wave function in coordinate space

The coordinate wave function can be represented straight-
forwardly via a 1D Fourier transformation using the SFA
amplitudes m1 and m2 as follows:

�i(x, t ) =
∫ ∞

−∞
d p m1(p, t ) �p(x, t ), (28)

�r (x, t ) =
∫ ∞

−∞
d p m2(p, t ) �p(x, t ). (29)

We underline that the amplitudes m1,2(p, t ) in the equa-
tions above are time dependent. For the calculation of ATD
we use M1,2(p) = m1,2(p, t )|t→∞, while for the exit delay
m1,2(p, t )|t=te , at the exit time te (close to zero), is employed.
The momentum integration is performed by SPA, yielding an
extra factor:

�i(x, t ) =
∫ t

ti

dt1

∫ ∞

−∞
dx1 x1m̃(1D)

1 (ps1, x1, t1)

×
√

2π

i(t − t1)
�ps1 (x, t ), (30)

�r (x, t ) =
∫ t

ti

dt1

∫ t

t1

dt2

∫ ∞

−∞
dx1 x1m̃(1D)

2 (ps2, x1, t1, t2)

×
√

2π

i(t − t2)
�ps2 (x, t ), (31)

where ps1 = [x − x1 − α(t ) + α(t1)]/(t − t1), and ps2 =
[x − α(t ) + α(t2)]/(t − t2). The coordinate integration can be
represented again by the functions Ii, with the coefficients ai

in the integral of Eq. (24) now given by those of Table II.

�i(x, t ) =
∫ t

ti

dt1 m̃(1D)
1 ( p̃s1, 0, t1)I1(t1)

√
2π

i(t − t1)
�p̃s1 (x, t ),

(32)

�r (x, t ) =
∫ t

ti

dt1

∫ t

t1

dt2m̃(1D)
2 ( p̃s2, 0, t1, t2)I2(t1, t2)

×
√

2π

i(t − t2)
�p̃s2 (x, t ), (33)

with p̃s1 = [x − α(t ) + α(t1)]/(t − t1), and p̃s2 = [x −
α(t ) + α(t2)]/(t − t2). Further, the probability distribution at
the exit, x = xe, is calculated via the wave function |�(xe, t )|2.
Here, the average exit coordinate xe is obtained by averaging

FIG. 2. Wigner trajectories in the 1D case: (orange triangles) the
trajectory τ (x) calculated via the 2SFA wave function including the
direct and sub-barrier recolliding paths; (blue circles) the trajectory
τi(x) calculated via the 1SFA wave function including only the direct
ionization path; (green diamonds) the classical trajectory starting at
the tunnel exit with a vanishing velocity. The shaded area indicates
regions under the barrier, i.e., smaller than the tunnel exit coordinate
xe given by Eq. (34). The field strength E0 = 0.15 a.u. is below the
OTBI threshold.

over the tunneling probability (Keldysh exponent), similar to
Ref. [67]:

xe =
∫ ∞
−∞ dt Ip

|E(t )| exp
[ − 2κ3

3|E(t )|
]

∫ ∞
−∞ dt exp

[ − 2κ3

3|E(t )|
] . (34)

The 3D wave function in coordinate space is given in
Appendix C.

III. DISCUSSION

A. The Wigner trajectory

The dynamics of the laser-driven electron during strong-
field ionization are described by the SFA wave function
�i(x, t ) + �r (x, t ). The Wigner trajectory τW (x) is derived
using the probability P(x, t ) = |�i(x, t ) + �r (x, t )|2 of the
laser-driven wave packet in the following way: for each fixed
space point x, τW (x) corresponds to the peak of the probability
P(x, t ). For comparison, we additionally consider an analo-
gous “direct ionization” Wigner trajectory τ

(i)
W (x), calculated

only using the maximum of the direct ionization probability
Pi(x, t ) = |�i(x, t )|2. These Wigner trajectories for the field
strength E0 = 0.15 a.u. are shown in Fig. 2, beginning at the
typical value |xs| ∼ 1/κ , which is the x1 saddle point of the
product of the 1D bound state ∼ exp[−κ|x1|] with the interac-
tion Hamiltonian Hi ∼ E (t )x1. The field value is chosen not
to exceed, but to be close to, the threshold for OTBI when the
tunneling time delay is significant.

