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Electronic stopping power of protons in platinum: Direct valence and inner-shell-electron
excitations from first-principles calculations
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The electronic energy loss of proton in platinum (Pt) is studied through nonadiabatic electron-ion coupling
dynamic simulations within time-dependent density functional formalism. We have clarified the counterintuitive
deviation from velocity proportionality due to the existence of kink velocity of the d electron excitation for a
slow proton moving in metal Pt, whose valence d band indeed extends up above the Fermi energy. We have
also quantitatively investigated the involvement of the host core electron excitation in the ion-target interaction,
through monitoring the evolution of the bound electron number on a specific orbital of the host atom during the
close encounter with the flying incident ion. It is found that the low-lying 5p, 5s, and 4f configuration excitations
play significant roles in determining the profile of the stopping curve around and above the stopping maximum.
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I. INTRODUCTION

The traverse of an energetic ion through matter is in-
evitably subject to energy dissipation in the interaction with
target nuclei and electrons. When the charged particle is fast
enough (typically greater than the host Fermi velocity vF ),
the kinetic energy loss is mainly transferred to the electronic
degree of freedom due to the extremely short interaction time
and the significant difference in inertia between the nucleus
and electron. The dissipative force thus generated is formally
referred to as the electronic stopping power Se, which is typ-
ically denoted as the rate of energy transfer from the charged
particle to electrons in matter per unit distance of the intruding
particle’s movement.

Extensive efforts have been devoted to quantifying the
electronic stopping and exploring the mechanism involved
ever since the early days of ion physics [1–3]. Light incident
ions such as the proton and helium ion are of special interest
due to their simplicity in electronic configuration that allows
one to concentrate on the underlying physical mechanism
of excitations in the target material. Historically, a wide
range of analytical models has been developed to predict
electronic stopping with a varied degree of success. For the
electronic stopping power of ions with relatively high particle
energies, it can be well handled through the Bethe formula
[3] and Lindhard-Winther theory [4]. At low ion velocities,
the first-order approximation of Lindhard-Scharff theory [5]
predicts that Se is linearly proportional to the incident particle
velocity. Another commonly used model with respect to the
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electronic energy loss of slow ions, particularly with regard
to metals, is the free-electron gas (FEG) by Fermi and Teller
[6]. Under this formalism, Se also falls in graceful velocity
proportionality.

In systems such as the noble metals Cu, Ag, and Au,
the electronic stopping power for slow light ions exhibits a
pronounced deviation from velocity proportionality [7–14].
This effect was theoretically explained by the existence of
finite thresholds for the excitation of d electrons due to a shift
in the corresponding density of states of the d bands with
respect to the Fermi energy EF . For material with a d band
extending up above EF , such as Pd and Pt [15], it is expected
to show no threshold effect for d-band excitation [16], and
this has been verified by Celedón et al. for hydrogen ion in
Pd [17]. However, the experimental data for the hydrogen ion
in Pt by Goebl et al. [18] show some indications of a possible
deviation from the velocity proportionality at velocities
around 0.2 a.u., similar to the noble metals, although the
reported effect is subject to the order of one standard
deviation. They attributed such behavior to the difference in
excitation efficiencies for d and s electrons. Later on, Celedón
et al. [15] showed a significant deviation from the velocity
proportionality at v < 0.4 a.u. in the measurement of Se for a
hydrogen ion transmitted through Pt.

Moreover, recent experimental data by Primetzhofer [19],
Moro et al. [20], and Selau et al. [21] show contradic-
tory results from the previous data for medium-energy ions
(with velocity around the stopping maximum); and the elec-
tronic stopping power modeled by Peralta et al. [22] using
the shellwise local plasma approximation (SLPA) and by
Abril et al. [23] using the dielectric formalism agrees well
with the recent experimental data around the stopping power
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maximum. The theoretical results by Li et al. [24] suggest
that the electronic stopping power for a proton transmitted
through Pt is susceptible to the inner-shell configuration and
impact parameter. In view of the above arguments, addi-
tional research is highly required to provide insight into this
issue.

