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Role of dynamic Stark shifts in strong-field excitation and subsequent ionization

Attila Tóth,1 Sándor Borbély,2 Yueming Zhou,3,* and András Csehi 4,†

1ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, 6720 Szeged, Hungary
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The energy levels of atoms and molecules exposed to intense, short, high-frequency laser pulses undergo
time-dependent distortion known as dynamic Stark shift (DSS). These level shifts are induced by the coupling
with nonresonant (nonessential) states and follow the temporal intensity profile of the laser pulse. Owing to the
different DSSs of the individual atomic levels, transient resonance suppressions and enhancements significantly
modify the multiphoton ionization pathway, leaving clear fingerprints (asymmetry, splitting, and shifting) in the
energy spectrum of emitted photoelectrons. Here we investigate this phenomenon by solving the time-dependent
Schrödinger equation of the valence electron of Na and Li in increasing levels of complexity: (i) developing
minimal models for two-photon transition and (2 + 1)-photon ionization, (ii) applying a spectral method without
continuum-continuum couplings, and (iii) propagating the electron wave packet on a large spatial grid accounting
for all possible couplings. We show that appropriately detuned transform limited pulses provide a high level of
control in strong-field excitation, when the atomic levels are dynamically shifted. Furthermore, we demonstrate
the role of DSSs in the multipeak structure of the Autler-Townes doublet, found when several Rabi oscillations
are induced during the strong-field resonant ionization.
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I. INTRODUCTION

Selectively steering the time evolution of atomic and
molecular systems with ultrashort pulsed lasers is at the heart
of coherent quantum control [1,2]. In the case of strong laser
pulses, the atomic and molecular energy levels undergo time-
dependent distortion known as dynamic Stark shifts (DSSs),
which substantially modify the underlying physics [3–5], re-
quiring adequate control techniques [6–9]. The emergence of
these level shifts is best understood considering two-photon
atomic transitions within the frames of second-order pertur-
bation theory [10–13]. If there are no intermediate states in
single-photon resonance with the optical laser, which supports
many cycles, these off-resonant states can be adiabatically
eliminated [14] and the resulting two-level approximation is
justified. In this picture, the magnitude of the induced Stark
shifts and of the two-photon Rabi frequency are primarily
determined by the coupling with intermediate (nonessential)
states and can be further enhanced externally by increasing
the laser intensity. Due to the multicycle nature of the optical
pulse, these strong-field quantities of the coupled states (the
DSSs and the Rabi frequency) adiabatically follow the tem-
poral intensity profile of the pulse.

Strong-field multiphoton excitation between two bound
states is usually accompanied by ionization upon absorption
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of further photon(s) from the same pulse. Such resonance-
enhanced multiphoton ionization (REMPI) processes are
sensitive to the dynamic Stark shifts of the involved resonant
states and usually manifest in a structural change of the energy
spectrum of emitted electrons [15–24]. The multipeak patterns
observed in the photoelectron spectra were attributed to Stark-
shifted bound-state multiphoton transient resonances that give
rise to interference of electron amplitudes generated on the
rising and falling edge of the pulse. The interference of pho-
toelectrons emitted at different times during the same pulse
was first observed using unfocused beams to avoid the spatial
intensity variation effects of the laser [20]. The interference of
Rydberg states provides rich information about the dynamics
in strong-field ionization [24].

Selective ionization into distinct angular momentum chan-
nels is often the focus when controlling REMPI processes.
Controlled suppression and enhancement of the atomic ion-
ization yield have been shown for both phase-modulated
and transform-limited pulses [25–29]. A competition between
REMPI and internal conversion was demonstrated in a poly-
atomic molecule using shaped ultrafast laser pulses [30].

In general, when Rabi oscillations are induced between
the resonantly coupled bound states, formation of the Autler-
Townes (AT) doublet [31] is observed in the photoelectron
spectrum. Resonance ionization following multiple Rabi os-
cillations leads to further structuring of the AT doublet. There
has been a debate on whether the found multipeak pattern of
the AT doublet is the result of dynamic interference or it is
the manifestation of Rabi oscillations, and hence the pulse
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area theorem [32–41]. Recently, Simonović et al. [41] and Tu-
makov et al. [40] concluded that the oscillatory pattern of the
spectrum remains observable even for flat-top pulses, proving
that it is the manifestation of Rabi dynamics. Spectral features
of the AT doublet are sensitive to the system parameters, such
as the Stark shifts of interest [42] or the energy-dependent
bound-continuum transition dipole moments [43]. Further-
more, these features can be controlled with ultrafast laser
pulses [44–46].

In a recent experiment, the direct observation of Rabi
dynamics at short wavelengths was reported [47]. Applying
intense coherent XUV laser pulses from a free-electron laser,
two-photon ionization (TPI) of He via a resonant excited state
was considered. Augmented with theoretical calculations, the
authors showed that the observed asymmetry of the AT dou-
blet is the result of interference between the resonant and
nonresonant TPI pathways. Our recent theoretical results on
the role of nonessential states played in the shape of the AT
doublet after TPI are in line with the above experimental
observations [48].

In the present paper we consider strong-field two-photon
excitation and subsequent ionization of atoms to demonstrate
the role of dynamic Stark shifts played in resonance ion-
ization. Motivated by the principal aim to relate strong-field
quantities (e.g., Stark shifts, two-photon Rabi frequency, and
ionization rate) and the shape of the photoelectron spec-
trum, we follow a step-by-step didactic procedure and apply
different levels of approximations: (i) We develop minimal
perturbative models that include the relevant strong-field
quantities (two- and three-level approximations), (ii) we solve
the Schrödinger equation in the space of many field-free
eigenstates (multilevel approximation) excluding continuum-
continuum couplings, and (iii) we propagate the electron wave
packet in the velocity gauge to account for the ponderomo-
tive motion of the ionized electron. Whenever it is possible,
analytical considerations are also applied. To exemplify our
findings, the widely studied sodium [49–53] and lithium
[54–57] atoms are considered.