Both the direct ionization Wigner trajectory τ
(i)
W (x) and the

one via the full ionization amplitude including a recollision
τW (x) show a positive time delay at the tunnel exit com-
pared to the peak of the laser field. However, the recollision
under the barrier acts to reduce the time delay slightly. In
Ref. [67] we have shown that the positive time delay of
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FIG. 3. Time delay at the tunnel exit vs the laser field: (a) in the 1D case and (b) in the 3D case, using the first-order SFA (blue circles)
as well as the second-order SFA (orange triangles). Both time delays δtexit = maxt [P(xe, t )] − maxt [E (t )] are calculated as the peak of the
temporal probability distribution at the tunnel exit xe, as laid out in the text. In the 2SFA (orange triangles), the probabilityP(x, t ) = |�i(x, t ) +
�r (x, t )|2 includes the effects of recollisions, whereas as in the 1SFA the probability distribution Pi(x, t ) = |�i(x, t )|2 accounts only for direct
ionization. The difference of these two delays, |δt (r)

exit| = |δtexit (2SFA) − δtexit (1SFA)| increases with field strength, an effect directly attributable
to the under-the-barrier recollision.

the direct ionization path arises due to reflections inside the
barrier, and it is positive as the reflections hinder the wave
packet crossing the barrier. The positive ETD is reduced by
the sub-barrier recollision, which can be intuitively explained
by the additional positive probability current induced by the
recollision. That is, accounting for the additional possibility
of ionization through a recollision increases the probability
current by accounting for an additional ionization channel. An
increase in probability flux implies reduced hindrance of the
tunneling wave function, which in turn implies a smaller time
delay.

Far from the exit, the direct trajectory approaches the
classical trajectory, i.e., the trajectory of a classical electron
appearing at xe at the peak of the laser field, with a vanishing
momentum. Thus, the direct trajectory shows vanishing ATD
with respect to the “simple man” model (tunneling, followed
by classical motion), while the trajectory containing an under-
the-barrier recollision tends to a negative ATD with respect
to the simple man model. The latter is in accordance with the
previous result of Ref. [29].

B. Time delay dependence on field strength

The dependence of ETD δtexit on the laser field strength
E0 is shown in Fig. 3. With larger fields, the time delay
decreases, which was already established for direct ionization
in Ref. [67].

However, the effect of recollisions on the time delay, i.e.,
the difference of the time delay between the direct and recol-
liding trajectories,

δt (r)
exit = δtexit (2SFA) − δtexit (1SFA), (35)

in this case increases by absolute value, as shown in Fig. 3.
Thus, on the one hand, the sub-barrier recollision decreases

the positive ETD, i.e., has a negative contribution to the ETD.
On the other hand, it is known [29,46] that the sub-barrier
recollision also induces a shift of the peak

δpasym = maxp{|M1(p) + M2(p)|2} − maxp{|M1(p)|2} (36)

of the asymptotic PMD, corresponding to a negative ATD

δtasym = −δpasym/E0. (37)

We illustrate the latter in Fig. 4, where the asymptotic
PMD, |M1(p) + M2(p)|2, via the SFA up to first and second
orders is shown for a field strength E0 = 0.15 a.u.. A positive
momentum shift δp ≈ 0.08 a.u. (corresponding to the nega-
tive time delay δtasym ≈ −0.53 a.u.) is observed in the peak
of asymptotic momentum, which is directly attributable to the
under-the-barrier recollision.

We can give an estimate of the scaling of δtasym with respect
to the field strength by calculating the Wigner time delay [50]
of an electron in an adiabatic field [12,76]. The Wigner delay

FIG. 4. Asymptotic momentum distribution in 1D for the wave
function using the SFA up to first (blue, solid) and second order
(orange, dashed). A positive momentum shift δp ≈ 0.08 a.u. is ob-
served in the peak of the distribution when one under-the-barrier
recollision is considered, corresponding to a negative time delay of
−0.53 a.u. The grid lines, and associated colored dots, indicate the
peaks of the distributions.
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FIG. 5. Relationship between ETD and ATD in the (a) 1D and (b) 3D cases. Plotted are the variations of the peak of the tunneling wave
packet at the tunnel exit due to the recollision, δt (r)

exit = δtexit (1SFA) − δtexit (2SFA) (orange triangles) and ATD δtasymp = δpasymp/E0 (blue
circles). The dashed line shows an estimate of ATD in a static field calculated via the Wigner derivative and given by Eq. (40) and its 3D
equivalent.

corresponds to the energy derivative,

δtasym = i
∂ ln(�κ )

∂Ip
, (38)

of the electron wave function in a static field, which in the
SFA reads

�κ ∼ exp{−κ3/(3E0)} + iT (1D)
LFA exp{−κ3/E0}. (39)