Over the past few decades, with the tremendous develop-
ment of powerful computers and modern electronic structural
methods, it has become possible to get key parameters such as
the electron density and screened potential in analytical mod-
els directly from first-principles theories in a self-consistent
way [25–27]. Such parameter-free methods have the potential
to significantly go beyond analytical models, as they provide
direct access to the coupling of ionic and electronic degrees
of freedom, making it possible to study the nature of the elec-
tronic excitations during the ion-matter collision. In particular,
the recent development of density functional theory (DFT)
[28–33] explicitly takes into account the effects of inhomo-
geneity in electron density arising from the underlying lattice
structure, band structure, and band gap, which are difficult to
incorporate into analytical models.

In the early years when full ab initio calculations of elec-
tronic stopping were first developed, considerable effort was
devoted to investigate electronic stopping at the low-velocity
regime (below bohr velocity) [28,32,34–36], where electronic
excitation comes from the weakly bound valence band. In
recent years, it also appeared promising for obtaining stop-
ping power curves even for higher ion velocities around and
above the stopping maximum [33,37–43]; inner-shell-electron
excitations hence have become relevant. However, due to the
complexity in extracting the bound electron on a specific ionic
shell orbital and, further, the ionic charge states directly from
the electron density distribution, at present the inner-shell-
electron excitation is mainly indirectly reflected as additional
energy-loss channels beyond a certain velocity limit besides
valence electron excitation. Direct access to the inner-shell-
electron excitation and also the quantitative investigation of
the threshold are highly desirable.

In this work, through time-dependent density functional
theory (TDDFT) coupling Ehrenfest molecular dynamics
(EMD) [44], we mainly address the counterintuitive depar-
tures from the velocity proportionality of Se due to the
existence of kink velocity for d-electron excitation during
the movement of a proton in Pt. We also quantitatively in-
vestigate the contribution of the inner-shell electrons to the
slowing down of the charged particle in solids over a wide
range of velocities. The specific participation of the host
core electrons in the ion-matter interaction is directly demon-
strated through monitoring the inner-shell excitations during
the close encounter between the incident ion and vicinal
host atom.

This article is outlined as follows. In Sec. II, we briefly
introduce the theoretical framework and the computational
details. Results are presented and discussed in Sec. III, where
we concentrate on the following two parts: we first discuss,
in detail, the electronic stopping and d-band excitation in
the low-velocity regime in Sec. III A, then we present the
electronic stopping and the inner-shell excitation for a wide
range of velocities in Sec. III B. Conclusions are drawn in
Sec. IV.

II. MODEL AND METHODS

During the course of the simulation, the energy transferred
to the host electronic system from the incident proton ion
is monitored. For simplicity, and since the Se is a velocity-
resolved quantity, the intruder is constrained to move at a
given velocity, hence the total energy of the system is not con-
served. Therefore, instead of the decrease in projectile kinetic
energy, the excess in total system energy is used in determin-
ing the key quantity electronic stopping. First, a ground-state
DFT calculation is preformed to acquire the converged static
state of the host Pt thin film. Then the initial bare intruding
ions are implanted from a point that is 5 Å above the thin
film, with the given descending velocities along the negative
z direction. The ionic motion of target atoms is neglected by
fixing them in the equilibrium positions as their velocity and
movement are expected to undergo only a marginal change
during the instantaneous interaction [45].

As the incident ion moves, the time-dependent Kohn-Sham
(TDKS) equation describes the evolution of the electron den-
sity and energy of the system due to the dynamics of effective
single-particle states under the external potential generated by
the proton and host nuclei. These states evolve in time with a
self-consistent Hamiltonian that is a function of the electron
density n(�r, t ),

ih̄
∂ϕi(�r, t )

∂t
=

[
− h̄2∇2

2m
− VKS

]
ϕi(�r, t ), (1)

with

VKS = −
∑

I

ZI

| �RI (t ) − �r|
+

∫
n(�r′, t )

|�r − �r′|d �r′ + Vxc(�r′, t ), (2)

where ZI and �RI (t ) denote the charge and ionic position
vector of the Ith nucleus, respectively, m is the electron
mass, and ϕi(�r, t ) is the orbital of the ith electron. Vxc is the
time-dependent exchange-correlation potential; in the present
work, the adiabatic local-density approximation with Perdew-
Wang analytic parametrization [46] is employed. It is noted
that Vxc is initially a function of electron density n(�r′, t ′)
at all points �r′ and at all times t ′ � t . Since the adiabatic
approximation is exploited in this work, any memory effects
[47] of Vxc are neglected; as a result, Vxc is only a functional
of instantaneous electron density n(�r′, t ) at the current time t .
Nazarov et al. [48] have shown that the error introduced by
the adiabatic approximation is negligibly small for low-Z ions
such as protons and α particles. The other two terms of VKS

are the electron-nucleus potential and the Hartree potential,
respectively. The instantaneous electron density n(�r, t ) is ob-
tained by summing all occupied individual electronic orbitals,

n(�r, t ) =
occ∑
i=1

|ϕi(�r, t )|2. (3)