The structure of the paper is as follows. Section II pro-
vides the description of the theoretical models. Section III
gives a detailed description of the wave-packet propagation
technique. Section IV discusses the numerical and analytical
results obtained. A summary is given in Sec. V.

II. THEORETICAL MODELS

In this section we introduce the theoretical framework for
the strong-field two-photon transition and for the (2 + 1)-
photon resonance-enhanced ionization processes studied in
this work. We consider atomic sodium and lithium as concrete
examples initially in their ground state |I〉 (3s for Na and 2s
for Li). Applying a coherent intense laser pulse, the systems
are excited by two photons to a resonant state |R〉 of the same
parity (another s state). In the case of low photon energies
and not too high laser intensities, the electron dynamics is
expected to take place in the bound-state manifold. However,
when the photon energy is large enough to resonantly excite
one of the high-lying states of the atom, ionization can happen
upon absorption of an additional (third) photon. Here we

FIG. 1. Energy-level scheme of (a) sodium and (b) lithium,
showing the two-photon transition and the (2 + 1)-photon resonance
ionization processes discussed in this work. The bell-shaped dashed
lines represent the dynamic Stark shifts of the strongly coupled
atomic levels.

investigate these two processes by developing minimal two-
and three-state models, respectively (Fig. 1).

The field-free atom is represented by the H0 Hamiltonian
and its corresponding | j〉 eigenstates and ω j eigenenergies
(h̄ = 1), where the index j runs over the bound and continuum
states. The interaction of the atom with the laser pulse is
treated in the dipole approximation, that is, V (t ) = −�μ �E (t ),
where �μ is the transition dipole vector and �E (t ) is the linearly
polarized electric field. Throughout this work, laser pulses of
the form

E (t ) = E0g(t )cos(ωt ) (1)

are applied, where E0 is the electric-field amplitude (related
to the peak intensity as I0 = E2

0 /8πα f s), ω is the central an-
gular frequency, and g(t ) = e−t2/2τ 2

is the Gaussian envelope
function (in Sec. IV, other envelope functions will be also
considered). Here τ is the pulse duration that is closely related
to the full width at half maximum (FWHM) equal to 2τ

√
ln2.

The total time-dependent wave function of the active elec-
tron contains both the essential and nonessential states

�(t ) = cI (t )|I〉e−iωI t + cR(t )|R〉e−iωRt

+
∫

m

∑
cm(t )|m〉e−iωmt +

∫
cε(t )|ε〉e−iωεt dωε. (2)

In Eq. (2) the initial and resonant states are denoted by |I〉
and |R〉, respectively, while the final continuum states which
are populated after the ionization process, are labeled |ε〉.
The nonessential |m〉 states are far from resonance and their
population is negligible during the atom-field interaction. The
impact of these (bound and continuum) states on the studied
two-photon transition is crucial as they give rise to the dy-
namic Stark shifts of the resonantly coupled atomic levels
(discussed below). The choice of the nonessential states is
primarily determined by the parameters of the applied laser
pulse.

After inserting Eq. (2) into the time-dependent Schrödinger
equation (TDSE) i�̇ = [H0 + V (t )]�, the following full set
of coupled differential equations is obtained for the c j (t )
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complex amplitudes:

iċ j (t ) =
∫

k

∑
ck (t )e−iωk j tVjk (t ). (3)

Here ωk j = ωk − ω j ( j, k = I, R, m, ε) and the light-matter
interaction term is written as Vjk (t ) = −E (t )μ jk , with μ jk =
〈 j|ẑ|k〉 the transition dipole moment (TDM) matrix element
between the corresponding eigenstates of the atom.

The solution of Eq. (3) was carried out with the fourth-
order Runge-Kutta method in a relevant subspace of the
infinite electronic state manifold of the atoms. In the case
of Na, the considered subspace included 67 field-free bound
states with n < 17 and l < 5 principal and angular momentum
quantum numbers, respectively. On the other hand, for Li,
we considered 55 bound states (n < 14 and l < 5) and an
additional 500 continuum states (l < 5) with an equidistant
level spacing (�ωε = 0.000 24 eV) for the spectrum calcula-
tions. The necessary energy levels and dipole couplings were
taken from our previous works [42,53]. The time-dependent
populations of the different electronic states were calculated
as pk (t ) = |ck (t )|2 and a proper convergence of the numerical
calculations has been ensured.

A. Two-level model of two-photon transitions

For small photon energies and moderate laser intensities,
ionization and hence the last term in Eq. (2) can be safely
omitted. Furthermore, invoking that the μIR and μmm′ TDMs
are inherently zero, Eq. (3) is greatly simplified (for the sake
of simplicity the time dependence of the population ampli-
tudes is not written out explicitly from now on):

iċI =
∫

m

∑
cmeiωImtVIm(t ), (4a)

iċR =
∫

m

∑
cmeiωRmtVRm(t ), (4b)

iċm = cI e
−iωImtVmI (t ) + cRe−iωRmtVmR(t ). (4c)

As the off-resonant nonessential states rapidly oscillate
during the action of the pulse, the time evolution of the cm

amplitudes can be obtained by adiabatic elimination [14]. In-
tegrating Eq. (4c) by parts, inserting the expression found into
Eqs. (4a) and (4b) and applying the two-photon rotating-wave
approximation (RWA), the following two-state equation is
obtained after transformation into the interaction picture (for
details, see Refs. [10,53]):

i

(
ȧI

ȧR

)
=

(
0 	2(t )eiα(t )

	2(t )e−iα(t ) 0

)(
aI

aR

)
. (5)

Here 	2(t ) is the two-photon Rabi frequency (assumed real)

	2(t ) = −
∫

m

∑ μRmμmI

4

E2
0 g(t )2

ωmI − ω
= 	0

2g(t )2 (6)

and the α(t ) atom-field phase has been introduced using the
� = 2ω − ωRI two-photon detuning and the Sk (t ) dynamic
Stark shifts (k = I, R)

Sk (t ) = −
∫

m

∑ |μkm|2E2
0 g(t )2

2

ωmk

ω2
mk − ω2

= S0
k g(t )2 (7)

making use of the definition of the relative DSS δS(t ) =
SR(t ) − SI (t ) = δS0g(t )2,

α(t ) = −
∫ t

−∞
δS(t ′)dt ′ + �t . (8)

In agreement with the findings of other works [10,12], the
	2(t ) and Sk (t ) strong-field quantities follow the E2

0 g(t )2 in-
tensity envelope function of the pulse.