This equation has a simple intuitive explanation. The first term
(exp{−Ea/(3E0)}) describes the direct tunneling amplitude
and its module square (exp{−2Ea/(3E0)}) is proportional to
the tunneling exponent of Keldysh theory. The second term
describes the recolliding path, which includes triple tunneling
through the barrier: from the atom to the surface of the barrier,
tunneling again toward the atom with a recollision, and the
final tunneling leading to ionization. Due to the triple tunnel-
ing, the tunneling exponential factor is repeated three times
(exp{−Ea/E0}). The recollision is included via perturbation
theory, therefore the amplitude is proportional to the scattering
amplitude by the core (T (1D)

LFA ). For an explicit derivation, we
refer the reader to Eq. (2) of Ref. [29]. Thus, a straightfor-
ward calculation (recalling the binding energy −Ip = −κ2/2)
yields

|δtasym|∼e− 2 κ3

3 E0

κ2

⎡
⎣−3

√
π

8

(
κ3

E0

) 1
2

−2

(
κ3

E0

)
+

√
2π

(
κ3

E0

) 3
2

⎤
⎦,

(40)

which for E0 � κ3 is dominated by the last term

|δtasym| ∼
√

2π
e− 2 κ3

3 E0

κ2

(
κ3

E0

)3/2

. (41)

A similar derivation yields a three-dimensional
estimate, δt (3D)

asym ∼ (E0/κ
3) δtasym, when the 3D SFA

wave function is employed, ψ (3D)
κ ∼ exp{−κ3/(3E0)} +

i c2(0, ts1, ts2) T (3D)
LFA exp{−κ3/E0}, where c2(0, ts1, ts2) is

given by Eq. (B7), and ts1 = 3 ts2 = 3iκ/E0 are the saddle
points of time integration in a constant field; for details see
Ref. [29].

These estimates are in good qualitative accordance with the
time-dependent SFA results shown in Fig. 5.

C. Relationship between asymptotic and exit delays

It is interesting to see whether there is a relationship be-
tween these two time delays, δtasym and δtexit . This question is
particularly relevant to attosecond streaking techniques which
attempt to extract information on the tunneling process from
measurements at distances much greater than the atomic scale.
This question is analyzed in Fig. 5, comparing these two time
delays.

The qualitative features of the ETD are similar in both
the 1D and 3D cases. The ETD is positive and decreases
with larger fields. The sub-barrier recollision reduces the ETD
(Fig. 3), and the sub-barrier recollision effect increases with
the field (Fig. 5). The value of the time delay in the 3D case is
smaller than in the 1D case, because of the decreasing contri-
bution of the recolliding wave packet which spreads in three
dimensions for the case of a short-range atomic potential.

IV. TUNNELING TIME DELAY IN A TWO-COLOR
LASER FIELD

Recently, a new scheme for the determination of the tunnel-
ing time has been proposed and experimentally implemented
in Ref. [45]. The new scheme uses an elliptically polarized
infrared (IR) streaking laser field along with an additional
perturbative second-harmonic field, linearly polarized along
the major axis of the elliptical polarization. Due to the second-
harmonic field, the total laser field is slightly modified, which
leads to slight modification of PMD.

Due to the total field modification, the ionization yield at
a given attoclock angle oscillates with respect to the phase
difference (time delays) between the color fields. The experi-
ment shows that the yield is the largest for the attoclock angle,
which corresponds to the vanishing phase difference between
the two color fields �φ = ωtd = 0, with the time delay td
between the laser pulses. In the �φ = 0 case, the peak field
of the second-harmonic wave is added to that of the elliptical
polarization, creating the largest total field inducing the ion-
ization. Therefore, according to the experiment, the tunneling
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FIG. 6. (a) The total two-color field of Eq. (42) for td = −1 a.u. (blue solid), td = 0 (orange dashed), and td = 1 a.u. (green dotted). (b) The
peak value of the two-color field E (tm ) vs the time delay td .

of the electron which produces the largest yield (largest PMD
peak) happens at the maximum of the field. From the latter, a
conclusion is drawn that the tunneling time delay is vanishing.
While the results of this accurate experimental measurement
raise no doubt, the conclusion drawn from the results needs
clarification. One needs to understand the physical meaning
of the measured time delay.

We have tested the conclusion of these experimental re-
sults with our simple analytical 1D SFA model developed in
previous sections, which uses a short-range potential for the
atomic potential and two half-cycle laser pulses. We mimic
the two-color driving laser pulse with a field strength

E (t ) = −E0{exp[(ωt )2] + ξ exp(−{2[ω(t − td )]}2)}, (42)

which has the same property as the total field in the experi-
mental setup: the total field amplitude is the largest when the
time delay td between the color field is vanishing, see Fig. 6.