Theoretically, knowledge of the electron density distribution
n(�r, t ) makes possible the quantitative determination of all
the ionic charge states. However, it is difficult to determine
the boundary of a specific atom when electron distributions
from neighboring atoms are overlapped [49]. To circumvent
the above-mentioned question, a space-free charge analysis
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method through calculation of the projected density of states
(PDOS) on a specific orbital is employed. We first calculate
the PDOS on the specific orbital of the ion by projecting all
single-orbital states of the system onto it,

ρ j (ε) =
∑

i

〈ϕi| j〉〈 j|ϕi〉δ(ε − εi ). (4)

Energy integrating of the ρ j (ε) below the Fermi energy multi-
plied by the occupation number per state gives the number of
bound electrons on a specific j orbital, whether it belongs to
either the projectile or host atoms.

The simulations are carried out by using the OCTOPUS

ab initio real-space code [50,51]. There is no basis set in
such code; the external potential, electron density, and KS
orbitals are discretized in a set of mesh grid points, and the
spacing of the mesh grid corresponds to the energy cutoff in
the plane-wave basis. In the present work, a uniform spacing
of 0.18 Å along the three spatial coordinates is employed,
which corresponds to an energy cutoff about 1160.59 eV
in the plane-wave basis. A small time step of 0.001 fs is
adopted to ensure the stability of the time-dependent compu-
tations. Simulations with smaller time steps and grid spacings
give essentially the same results. To investigate the effect of
inner-shell-electron excitation on Se, three pseudopotentials,
namely, Pt10 ([core]685d96s1), Pt18 ([core]605s25p65d96s1),
and Pt32 ([core]464 f 145s25p65d96s1) with 10, 18, and 32
electrons explicitly included, are employed. The electrons
frozen in the ionic core cannot polarize or take part in any dy-
namical process. As suggested by Grinberg et al . [52], for ele-
ments with Z > 54, relativistic effects should not be ignored.
All the atoms, including the projectile proton in the present
work, are represented by scalar-relativistic nonlocal pseu-
dopotentials, factorized in the Kleinman-Bylander form [53].

Instead of converging a classical ensemble average of
projectile trajectories, the “centroid trajectory” suggested in
Refs. [38,43,54] is used to reduce the vast computational cost
of TDDFT simulations. Such a channeling trajectory is often
considered a good approximation to an ensemble average over
all trajectories [38,43,54]. Thus, we have chosen the electronic
stopping power along this trajectory to represent the electronic
energy-loss rate during the collisions. The host crystalline thin
film is an isolate atom cluster; no periodic boundary condition
is employed in this work. To allow time for the intruding ion
to get fully equilibrated during passage through the crystal,
a relatively thick face-centered-cubic structural 2×2×4 con-
ventional cell comprising 64 Pt atoms is employed. The lattice
parameter exploited in this work is 3.92 Å, identical to the
experimental value [55].

III. RESULTS AND DISCUSSION

A. Characteristic of d-band excitation on stopping
in low-velocity regime

Figure 1 shows the increase of the system total energy
as a function of projectile displacement along the centroid
trajectory in the 〈100〉 channel for a proton with velocity
1.0 a.u. In the present work, the calculated Se data are ex-
tracted by linear fitting of the increase in system energy over
the ion path covering the last four lattice layers with length

Displacement

FIG. 1. Increase of system total energy as a function of projectile
displacement along the centroid trajectory in the 〈100〉 channel,
which is parallel to the z axis, for a proton with velocity 1.0 a.u. (solid
blue line). The gray dashed line is the linear fit of the curve. The
black arrow line denotes the movement direction of the irradiating
ion. In the present work, only the increase of the system total energy
in the ion path (on the right side of the vertical red dotted line) is
employed to extract Se. The upper inset shows the sketch of the
centroid trajectory; the lower inset shows the positions of the Pt
lattice layers along the z axis.

of 7.84 Å in conducting solids to minimize the preequilibrium
contributions [49] to the stopping.