In view of Eq. (5), the π -pulse condition for maximal
population transfer in strong laser fields implies maximizing
the absolute value of the integral [7,10]

κ =
∫ ∞

−∞
	2(t )eiα(t )dt (9)

for a fixed area pulse

� =
∫ ∞

−∞
|	2(t )|dt = π

2
. (10)

The phase-matching technique, namely, the modulation of
the field phase such that α(t ) evolves smoothly during the
atom-field interaction, was found to be an efficient way of
population transfer despite the movement of atomic levels in
strong laser fields [7,10]. Tailoring the phase of the field such
that the variation of α(t ) is minimal prevents Eq. (9) from
vanishing and results in maximal population transfer. Here we
will show that by setting � appropriately, compensation of the
relative DSS is possible in a time-average sense, which still al-
lows for efficient population transfer between the dynamically
shifted atomic levels.

B. Three-level model of (2 + 1)-photon ionization

For large photon energies, ionization cannot be neglected
and hence all the terms in Eq. (2) have to be considered.
Invoking that the μIR, μmm′ , and μmε TDMs are inherently
zero, furthermore omitting continuum-continuum transitions
as we focus on the first photopeak here, Eq. (3) is greatly
simplified. Applying these considerations and also exploiting
that direct ionization of the ground state is negligible for the
considered photon energies (the resonant ionization pathway
dominates), Eq. (3) is written as

iċI =
∫

m

∑
cmeiωImtVIm(t ), (11a)

iċR =
∫

m

∑
cmeiωRmtVRm(t ) +

∫
cεeiωRεtVRε(t )dωε, (11b)

iċm = cI e
−iωImtVmI (t ) + cRe−iωRmtVmR(t ), (11c)

iċε = cRe−iωRεtVεR(t ). (11d)

Applying the RWA and the local approximation [58], the
last term in Eq. (11b) can be calculated explicitly,∫

cεeiωRεtVRε(t )dωε = − i

2
(t )cR, (12)

where (t ) = 0g(t )2, with 0 = 2π |μRεE0/2|2 the total ion-
ization rate of the |R〉 resonant state. The right-hand side of
Eq. (11d) can be also simplified using the RWA,

cRe−iωRεtVεR(t ) = cR	1(t )e−iδt , (13)
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where 	1(t ) = − 1
2μεRE0g(t ) = 	0

1g(t ) and δ = ω − ωεR are
the one-photon Rabi frequency and detuning, respectively.
Adiabatically eliminating the nonessential states and applying
the two-photon RWA, the following three-state equation is
obtained:

iċI = SI (t )cI + 	2(t )ei�t cR, (14a)

iċR = 	2(t )e−i�t cI +
(

SR(t ) − i

2
(t )

)
cR, (14b)

iċε = 	1(t )e−iδt cR. (14c)

The �, 	2(t ), and Sk (t ) strong-field quantities have been
defined in Sec. II A.

In Eqs. (14a)–(14c), it is possible to eliminate the oscil-
lating factors e±i�t and e−iδt by redefining the amplitudes as
cR → cRe−i�t and cε → cεe−i(�t+δt ). Applying these changes
and incorporating the Up(t ) = E2

0 g(t )2/4ω2 ponderomotive
shift of the continuum, we obtain the three-level equations

iċI = SI (t )cI + 	2(t )cR, (15a)

iċR = 	2(t )cI +
(

SR(t ) − � − i

2
(t )

)
cR, (15b)

iċε = 	1(t )cR + [Up(t ) − � − δ]cε. (15c)

Equations (15a)–(15c) describe the underlying physics of
the (2 + 1)-photon REMPI process studied here. The energy
distribution of the photoelectrons emitted after the strong-field
two-photon transition upon absorption of a third photon is cal-
culated as w(ωε ) = |cε(t → ∞)|2 after the pulse has expired.
As will be discussed below, spectral features such as shift-
ing, splitting, and asymmetry of the photopeak are strongly
affected by the Stark shifts and depletion of the resonantly
coupled states, which allows one to probe the bound-state
dynamics.

III. TIME PROPAGATION OF THE ELECTRON
WAVE PACKET

Our general framework to propagate TDSE-like multidi-
mensional initial-value problems [53] is written in PYTHON,
making use of the PETSC program package and the SLEPC

library [59]. The wave functions and operators are constructed
as tensor products of one-dimensional factors; thus the frame-
work is easily extended for multidimensional problems. The
TDSE of Na and Li is solved in the dipole approximation
using the velocity gauge

i�̇(�r, t ) =
(

−�

2
+ Vcore(r) − i �A(t ) · �∇

)
�(�r, t ), (16)

where the laser field vector potential is

�A(t ) = −
∫ t

−∞
�E (t ′)dt ′. (17)

For the single-active-electron description of Na and Li,
we used the Hellmann pseudopotential [51,53,60] and the
Klapisch model potential [40,42], respectively. The discretiza-
tion of the problem was achieved with the time-dependent
close-coupling method [61]. Considering the axial symmetry
of the problem when dealing with linearly polarized pulses,
the wave function is written as a partial wave expansion in

terms of spherical harmonics with m = 0, i.e., the Legendre
polynomials [Y m=0

l (θ, ϕ) = Pl (θ )], as

�(�r, t ) =
lmax∑
l=0

Rl (r, t )

r
Pl (θ ). (18)

Substituting this wave function into the time-dependent
Schrödinger equation (16) and considering the polarization
direction z, one obtains a set of coupled differential equa-
tions for the radial functions Rl :

i
∂Rl (r, t )

∂t
=

(
− ∂2

2∂r2
+ l (l + 1)

2r2
+ Vcore(r)

)
Rl (r, t ) − iAz(t )

×
⎡
⎣

√
l2

(2l − 1)(2l + 1)

(
∂

∂r
− l

r

)
Rl−1(r, t )

+
√

(l + 1)2

(2l + 1)(2l + 3)

(
∂

∂r
+ l + 1

r

)
Rl+1(r, t )

⎤
⎦.