We calculate the PMD using Eqs. (26) and (27) (for the
asymptotic time t → ∞) as a function of the time delay td .
The chosen parameters are E0 = 0.25 a.u., ω = 0.075 a.u.,
and ξ = 0.05. The probability of the PMD peak varies de-
pending on td as is shown in Fig. 7(a). We observe the same
result as in the experiment of Ref. [45] that the probability of
the PMD peak is the largest at vanishing time delay between
the pulses, td = 0, i.e., when the field inducing ionization is

the largest. Thus, the correspondence of the largest PMD peak
to the largest field is confirmed, i.e., the largest PMD peak is
initiated at the peak of the field.

We find from PMD the momentum pm corresponding to
the PMD peak at any given td , and translate it to the ion-
ization time via the time delay δtasymp = −[pm + A(0)]/E0,
taking into account that at t = 0 the asymptotic momentum
is −A(0), with the vector potential A(t ). Note that δtasymp for
1SFA coincides with the simple man prediction for the peak
momentum pm = −A(tm), where tm corresponds to the peak
of the field E (t ).

We calculate also the saddle-point time ts of the SFA am-
plitude, which corresponds to the time of the initiation of the
quantum orbit of tunneling ionization. Both, 1SFA and 2SFA
give the same value for Re{ts}. Both, δtasymp and Re{ts} are
shown in Fig. 7(b), which indicates that Re{ts} coincides with
the 1SFA result for δtasymp, which is similar to the simple
man model, i.e., the ionization is initiated at the time of the
maximum of the laser field. Thus, ITD corresponds to the
difference between Re{ts} and 1SFA and it is vanishing for any
td . The same conclusion that Re{ts} corresponding to the PMD
peak is vanishing has been derived in Ref. [30] via analysis of
the numerical amplitude. The numerical solution of TDSE has
been expressed in Ref. [30] via the time integral containing
the numerical Green function, and the saddle point of this time

FIG. 7. Tunneling ionization in a two-color laser field: (a) The probability w for the peak of PMD vs the time delay td between the color
fields; (b) δtasymp = −[pm + A(0)]/E0 vs td , with the pm corresponding to the PMD peak. The ATD corresponds to the shift of δtasymp between
2SFA and 1SFA, which is due to the interference of the direct and the sub-barrier recolliding paths; (dashed line with blue cycles) via first-order
SFA, (orange triangles) via second-order SFA, (green triangles) Re{ts} via 2SFA. The ITD corresponds to the difference between Re{ts} and
1SFA and it is vanishing for any td .
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integration has been obtained, identifying it with the tunneling
time delay. We argue that in this way, in fact, the vanishing
ITD has been calculated.

From Fig. 7(b) we can deduce also the value of ATD,
which corresponds to the shift of δtasymp between 2SFA (full
SFA amplitude, including the first- and second-order SFA
amplitudes) and 1SFA (first-order SFA). This shift is due to
the interference of the direct and the sub-barrier recolliding
paths. The ATD (shift between 2SFA and 1SFA) is about
1 a.u. at any td . The ATD at td = 0 (when the ionization yield
is maximal) is δtasymp = −1 a.u., while ITD via ts is vanishing.
Thus, in this two-color setup, the largest PMD peak of the
ionization wave packet originates at the peak of the laser field,
td = 0. The latter can be interpreted as the ITD vanishing.

Further, there are two paths of ionization: the direct path,
described by the first-order SFA amplitude, and the sub-
barrier recolliding one, described by the second-order SFA
amplitude. While these paths originate at the peak of the laser
field, their interference is observed in the PMD as a shift of
the momentum distribution (with respect to the case only with
the direct SFA path), which is equivalent to the nonzero ATD.
Consequently, the emergence of the ionization wave packet at
the peak of the laser field, i.e., the vanishing of ITD, does
not preclude the nonvanishing ATD due to the sub-barrier
dynamics.

The ITD concept is introduced to describe the measure-
ment carried out in Ref. [45], and to show that it does not
contradict the conclusion on the nonvanishing negative ATD
in attoclock.