We present, in Fig. 2, the simulated Se results for the
motion of the proton with velocity of 0.1–0.6 a.u. along the
centroid trajectory in the 〈100〉 channel of the Pt thin film.
Also shown are the experimental data by Goebl et al. [18]
and Celedón et al. [15]. Since electronic excitation in such

FIG. 2. (a) Electronic stopping power (black open squares) for
channeled protons as a function of velocity along the centroid tra-
jectory in the 〈100〉 channel, together with experimental data (solid
symbols) by Goebl et al. [18] and Celedón et al. [15]. (b) The
electronic stopping power in (a) scaled by velocity as a function of
velocity.
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FIG. 3. Projected density of states on 5d and 6s orbitals and
also the sum of the two; the amplitude has been scaled by atoms
number. The vertical gray dashed line denotes the position of the
Fermi energy.

low-velocity regime induced by the channeled light ion
mainly arises from the valence band [9,40], the Pt10 pseu-
dopotential with nine 5d electrons and one 6s electron
explicitly considered is employed. It can be seen in Fig. 2(a)
that the calculated results are in excellent agreement with the
experimental data and the kink velocity at 0.2 a.u. reported
by Goebl et al. [18] is reproduced, indicating that the cen-
troid trajectory approximation is quite valid for the considered
low-velocity regime. In order to highlight the kink in Se, we
present, in Fig. 2(b), the velocity scaled Se as a function of
velocity. It exhibits a pronounced increase for transition from
a relatively low-velocity to higher-velocity regime around v =
0.2 a.u.; the value of v = 0.3 a.u. is about 50% higher than that
of v = 0.1 a.u.

To illustrate the electronic property of Pt10, we show, in
Fig. 3, the projected density of states on 5d and 6s orbitals
and also the sum of the two, respectively. As can be seen, the
main part of the 5d component has a wide distribution about
8 eV, and the high-energy edge extends above the EF . Thus no
threshold in the 5d electron excitation is expected according
to the interpretation in Ref. [16]. For the 6s components, its
main distributions are much lower than EF , and the amplitude
of PDOS on the 6s orbital is significantly lower than that
on the 5d orbital around EF . Thus, 5d excitation is expected
to play a major role in the interaction with a slow ion. In
order to explore the d-electron excitation in the low-velocity
regime, we monitor the evolution of 5d bound electrons on
Pt atom positing at z = 4.02 Å of the host atom’s string
closest to the projectile trajectory (the Pt atom positing at
the lower right corner of the upper inset in Fig. 1), during
the ion passage through the host thin film. The results are
demonstrated in Fig. 4. It is conspicuous that the 5d bound
electron number is less than 9 and no excitation threshold for
the 5d electron as low as v = 0.1 a.u. is found; these can be
attributed to the electronic structure characteristic that part of
the 5d band distributes above EF . Particularly noteworthy is
that the electronic excitation is quite a local event; it begins
to occur when incident protons reach as close as about 2 Å

FIG. 4. Evolution of 5d bound electron on Pt atom positing at the
lower right corner of the upper inset in Fig. 1 with the position of the
incident ion. The red vertical dotted line shows the position of the
researched Pt atom; the black arrow shows ion movement direction.
The inset shows the velocity-resolved number of excited 5d electrons
�N during close ion-target encounter; it is the discrepancy of the
instantaneous 5d electron number on the researched Pt atom between
when the excitation begins to occur and the maximum extent at the
curve valley (see the schematic of �N for v = 0.1 a.u.). It can be
seen that for nearly all the velocities, the excitations begin to occur
when the oncoming projectile moves to 2 Å perpendicular distance
from the researched Pt atom.

perpendicular distance from the target Pt atom. The durations
of the electronic excitation depend on the impact velocity, and
the maximum extents that show as global valleys in electron
number curves with varied amplitudes are reached.