(19)

The radial coordinate is treated in our implementation with the
finite-element discrete-variable representation (DVR) method
[62] (for details, see [53]). In the present calculations the
radial grid ranged from 0 to 12 000 a.u. over 12 000 equal
length finite elements, with 11 DVR points on each. The size
of the Legendre polynomial basis was kept with lmax = 24.
Convergence according to all numerical parameters was en-
sured.

The solution of Eq. (16) entails the consecutive application
of the short-time propagator

�(t + �t ) = U (t, t + �t )�(t ), (20)

where the evolution operator is

U (t, t + �t ) = e−iH (t )�t . (21)

We made use of the Lanczos algorithm [63] and performed
the time stepping in a Krylov subspace constructed by the
repeated application of the Hamiltonian on the wave function.
The Krylov space Hamiltonian is a small (typically fewer than
20 dimensions) matrix, so its diagonalization is inexpensive.

To overcome the so-called stiffness problem, we chose to
employ the split-Lanczos algorithm [64]. Its strategy is to
factor out the Vc = l (l + 1)/2r2 centrifugal potential from the
Hamiltonian of Eq. (19),

H (t ) = Hr (t ) + Vc, (22)

which is the source of the increased stiffness (for details, see
[53]). The splitting of the Hamiltonian introduces an error
proportional to �t3 due to the noncommutativity of Hr and
Vc. This is, however, negligible in our calculations, where
we worked with small constant time steps �t = 0.0025 a.u.
The size of our Krylov subspace was 8 throughout the whole
propagation.

The population of the different nl bound electronic states
was obtained upon projecting the propagated wave packet
on the given eigenfunction pnl (t ) = |〈ψnl |�(t )〉|2. Similarly,
the photoelectron momentum distribution was obtained by
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projecting the wave function at the end of the pulse on the
corresponding continuum waves

dP

dkd	k
= |〈��k (�r)|�(�r, t )〉|2. (23)

These continuum states are written as

��k (�r) =
√

2

π

1

kr

∑
lm

il eiσl φk,l (r)Y m∗
l (	k )Y m

l (	r ), (24)

where σl are the phase shifts of the different φk,l partial waves,
which are the solutions of the(

−�

2
+ Vcore(r)

)
φk,l (r) = k2

2
φk,l (r) (25)

stationary Schrödinger equation. In the case of a purely
Coulombic potential, i.e., the hydrogen atom, these partial
waves as well as the phase shifts are analytically known.
For the case of our model potentials, φk,l are obtained by
numerically solving Eq. (25) with the Numerov method and
normalized to the asymptotic form at r → ∞ [40]. On the
other hand, the phase shifts are calculated using the Wron-
skian theorem [65]

sin(σl − σ̂l ) = − 2m

h̄2k

∫ ∞

0
φ̂k,l (V − V̂ )φk,l dr, (26)

where V̂ , φ̂k,l , and σ̂l are the reference potential, radial func-
tion, and phase shift corresponding to the Coulomb case,
respectively.

The ionization probability of electrons emitted with energy
ωε = k2/2 into the unit solid angle is given by

dP

dωεd	k
= 1

k
|〈��k (�r)|�(�r, t )〉|2. (27)

The photoelectron energy spectra may be obtained by integrat-
ing the above expression over the angles or by the formula

dP

dωε

= 2

πk3

∑
l

∣∣∣∣
∫

r
dr φ∗

k,l (r)Rl (r)

∣∣∣∣
2

. (28)

Similarly, the angular distribution is calculated by integrating
either Eq. (23) or (27) over the magnitude of the momenta or
the energy, respectively.

IV. RESULTS AND DISCUSSION

In this section we present the analytical and numerical
results obtained for the Na and Li atoms interacting with
an intense, short, optical laser pulse [Eq. (1)]. In Sec. IV A,
strong-field two-photon transitions will be considered within
the bound-state manifold of the atoms. Here the two-level
approximation (TLA) [Eq. (5)] and the multilevel approxima-
tion (MLA) [Eq. (3)] will be applied to demonstrate control
over the population dynamics. In Sec. IV B we will study
the three-photon ionization of Li involving two-photon Rabi
oscillations. To reveal the effect of bound-state dynamic Stark
shifts on the shape of the photoelectron spectrum, first the
minimal three-level model [Eqs. (15a)–(15c)] without Up(t )
will be applied and confirmed by the multilevel solution
[Eq. (3)] that neglects continuum-continuum TDMs. To see
the effect of the DSS of the continuum states, these multilevel

spectra will be then compared to those obtained by the three-
dimensional (3D) TDSE method (Sec. III), which properly
accounts for the ponderomotive motion of the ionized electron
making use of the velocity gauge.

A. Strong-field two-photon transitions of Na and Li

When the laser photon energy is well below the ion-
ization potential (ω � Ip), the ionization probability after
the near-resonant two-photon transition remains negligible.
This renders the TLA adequate for studying the control of
two-photon excitation [10,12,13]. Let us consider the Na
and Li atoms initially (t = −∞) in their ground state and
inspect their interaction with a single laser pulse that cou-
ples with two photons an excited state having the same
parity (see Fig. 1). To be specific, we set the photon en-
ergy to resonantly excite either the 3s → 4s transition of
Na [ω = (ω4s − ω3s)/2 ≈ 1.589 eV] or the 2s → 4s transi-
tion of Li [ω = (ω4s − ω2s)/2 ≈ 2.169 eV]. Owing to the
dynamic Stark shifts of the coupled levels, the bare (field-free)
resonance condition is strongly modified by becoming time
dependent, which makes the two-photon excitation ineffective
at the above frequencies. Modulating the phase of the field
such that the relative DSS of the involved levels is com-
pensated, the resonance condition can be maintained at each
moment, making the two-photon transition efficient [7,10].