The time delay extraction in a two-color attoclock differs
from that in a single-color attoclock. In the common single-
color attoclock the extraction procedure of the time delay is
related to the vector potential A(te) = ∫ ∞

te
E(t ′)dt ′ of the laser

field at the ionization moment te when the electron appears
in the continuum at the tunnel exit. The time delay is derived
from the attoclock offset angle , which is determined by A(te).
The vector potential A(te) is detected via the asymptotic pho-
toelectron momentum, which includes the propagation from
tunnel exit to the detector, and the extracted time te is therefore
an asymptotic quantity corresponding to ATD.

In the two-color attoclock the time extraction is related to
the laser field E(ti ). The time delay is derived from the ioniza-
tion yield dependence on the phase difference between color
fields at the given offset angle, and the yield is determined by
E(ti ), with ti corresponding to the yield maximum. The field
E(ti ) determines the probability of the ionization wave packet
emerging at the core, and the extracted time ti is therefore an
atomic quantity. The time delay ti (ITD) corresponds to such
field E(ti ) which produces the largest yield for the PMD peak.
Thus, the time delay in a single-color attoclock is derived from
the offset angle, while in a two-color attoclock it is derived
from the yield at the PMD peak. The procedures are different,
as are the corresponding extracted time delays.

Summarizing the measurement of Ref. [45], it has been ob-
served that the PMD peak varies in dependence on the phase
difference �φ between the color components of the field. This
is because of the variation of the amplitude of the two-color
field with respect to �φ. The yield at the PMD peak is found
to be the largest when �φ = 0. The latter corresponds to the
case when the amplitude of the two-color field is the largest.

Thus, the finding of Ref. [45] is the following: the largest
PMD peak is observed when the two-color field amplitude
is the largest. The finding of Ref. [45] is an analog to the
result of the following Gedanken experiment: Assume the
yield at the PMD peak is measured in a single-color attoclock
with different intensities. The result of Ref. [45] implies that
the largest yield will be observed in the case with the largest
field amplitude. This result confirms that the ionization wave
packet formed (near the core inside the barrier) at the largest
field value (vanishing ITD), without giving any information
about ionization wave packet propagation inside the barrier,
and about the time te when the electron appears at the tunnel
exit. Therefore, the measurement of Ref. [45] cannot answer
the question about either ETD or ATD. In SFA theory this
is analog to the saddle-point time ts of the quantum orbit
responsible for the PMD peak. Therefore, we relate ITD to
the “trajectory-free tunneling time” introduced in Ref. [30]:
ti = Re{ts}.

V. SUMMARY AND CONCLUSION

We have considered the tunneling time delay of an elec-
tron in strong-field ionization in a unipolar time-dependent
laser field, accounting for under-the-tunneling-barrier pro-
cesses. The electron wave function within a simplified model
of ionization, with a short-range atomic potential, has been
calculated analytically using SFA. We considered the direct
ionization (via the first-order SFA) and the full ionization
amplitudes, including the direct tunneling path and the path
with the sub-barrier recollision (via the second-order SFA).
Employing the wave function in its spatial representation, we
derived the Wigner trajectory near the tunnel exit. The Wigner
trajectory shows a positive time delay near the tunnel exit both
with and without under-the-barrier processes. However, we
find that when one accounts for sub-barrier recollisions the
ETD is decreased slightly; see the summary in Table III.

As is known from Ref. [29], the interference of the direct
and sub-barrier recolliding paths induces an asymptotic mo-
mentum distribution shift, which is equivalent to a negative
time delay with respect to the simple man model. We found
a relationship between the change of ETD due to sub-barrier
recollisions and the ATD. Furthermore, we proved that these
time delays are equal in the tunneling regime, as expected
because of the same origin related to the effect of the sub-
barrier recollision. The field dependence of these time delays
is also obtained.

We also provided the 3D generalization of our results. The
features of the tunneling time delay were shown to be similar
to those in one dimension.

Finally, we tested with our model the conclusion drawn
from the experiment on the accurate measurement of the
ionization PMD in a two-color laser field. The result of the
experiment shows that the ionization wave packet correspond-
ing to the largest PMD peak emerges at the peak of the laser
field. We introduced the notion of ITD and related it to the
two-color experiment, as well as to the theoretical calculation
of the trajectory-free tunneling time of Ref. [30]. While the
two-color experiment shows vanishing ITD, this does not pre-
clude, according to our theoretical analysis, the nonvanishing
ATD due to the sub-barrier dynamics.
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TABLE III. Scaling of tunneling times and asymptotic momentum with respect to field strength E0, for E0 � κ3, for three different models
of ionization in one dimension (the classical simple man model, direct ionization using the first-order SFA, and ionization including one
recollision using the second-order SFA). These estimates provide upper or lower bounds for these measures, which are indicated above as
characteristic values. Here τ0 =

√
2π

κ2 ( κ3

E0
)3/2, as in Eq. (41). For the scaling via 1SFA see Ref. [67].