We note that the excitation mainly occurs at the oncom-
ing collision phase. This can be qualitatively rationalized by
the inhomogeneity in the electronic screening effect due to
the wake potential [16,56–58], where the electrons are more
concentrated in the back of the flying ion, leading to the un-
balanced electronic screening in the front and the back of the
flying ion. This effect is particularly obvious in the very low-
velocity region: for a proton with velocity of 0.1 a.u., nearly
all the excitations occur at the oncoming collision phase. As
the impact of the velocities increases, there is a significant in-
crease in excitation during the departure phase, which results
in enhanced d-electron excitation, as shown in the inset of
Fig. 4. Thus we interpret that the change of the stopping curve
slope around 0.2 a.u. in Fig. 2 mainly comes from the change
in d-electron excitation efficiency that is closely related to the
impact velocity, probably due to charge states of the projectile
which we will demonstrate in the following section.

B. Stopping of projectiles including
inner-shell-electron excitation

In order to investigate the involvement of inner-shell ex-
citation in electronic stopping, we extend the impact velocity
to 6.0 a.u. The calculated results together with experimental
data by Krist and Mertens [59,60], Sirotinin et al. [61], Goebl
et al. [18], Celedón et al. [15], Primetzhofer [19], Moro
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FIG. 5. Electronic stopping power (black open squares, circles,
and upper triangle) for channeled protons as a function of velocity
along the centroid trajectory in the 〈100〉 channel, together with the
SRIM-2013 predictions (solid line) and the experimental data (solid
symbols) by Krist and Mertens [59,60], Sirotinin et al. [61], Goebl
et al. [18], Celedón et al. [15], Primetzhofer [19], Moro et al. [20],
and Selau et al. [21].

et al. [20], and Selau et al. [21], as well as the SRIM-2013
predictions, are presented in Fig. 5. As can be seen, the calcu-
lated Se for Pt10 saturates at lower velocity and the amplitude
of the maximum value underestimates the SRIM data by about
15%. Such situation is improved by including the 5s and 5p
configurations. For a proton interacting with Pt18, both the
position and amplitude of the stopping maximum match well
with the SRIM data. However, in a velocity regime above
3.5 a.u., the calculated results for Pt18 also underestimate the
SRIM data (the simulated result is about 20% lower than the
SRIM data at v = 5.0 a.u.), indicating that more inner-shell
configurations should be included in the high-velocity regime.
Furthermore, we calculate Se for a proton in Pt32 with 14 addi-
tional 4f electrons explicitly included. As shown in Fig. 5, the
agreement with the SRIM data for the calculated results is sig-
nificantly improved in the high-velocity regime (v � 3 a.u.).

It is noted that our calculated data, which generally agree
well with the SRIM data, obviously underestimate the recent
experimental data by Primetzhofer [19], Moro et al. [20], and
Selau et al. [21] around the stopping maximum. Such results
can be attributed to the channeling centroid path approxima-
tion employed in this work since, along this path, the proton
projectile does not come near the host Pt atoms, which possi-
bly omits the strong interaction with tightly bound inner-shell
electrons. As reported by Li et al. [24], such condition can be
improved with a random trajectory considered.

Although including inner-shell configurations means open-
ing additional electronic excitation channels in the target,
which indeed improve the calculation especially in the high-
velocity regime, one should also keep in mind that the
projectile charge state, which is possibly susceptible to the
inclusion of inner-shell electrons, also plays a significant role
in determining the electronic stopping.

To explore the possible difference introduced by the
screening effect from the bound electron on the projectile,

FIG. 6. Velocity-resolved effective charge state for a proton in
Pt10, Pt18, and Pt32, respectively. The inset shows the amplification
of the low-velocity regime.

we calculated the effective charge states (atomic number
minus the bound electron number) of incident protons during
the interaction with Pt10, Pt18, and Pt32, respectively. The
bound electron number of incident protons is derived by
averaging the electron on the 1s orbital of a proton over
the ion path covering the last four lattice layers with length
7.84 Å in conducting solids. The effective charges as a
function of velocity are presented in Fig. 6. As can be seen,
for interactions with Pt10, Pt18, and Pt32, the number of
1s bound electrons on the proton decreases rapidly with
velocity for a velocity regime below 1.5 a.u., and reaches
fully deprived states at about 2.0 a.u. Only a very slight
difference can be found for the charge state of the proton
in Pt10, Pt18, and Pt32 in the low-velocity regime of
v � 0.5 a.u. The divergence diminishes at higher velocities,
indicating that host inner-shell configurations have a minor
influence on the charge state of the light proton projectile, and
the increased Se for a proton in Pt32 and Pt18 with respect to
Pt10 mainly comes from additional inner-shell excitations.