According to Fig. 2(a), where a complete population in-
version is targeted and hence the pulse area is set to � =
π/2, the excited-state population after the pulse has expired
is maximized when the laser is detuned appropriately. Both
the TLA and MLA populations reach their maxima for � =
±0.76 [solid and dotted lines in Fig. 2(a)]. The deviations
between the TLA and MLA populations, which are attributed
to close-lying states, e.g., the 7p state for Na, are minimized
for longer pulses [66]. Importantly, the magnitude of the κ

integral [Eq. (9)] also peaks in the same regions of the detun-
ing parameter, indicating efficient population transfer [dashed
lines in Fig. 2(a)].

The time dependence of the α(t ) atom-field phase for a
pulsed laser cannot be canceled without phase modulations
[see Eq. (8)]. However, the variations in α(t ) can be min-
imized even for transform limited pulses by appropriately
detuning the laser photon energy from the bare resonance (see
Fig. 2). For an optimal choice of the two-photon detuning
(�opt = 0.76×δS0) a complete population inversion is real-
izable, as seen in Fig. 2(a). In such a case, the relative DSS
is compensated in an average sense, which still allows for
efficient excitation; e.g., in the case of the 3s → 4s transition
of Na, for � = 0.76×δS0 the laser is blue detuned at the
beginning and at the end of the pulse, while it is red detuned in
the middle. For the 2s → 4s transition of Li, it is just the other
way around. For an efficient population transfer, the pulse area
and the accumulated atom-field phase have to be balanced
between the blue- and red-detuned regions of the pulse. This
makes �opt vary between 0 and δS0, depending on the shape
of the pulse envelope function.

Applying optimally detuned pulses of area � = π/2, the
targeted population inversion is realized when the pulse du-
ration is sufficiently long (with the FWHM on the order of
a few hundred femtoseconds). This is seen in Fig. 3, where
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FIG. 2. (a) Final 4s populations of Li and Na computed in the
TLA (5) (solid lines) and in the MLA (3) (dotted lines) for detuned
π/2 pulses of 100-fs FWHM duration. The average relative DSS
of the strongly coupled levels is compensated with negatively (Li)
or positively (Na) detuned pulses that satisfy the � = 0.76×δS0

condition (vertical dashed lines) and as a result population is effi-
ciently transferred to the 4s excited levels. This is reflected by the |κ|
curves too [Eq. (9), dashed lines], which peak around the same region
of the two-photon detuning. (b) Atom-field phase for Li [Eq. (8)],
computed for several detuning values around the optimal one, shown
in (a). (c) Same as (b) but for Na. The bell-shaped dashed lines
represent the scaled intensity profile of the applied Gaussian laser
pulses. The peak laser intensities were determined according to the
π/2-pulse condition (10). The definition of � is given around Eq. (6).

the final populations of some relevant states of Na and Li
are shown as a function of the pulse duration (obtained from
the multilevel solution). For short pulses, owing to the large
bandwidth and peak intensity, the intermediate states (3p for
Na and 2p for Li) also participate in the dynamics and as
a result the desired control is not complete. In the case of
Li, this leads to non-negligible population on the one-photon
resonant 4d state, while for Na it is the 7p state that possesses
notable population after the excitation process (for the time-
dependent populations, see [66]). For longer pulses, the peak
laser intensity and the pulse bandwidth are decreased and the
atoms start to behave as two-level systems, making the desired
control complete. The achievable final populations as well as
the time-dependent populations [66] found here are similar
to those obtained for phase tailored pulses [10]. This suggests
that compensation for the relative DSS in an average sense can
be as efficient as compensation at each moment of time when
multiphoton excitations are considered. Upon increasing pulse
duration, the laser bandwidth and the magnitude of the peak
relative Stark shift are decreasing in synchrony, and the for-
mer always remains larger than the latter, allowing for the

FIG. 3. Final populations of (a) Li and (b) Na computed in
the multilevel approximation for detuned π/2 pulses of increasing
duration. The two-photon detuning is chosen according to �opt =
0.76×δS0 [see Fig. 2(a)] to induce a complete population inversion
between the ground and the 4s levels. For short pulses, owing to
the large bandwidth and the high peak intensity, several states are
populated by the laser. For long enough pulses, state selectivity is
fulfilled and as a result the atoms are efficiently driven to the target 4s
state (horizontal dashed lines). The presented results were obtained
by solving Eq. (3) in the space of 55 bound states for Li and 67
bound states for Na, considering the atoms initially in their ground
states. For each pulse duration value, the peak laser intensity was
determined according to the π/2-pulse condition (10).

control by detuning. As an important manifestation of the
above detuning control, we note that the bound-bound transi-
tion frequency shifts found in resonance-enhanced multipho-
ton ionization [51] are best approximated by �opt rather than
by δS0. The transition frequency shift depends on the shape
of the pulse envelope and is in general between 0 and δS0

(for the presently considered Gaussian pulse shape, it is 76%
of δS0).