Simple man model 1SFA 2SFA Characteristic values

ITD 0 0 0 0
ETD 0 E −2/3

0 E −2/3
0 − τ0 exp(− 2κ3

3E0
) � 10 a.u.

ATD 0 0 −τ0 exp(− 2κ3

3E0
) �− 1 a.u.

Asymptotic momentum shift 0 0 E0τ0 exp(− 2κ3

3E0
) � 0.4 a.u.
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APPENDIX A: THE LFA FACTOR

1. 1D LFA factor

We derive the LFA factor in the 1D case. To this end we
compare the second-order SFA amplitude with that of LFA in
the quasistatic limit, namely, in a static field. The second-order
SFA amplitude in a constant field E (t ) = −E0 has the follow-
ing structure in the 1D case after performing the coordinate
integrations analytically:

m(1D)
2SFA =

∫ ∞

−∞
dt1

∫ ∞

t1

dt2

∫
dk P2SFA exp

{
− i

p2

2
(t − t2)

−ip[α(t ) − α(t2)] − i
k2

2
(t2 − t1)

−ik[α(t2) − α(t1)] + iβ(t1) + i
κ2

2
t1

}
, (A1)

where α(t ) = E0t2/2 and β(t ) = E2
0 t3/6. In the above,

P2SFA = −κ5/2/(
√

2π )3 is the pre-exponential factor of the
second-order SFA, which is weakly dependent on the integra-
tion variables. Without loss of generality we can set p = 0 and
simplify. Then, using SPA for the k and t1 integrations yields

m(1D)
2SFA =

∫ ∞

t1,s

dt2
2π

κ
P2SFA exp

[
−κ3

E0
− E0κ

2

(
t2 − i

κ

E0

)2
]
,

(A2)

where the exponent is already expanded quadratically around
the saddle point in t2. The integration contour in Eq. (A2)
consists of two parts: (1) from t1,s to iκ/E0, and (2) from
iκ/E0 to ∞. The integration along the first part of the contour
gives the direct ionization amplitude m1, see Appendix D, cf.
Ref. [77], which is dropped because in this section our aim is
to derive the LFA factor for the recollision amplitude. Then,
the integral along the second part of the contour yields

m(1D)
2SFA = P2SFA

(2π )3/2

2κ
√

κE0
exp

[
−κ3

E0

]
. (A3)

Now we calculate the corresponding LFA amplitude. In the
1D LFA, the SFA pre-exponential factor P2SFA is replaced by

P(1D)
LFA (t2) = E0t2

E0t2 − iκ
P2SFA, (A4)

see Ref. [78], and we consequently arrive at

m(1D)
LFA =

∫
t1,s

dt2
2π

κ
PLFA(t2) exp

[
−κ3

E0
−E0κ

2

(
t2 − i

κ

E0

)2
]
.

(A5)

The latter is calculated analytically in the same way as that of
Eq. (A2), yielding

m(1D)
LFA =

∫
dt2

π

κ
PLFA(t2) exp

[
−κ3

E0
− E0κ

2

(
t2 − i

κ

E0

)2
]

=
⎛
⎝1 −

√
π

2

κ3

E0

⎞
⎠m(1D)

2SFA. (A6)

Thus, we derive the LFA factor in the 1D case:

T (1D)
LFA = 1 −

√
π

2

κ3

E0
, (A7)

which corrects the SFA recollision amplitude as it incorpo-
rates the exact scattering amplitude in the SFA recollision
matrix element.

2. 3D LFA factor

In the LFA for a 3D system with a short-range potential,
the SFA pre-exponential factor P2SFA is replaced by

PLFA = −iκ

E0t2 − iκ
P2SFA, (A8)

see Ref. [78]. A calculation similar to 1D gives the following
expression for the LFA recollision amplitude in the 3D case:

m(3D)
LFA =

√
π

2

κ3

E0
m(3D)

2SFA, (A9)

thus providing the LFA correction factor in the 3D case:

T (3D)
LFA =

√
π

2

κ3

E0
. (A10)
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APPENDIX B: 3D WAVE FUNCTION IN MOMENTUM SPACE

The SFA amplitudes in three dimensions contain additional integrations on the transversal coordinate and momentum. We
work under the assumption that the final momentum lays in the polarization axis py = pz = 0, justified by the fact that ionization
occurs primarily in the direction of the driving laser field. Thus, as before, we have the momentum amplitude defined by the
integral

m(3D)
1 (px, t ) =

∫ t

ti

dt1

∫ ∞

−∞
dx1 x1m̃(3D)