B. (2+1)-photon resonance ionization of Li

When the absorption of an extra photon from the same
pulse leads to ionization and the pulse area is large enough to
induce several Rabi oscillations, a description with the mini-
mal three-level model [Eqs. (15a)–(15c)] is adequate [42,48].
From now on we focus exclusively on the Li atom, driven by a
single laser pulse that is strong enough to induce several Rabi
flops in the two-photon regime. Absorption of a third photon
from the same pulse ionizes the atom and the emitted electron
coherently probes the underlying dynamics. This allows us to
identify the impact of the dynamic Stark shift of the involved
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FIG. 4. Resonance-enhanced (2 + 1)-photon ionization of Li
computed for two-photon resonant (� = 0 → ω ≈ 2.169 eV) Gaus-
sian laser pulses of 2-ps FWHM duration. Shown are the populations
of the 2s and 4s states after the pulse has expired. Upon absorption of
a third photon from the same pulse, the two-photon Rabi dynamics
between the resonantly coupled 2s and 4s states is damped, leading
to enhanced ionization for increasing coupling strength. The verti-
cal dashed lines indicate the laser intensities at which the system
completes an integer number of Rabi cycles (for the corresponding
photoelectron spectra, see Fig. 5). Note that the results obtained from
the minimal three-level model [Eqs. (15a)–(15c)] are well supported
by the multilevel solutions [Eq. (3)].

levels on the shape of the photoelectron spectrum. For clarity,
first we focus on the impact of the bound-state DSS and thus
we neglect the DSS of the continuum states Up(t ) in the model
[36,41,43].

As we saw in the preceding section, for the minimal model
description of Li to agree with the multilevel description, long
pulses are required that have a narrow enough bandwidth to
avoid excitation of close-lying states. Therefore, we apply the
2-ps FWHM pulse duration, and to clearly see the impact
of the DSS of the 2s and 4s states, the laser is set to bare
resonance � = 0 (detuning can further control the dynamics
and hence the spectral shape, to be discussed below). As
shown in Fig. 4, the Li atom undergoes damped Rabi os-
cillations for increasing peak laser intensity. Importantly, the
minimal three-level model populations are well supported by
the accurate multilevel ones, which are obtained by solving
Eq. (3) in the space of 55 bound and 500 unbound states,
neglecting continuum-continuum TDMs to remain consistent
with the model. The good agreement between the two kinds
of population curves indicates that the bound-state population
dynamics occurs almost exclusively between the 2s and 4s
states. The very slight deviations are attributed to a minor
excitation of the intermediate 2p state.

The photoelectron spectra computed for the peak laser
intensities at which the system completes an integer number
of Rabi cycles, indicated by the vertical dashed lines in Fig. 4,
are shown in Fig. 5. For better visualization, these spectra
are shifted apart from each other by factors proportional to
the actual peak laser intensity. Clearly, when at least two
Rabi cycles are completed, the spectra exhibit the AT dou-
blet. These doublets are asymmetric and shifted to higher
energies relative to the nominal peak position expected in the

FIG. 5. Resonance-enhanced (2 + 1)-photon ionization of Li
computed for two-photon resonant (� = 0 → ω ≈ 2.169 eV) Gaus-
sian laser pulses of 2-ps FWHM duration. Shown are the photo-
electron spectra computed for laser intensities at which the atom
completes an integer number of Rabi cycles between the resonantly
coupled 2s and 4s states (see the vertical dashed lines in Fig. 4). The
spectral features given by the minimal three-level model [Eqs. (15a)–
(15c)] are fully supported by the multilevel solutions [Eq. (3)]. The
vertical dashed line indicates the nominal position of the spectra
(ωε0 = ω2s + 3ω). The green circles represent the energies (at t =0)
given by the simple analytical model of decoupled resonances
[Eq. (29)]: ωε0 + Re[E±(0)]. For transparency, the individual spectra
are vertically shifted apart from each other by factors proportional to
the actual peak laser intensity.

weak-field limit (vertical dashed line in Fig. 5): ωε0 = ω2s +
3ω. Furthermore, for increasing laser intensity the splitting
of the doublets also increases and an oscillatory multipeak
pattern develops in between the two prominent peaks. The
number of peaks in the doublets directly reflects the number
of Rabi oscillations completed by the system [41]. All these
spectral features are expected to carry information on the
relevant strong-field quantities involved in the preceding two-
photon Rabi dynamics. Importantly, the spectra given by the
minimal model are fully supported by the multilevel solutions,
seen in Fig. 5. Therefore, the minimal model is suitable for
identifying the impact of bound-state DSSs in the spectral
shape.

A very transparent illustration of the emergence of the
spectrum following resonance ionization can be given using
the picture of decoupled resonances [36,41,42]. In this picture,
two decaying dressed states are formed during the action of
the resonant laser, the energies of which can be calculated
by diagonalizing the 2×2 matrix that describes the resonant
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excitation on the right-hand side of Eqs. (15a) and (15b),

E±(t ) = �(t ) − �

2
− i

4
(t )

±
√

	2
2(t ) +

(
δS(t ) − � − i

2(t )

2

)2

. (29)

These quasienergies of the two decoupled resonances adi-
abatically follow the envelope function of the laser pulse
and can be utilized to elucidate the main spectral features.
In Eq. (29), the �(t ) = SI (t ) + SR(t ) sum of the individual
Stark shifts is positive for Li (I = 2s and R = 4s; see [66]);
therefore, the spectrum is expected to be shifted towards larger
energies relative to the nominal position ωε0 (note that the
laser is at bare resonance � = 0). Furthermore, the splitting
of the spectrum is primarily determined by the square root
in Eq. (29) when the pulse is maximal and hence the en-
ergy separation of the dressed states is the largest (t = 0):
Re[E+(0) − E−(0)]. Both the shifting and splitting of the
spectrum scales linearly with the peak laser intensity, which
is supported by the multilevel and model spectra as well
as by the simple analytical model of decoupled resonances
[Eq. (29)] seen in Fig. 5. Here the green circles indicate the
peak values of the dressed-state energies relative to the nomi-
nal spectrum position: ωε0 + Re[E±(0)]. These energy values
slightly overestimate the accurate position of the spectrum
since they do not take into account that electrons are emitted
before and after the pulse maximum too, which contribute
to lower kinetic energies. We note here that in the limit of
vanishing Stark shifts the spectrum is symmetrically centered
around the nominal position [36]. Here the Stark shifts are
dominant, (t ) � |	2(t )| ≈ 1

3×|δS(t )| ≈ 1
7×�(t ), and leave

clear fingerprints in the spectrum. They not only modify the
shifting and splitting of the doublet, but strongly affect its
symmetry. As will be clear below, besides the magnitude of
DSSs, their temporal profile can also alter the symmetry of
the AT doublet.

So far we have seen how the DSSs of the bound levels
modify the spectral shape when the field is set to bare res-
onance. As suggested by Eq. (29), frequency modulation or
detuning also affects the shape of the spectrum. Tailoring the
phase of the field such that �(t ) is compensated, the doublet
is expected to be centered around ωε0 ; on the other hand,
the compensation of δS(t ) is expected to cause a minimal
splitting.

To see the impact of the temporal profile of the dynamic
Stark shifts on the spectrum shape, we consider the general
trapezoidal pulse envelope function with smooth edges [40]

g(t ) =

⎧⎪⎪⎨
⎪⎪⎩

sin2
(

πt
2�T

)
if 0 � t < �T

1 if �T � t � T − �T
sin2

(
π (t−T )

2�T

)
if T − �T < t � T

0 if t < 0 or t > T,

(30)

where T is the total pulse duration and �T is the switching
duration. Varying �T from 0 to 0.5T , the pulse envelope in
Eq. (30) is smoothly transformed from a rectangular shape
to a sine-squared function, which allows us to reveal pulse
shape effects. In particular, we focus on the asymmetry of
the spectrum defined as A = QL−QR

Q>
, where QL and QR are

FIG. 6. (a) Asymmetry of the photoelectron spectra of Li, com-
puted for different trapezoidal envelope functions defined in Eq. (30).
When the DSSs of the resonantly coupled states are negligible, the
spectrum is symmetric irrespective of the shape of the envelope
(green dashed line). In contrast, when the DSSs are significant,
the spectrum exhibits strong asymmetry which is very sensitive to
the shape of the envelope (red solid line). (b) Photoelectron spectra
computed for a rectangular pulse (�T = 0, open circle in (a)). The
observed asymmetry is opposite that found for the sine-squared
[�T = 0.5, X symbol in (a)] or Gaussian envelope shapes (Fig. 5).
The slight deviations between the model and multilevel spectra are
attributed to the 2p state. The vertical dashed line indicates the
nominal position of the spectra (ωε0 = ω2s + 3ω). The laser param-
eters are T = 2 ps and ω ≈ 2.169 eV (� = 0). The green circles
indicate the analytical energies [Eq. (29)] ωε0 + Re[E±(0)]. For
each envelope shape, I0 is chosen to keep the pulse area constant
so as to remain consistent with the uppermost spectrum in Fig. 5
(� = 5.545×π/2).

the heights of the prominent leftmost and rightmost peaks of
the doublet, respectively, and Q> is the larger of the two. As
seen in Fig. 6(a), the asymmetry of the spectrum is strongly
affected by the shape of the pulse envelope and hence the
temporal profile of the DSSs. Here the pulse area is kept
constant (� = 5.545×π/2) for each value of �T to remain
consistent with the uppermost spectrum in Fig. 5 obtained for
a Gaussian pulse. Similarly to the case of Gaussian pulses, the
asymmetry found for a sine-squared envelope is also positive.
However, for decreasing �T , when the intensity variations
of the pulse are minimized, the asymmetry of the doublet is
qualitatively modified. For flat-top pulses, when the dynamic
nature of the Stark shifts is minimal, A becomes negative.
Such a pulse shape dependence is never observed when the
DSSs are negligible [green dashed line in Fig. 6(a)]. All these

053101-8



ROLE OF DYNAMIC STARK SHIFTS IN STRONG-FIELD … PHYSICAL REVIEW A 107, 053101 (2023)

observations suggest that besides the magnitude, the time
evolution of the Stark shifts also modifies the interference of
the emitted electrons and consequently affects the spectrum
symmetry. Importantly, the multipeak pattern of the doublet,
i.e., the manifestation of Rabi dynamics [41], remains observ-
able in the case of a rectangular pulse, seen in Fig. 6(b). Here
the qualitative change in the spectrum asymmetry predicted by
the minimal model (A < 0) is well supported by the multilevel
description. The minor deviations between the two different
approaches are due to the intermediate 2p state in the multi-
level description. As the intensity of the rectangular pulse is
constant, the model of Eq. (29) can now predict the spectrum
position more accurately [green circles in Fig. 6(b)] than in
the case of Gaussian pulses (green circles in Fig. 5).

So far we have studied the impact of the dynamic Stark
shifts of bound states on the spectral characteristics by ap-
plying the minimal model, the multilevel description, and
a simple analytical model. To see the impact of the DSS
of the continuum states, the ponderomotive motion of the
electron has to be accounted for properly, which is conve-
niently done using the velocity gauge [67]. We thus solve
the Schrödinger equation accurately by propagating the three-
dimensional electron wave packet on a grid making use of
the velocity gauge in the TDSE method (Sec. III). Compar-
ing these TDSE spectra to those obtained by the multilevel
method that neglects continuum-continuum TDMs, the effect
of the Up(t ) ponderomotive shift of the continuum can be
identified.

When the duration of the Gaussian laser pulse is reduced
from the picosecond regime to a FWHM on the order of a
few hundred femtoseconds, owing to the broader bandwidth, a
new competing ionization pathway starts to dominate over the
2s → 4s → continuum route (see the Supplemental Material
in [66]). According to the multilevel solution, for a FWHM
less than 200 fs, the 2s → 2p → 4d → continuum pathway
already dominates the spectrum (there the emitted electrons
are mostly f electrons due to the strong coupling between
the 4d level and the f continuum). Despite the dominance of
the 2s → 2p → 4d → continuum route, the above-discussed
effects of the bound-state DSSs are still observable in the p
channel spectrum after the two-photon Rabi flops between the
2s and 4s states [66]. This kind of competition of the two
ionization pathways is well supported by the TDSE solution,
as shown in Fig. 7. Here the peak laser intensity is chosen
such that three Rabi cycles are completed between the 2s and
4s levels. Accordingly, the photoelectron spectrum exhibits
pronounced intensity modulations with three distinct peaks.
As seen in Fig. 7(a), the 2p level and the one-photon resonant
4d level also participate in the dynamics when a FWHM of
100 fs is applied. This explains the high peak in the f channel
spectrum at ωε ≈ 1.2 eV [Fig. 7(b)], which is the result of
ionization via the 4d state. The emission of p electrons via
the 4d level is also allowed by the selection rules, but as will
be clear below this process has rather low probability and
the increased yield at the rightmost peak of the p channel
spectrum is attributed to a different reason. The emitted p
and f electrons contribute with different weights to the three
spectrum peaks, which is reflected by the angular distributions