1 (px, x1, t1), (B1)

where

m̃(3D)
1 (px, x, t ) =

∫∫
dy1 dz1 m̃(1D)

1 (px, x1, t ) ×
exp

( − κr1 + κ

√
x2

1

)
(2π )3/2 r1

= 2π

∫
dρ1 ρ1m̃(1D)

1 (px, x1, t )
exp

( − κr1 + κ

√
x2

1

)
(2π )3/2 r1

= 1√
2πκ

m̃(1D)
1 (px, x1, t ), (B2)

with r1 =
√

x2
1 + y2

1 + z2
1 =

√
x2

1 + ρ2
1 . Thus, the additional integral in Eq. (B2) yields an extra factor c1 = 1/

√
2πκ2 in the

first-order amplitude:

m̃(3D)
1 (px, x1, t1) = c1m̃(1D)

1 (px, x1, t1). (B3)

Analogously the second-order amplitude in 3D,

m(3D)
2 (px, t ) =

∫ t

ti

dt1

∫ t

t1

dt2

∫
dx1 x1m̃(3D)

2 (px, x1, t1, t2), (B4)

can be expressed via the corresponding 1D amplitude

m̃(3D)
2 (px, x1, t1, t2) = −

∫
dy1dz1dky dkz m̃(1D)

2 (px, x1, t1, t2)
exp

[ − ikyy1 − ikzz1− i
2

(
k2

y + k2
z

)
(t2 − t1) − κr1 + κ

√
x2

1

]
√

(2π )3 r1κ2
(B5)

After the application of a four-dimensional (4D) SPA over y1, z1, ky, and kz integrations, we obtain the 3D amplitude

m̃(3D)
2 (px, x1, t1, t2) = c1 c2(x1, t1, t2) m̃(1D)

2 (px, x1, t1, t2),

(B6)

with the following correction factor to the 1D case:

c2(x1, t1, t2) = − 1

i(t2 − t1)κ2 + |x1|κ . (B7)

In the consequent x1 integration in the second-order amplitude a typical value of |xs| ∼ 1/κ in c2(x1) is assumed [79], after
which the integration is carried out analytically. This choice is justified because xs is the x1 saddle point of the product of 1D
bound state wave function ∼ exp[−κ|x1|] with the interaction Hamiltonian Hi ∼ E (t )x1.

Thus, the total amplitude (in the px plane) in three dimensions can be calculated from the amplitude in one dimension, using
Eqs. (21) and (23):

m(3D)
1 (px, t ) =

∫ t

ti

dt1 m̃(3D)
1 (px, 0, t1)I1(t1), (B8)

m(3D)
2 (px, t )=

∫ t

ti

dt1

∫ t

t1

dt2m̃(3D)
2 (px, 0, t1, t2)I2(t1, t2). (B9)

APPENDIX C: 3D WAVE FUNCTION IN COORDINATE SPACE

In the 3D case we use the wave function in a mixed representation �i(x, py, pz, t ) to derive the Wigner trajectory, choosing
the most probable values for the transverse momentum py = pz = 0:

�i(x, py, pz, t )|py=pz=0 =
∫ ∞

−∞
d pxm(3D)

1 (px, t )�px (x, t ) (C1)

�r (x, py, pz, t )|py=pz=0 =
∫ ∞

−∞
d px m(3D)

2 (px, t )�px (x, t ). (C2)
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With the assumption py = pz = 0, the spreading of the tunneling wave packet in the continuum, after leaving the tunneling
barrier, is neglected. Meanwhile, the spreading during the tunneling inside the barrier has been fully accounted for via the
intermediate transverse momentum ky, kz integration in Eq. (B5). As the tunneling time delay is formed during the tunneling, the
latter is relevant for the tunneling time delay, while the former has no effect on the tunneling time delay, and its neglect is thus
justified. The calculations similar to the 1D case provide

�i(x, py, pz, t )|py=pz=0 =
∫ t

ti

dt1 m̃(3D)
1 ( p̃s1, 0, t1)I1(t1)

√
2π

i(t − t1)
�p̃s1 (x, t ), (C3)

�r (x, py, pz, t )|py=pz=0 =
∫ t

ti

dt1

∫ t

t1

dt2 m̃(3D)
2 ( p̃s2, 0, t1, t2)I2(t1, t2)

√
2π

i(t − t2)
�p̃s2 (x, t ), (C4)

Further, the probability distribution at the exit, x = xe, is calculated via the wave function |�(xe, py = 0, pz = 0, t )|2.

APPENDIX D: CALCULATION OF THE INTEGRAL ALONG THE VERTICAL CONTOUR

The V -SFA momentum amplitude in one dimension in a constant field reads after the two coordinate integrations

m(1D)
2SFA =

∫ ∞

−∞
dt1

∫ ∞

t1

dt2

∫
dk P2SFA exp

[
−i

k2

2
(t2 − t1) − ik[α(t2) − α(t1)] +iβ(t1) + i

κ2

2
t1

]
, (D1)

where p = 0 was used. We carry out firstly the integration over the intermediate momentum k by SPA and arrive at

m(1D)
2SFA =

∫ ∞

−∞
dt1

∫ ∞

t1

dt2 P2SFA

√
2π√

i(t2 − t1)
exp

[
−i

k2
s

2
(t2 − t1) − iks[α(t2) − α(t1)] + iβ(t1) + i

κ2

2
t1

]
, (D2)

with ks = −[α(t2) − α(t1)]/(t2 − t1). The following t2 integral consists of a vertical contour from t1 to t2,s and a horizontal
contour from t2,s to ∞. In this section we want to estimate the first, which has its dominant contribution in the region around
t2 = t1. We therefore expand the integrand in t2 around t1:

m(1D)
2SFA = −

∫ ∞

−∞
dt1

∫ ∞

t1

dt2
κ5/2

2π
√

i(t2 − t1)
exp

[
i

2
E2

0 (t2 − t1)t2
1 + i

6

(
E2

0 t3
1 + 3κ2t1

)]
(D3)

and integrate analytically

m(1D)
2SFA =

∫ ∞

−∞
dt1

κ5/2

√
2πE0t1

exp

[
i

6

(
E2

0 t3
1 + 3κ2t1

)]
. (D4)

The final integral is again evaluated via SPA, where the exponent is expanded quadratically at the saddle point t1,s = iκ/E0 and
the latter is inserted into the pre-exponential. With these approximations we derive the direct ionization amplitude

m(1D)
2SFA = iκ√

E0
exp

[
− κ3

3E0

]
. (D5)

APPENDIX E: THE NUMERICAL TIME INTEGRATIONS

The derivation of the ionization amplitudes leads to time integrals that are calculated numerically. We consider intermediate
observation times t when the electron is close to the tunnel exit, and the structure of the integrands is the following:

m̃ =
∫ t

ta

dt ′ exp[ f (t ′)]√
t − t ′ , (E1)

where the function f (t ′) has a singularity at t ′ = t . To handle the integration at the singularity, we single out the singular part of
f (t ′) as f (t ′) = −i f−1/(t − t ′) + O(1), with a constant coefficient f−1 > 0, and rewrite the integral

m̃ =
∫ t

ta

dt ′
(

exp[ f (t ′)]√
t − t ′ − exp

[−i f−1

t−t ′
]

√
t − t ′

)
+

∫ t

ta

dt ′ exp
[−i f−1

t−t ′
]

√
t − t ′ . (E2)
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Now it is possible to perform the first integration numerically, since the singularity is omitted, and second integral to calculate
analytically, which yields

m̃ =
∫ t

ta

dt ′
(

exp[ f (t ′)]√
t − t ′ − exp

[−i f−1

t−t ′
]

√
t − t ′

)
− (1 + i)

√
f−1

√
2π + (1 + i)

√
2π

√
f−1erf

⎛
⎝(1 + i)

√
f−1

2(t − ta)

⎞
⎠

+2
√

t − ta exp

[
i f−1

ta − t

]
. (E3)

For asymptotic observation times t → ∞, we approximate the integrand function, expanding it near the final time t f :

f (t ′) ≈ f (t f ) + (t ′ − t f ) f ′(t f ) ≈ f (t f ) exp

{
ln

[
1 + (t ′ − t f ) f ′(t f )

f (t f )

]}

≈ f (t f ) exp

[
(t ′ − t f ) f ′(t f )

f (t f )

]
, (E4)

and calculate the integrals as follows

m̃ =
∫ ∞

ta

dt ′ f (t ′) ≈
∫ ∞

ta

dt ′ f (t f ) × exp

[
(t ′ − t f ) f ′(t f )

f (t f )

]
≈ − f (t f )2

f ′(t f )
, (E5)

where t f is a time after the turn-off of the laser pulse.
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