FWHM

FIG. 7. Resonance-enhanced multiphoton ionization of Li com-
puted by the 3D TDSE method for a two-photon resonant (� =
0 → ω ≈ 2.169 eV) Gaussian laser pulse of 100-fs FWHM duration
and I0 = 3.08×1012 W/cm2 peak intensity. (a) Three Rabi cycles are
completed by the valence electron between the resonantly coupled
2s and 4s states, while the intermediate 2p state and the one-photon
resonant 4d state also participate in the dynamics. (b) The cor-
responding photoelectron spectrum exhibits pronounced intensity
modulations with three distinct peaks, which are the result of two
competing ionization pathways: (i) the 2s → 4s → continuum path-
way and (ii) the 2s → 2p → 4d → continuum pathway. (c) The
emitted p and f electrons contribute with different weights to the
three spectrum peaks, which is also reflected by the angular distri-
butions computed for the three peak energies. Here each curve is
normalized to its maximal value.
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multilevel

FIG. 8. Comparison between the photoelectron spectra of Li
computed with (a) the 3D TDSE method and (b) the multilevel
approximation for the laser parameters applied in Fig. 7. In the 3D
TDSE method, the ponderomotive motion of the emitted electron
is properly described. In contrast, the multilevel solution neglects
continuum-continuum couplings and hence cannot account for the
dynamic Stark shift of the continuum states. Thus, on the one hand,
the time-dependent ponderomotive energy of the continuum states
[Up(t )] causes shifting of the spectrum towards lower energies (rang-
ing between approximately 68% and 88% of its peak value Up0). On
the other hand, Up(t ) modifies the shape of the spectrum by even
changing its symmetry (see the p channel). The rightmost peak of
the p channel spectrum remains the highest even when the bound d
states are omitted from the 3D TDSE simulations, confirming that
it is indeed not the result of ionization via the 2s → 2p → 4d →
p-continuum pathway.

too in Fig. 7(c). The left peak is built up from p electrons,
in the right peak the contribution of f electrons is dominant,
and the middle peak is approximately a 60%–40% weighted
mixture of p and f electrons, respectively.

A comparison of the photoelectron spectra obtained by
the TDSE and the multilevel methods is presented in Fig. 8.
Here the overall shapes of these spectra computed by the
two different methods are similar, but important qualitative
differences are seen in the different channels, which can be
attributed to the Up(t ) ponderomotive shift of the continuum.
As expected, owing to the increased ionization potential in
the strong field, the TDSE spectrum is shifted towards lower
photoelectron energies. The observed effective shifts of the
individual peaks ranges between approximately 68% and 88%
of the peak value of the ponderomotive shift Up0. Importantly,
the symmetry of the spectrum is also modified by Up(t ). This
is most obvious in the p channel spectrum, but also observable
in the f channel. In both channels the electron yield at the

higher-energy side of the spectrum gets increased in the TDSE
description, compared to the multilevel solution. As a result,
the asymmetry of the spectrum in the p channel even changes
sign. To fully confirm that the increased p electron yield at
the higher-energy peak in the TDSE spectrum is attributed
to Up(t ), we carried out a TDSE calculation where the d
bound levels are excluded and hence the 2s → 2p → 4d →
continuum pathway is blocked. The found spectrum of the p
electrons still exhibits the same kind of asymmetry as the real
spectrum in Fig. 8(a), making clear that the observed change
in the asymmetry between the TDSE and multilevel spectra is
ascribed to Up(t ).

V. CONCLUSION

Solving the time-dependent Schrödinger equation of the
valence electron of Na and Li on increasing levels of com-
plexity, we have demonstrated the important role of bound-
and continuum-state dynamic Stark shifts in strong-field ex-
citation and subsequent ionization. Based on the predictions
of a minimal model, confirmed by the multilevel solution,
we have shown that the relative DSS of the strongly coupled
levels can be compensated by optimally detuned pulses, al-
lowing for a high level of control over the system dynamics.
This detuning control facilitates the accurate identification of
δS0 in the bound-bound transition frequency shifts observed
in resonance-enhanced multiphoton ionization. Studying the
three-photon ionization of Li following two-photon Rabi os-
cillations, the impact of bound- and continuum-state dynamic
Stark shifts on the spectral features have been also identified.
Based on the nice agreement of the minimal three-level model
and the multilevel description, supported by a simple analyti-
cal model, we have shown how the DSSs of the involved levels
determine the shifting and splitting of the Autler-Townes dou-
blet. Furthermore, we have demonstrated that, besides the
magnitude of the DSSs, their temporal profiles also affect the
asymmetry of the AT doublet. Comparing the photoelectron
spectra obtained by the TDSE method to those calculated from
the multilevel description allowed for the identification of the
effect of the Up(t ) ponderomotive shift of the continuum. The
dynamical shift of the continuum states (i) pushes the spec-
trum towards lower energies and, importantly, (ii) modifies the
spectrum asymmetry.

When considering resonance-enhanced multiphoton ion-
ization in strong fields, the found effects of the bound-state–
continuum-state dynamic Stark shifts act simultaneously and
the final spectrum shape is determined as their overall impact.
The step-by-step exploration of these effects presented here
has allowed us to understand and identify the spectral charac-
teristics observed in intense laser fields.
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