Now let us return to the change of d-electron excitations in
low velocity shown in the inset of Fig. 4. As can be seen in the
inset of Fig. 6, there is a pronounced kink point in the slope of
the curve for charge states at v = 0.2 a.u., and the reduction
in charge states is steeper below v = 0.2 a.u. As we know, a
low charge state means high electronic screening from bound
electrons; it thus can be inferred that the change in the impact
velocity-dependent excitation duration stems from the change
of electronic state of the projectile.

Excluding the influence factor of incident ions, we con-
clude that the main discrepancy in electronic stopping for a
proton in Pt10, Pt18, and Pt32 comes from the target’s low-
lying 5p, 5s, and 4f band excitation. We present, in Fig. 7,
the excitation of 5p and 5s electrons for a proton in Pt18, and
the 4f band excitation for a proton in Pt32. As can be seen in
Fig. 7, for velocities below 0.8 a.u., no excitation in 5p elec-
trons can be observed. When the impact velocity increases to
1.2 a.u., the 5p electrons’ excitation becomes evident. There-
after, the excitation increases significantly with velocity and
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FIG. 7. Velocity-resolved 5p, 5s, and 4f electron excitations dur-
ing close ion-target encounter. The number of excited electrons, �N ,
is the discrepancy of the instantaneous electron number on a specific
orbital of the researched Pt atom between when the excitation be-
gins to occur and the maximum extent at the curve valley (see the
schematic in Fig. 4 for a more detailed introduction of the derivation
of �N).

reaches its maximum at about v = 2.5 a.u., which corresponds
to the velocity of the stopping maximum for a proton in Pt18
shown in Fig. 5, suggesting that the 5p electrons’ excitation
plays a significant role around the stopping maximum. The
excitation of 5s and 4f electrons demonstrates a similar profile
as that of 5p electrons; there are thresholds at v = 2.0 and
1.2 a.u. and maximum excitation intensity at v = 4.5 and
4.2 a.u., respectively. It is noted that the major excitation
regime of 4f electrons (around v = 4 a.u.) overlaps with the
region where Se for a proton in Pt18 underestimates the ex-
perimental data, confirming such underestimation is due to
neglecting 4f electron excitations. For the 5p, 5s, and 4f cases,
the excitations decrease monotonically after the maximum. It
is somewhat counterintuitive since the higher impact velocity
means more powerful ionization capability. The explanation
for this is that the maximum of excitation as a function of
velocity is a compromise of excitation capability and interac-
tion time, in which the former is positively related with the
projectile charge state and also impact velocity [62]. Beyond
the critical value (typically close to the mean electron velocity
of the specific shell) [63], the decrement in interaction time
due to the increase of velocity plays a more significant role.

We also calculated the threshold of the impact velocity for
the excitation of 5p, 5s, and 4f electrons of Pt through the
method suggested by Lim et al. [31] and Lee et al. [40].
The channeling of the projectile through a periodic lattice is
viewed as time-dependent perturbation to the target material.
The energy is quantified as h̄ω, with ω = 2πv/λ, where λ

is the distance between equivalent lattice positions (for the
〈100〉 channel of Pt crystal, λ = a/2, where a is the lattice
parameter). The threshold velocity vth can be obtained by
equating perturbation h̄ω to the binding energy �E , giving

vth = λ�E

h
, (5)

where h is Planck’s constant. We estimate that for the 5p,
4f, and 5s electrons of Pt with binding energy about 52, 71,
and 101 eV [64], respectively, it only contributes to electronic
stopping for a projectile with velocities above 1.15, 1.57, and
2.2 a.u., slightly overestimating the thresholds 0.8, 1.2, and
2.0 a.u. predicted by the TDDFT results.

IV. CONCLUSIONS

We report a theoretical study from first principles of the
nonadiabatic interaction of a proton with Pt in a wide range
of velocities along the centroid trajectory. There is generally
good agreement between the calculated results and the exper-
imental data all through the velocity regime considered here.
Deviation of electronic stopping from the velocity propor-
tionality is found in the low-velocity regime and is ascribed
to the change of charge-state-dependent d-band excitation
efficiency around the kink velocity. During the quantitative
demonstration of the d-band excitation, the localized property
is unveiled.

Furthermore, we find that the electronic stopping is sig-
nificantly underestimated in the velocity regime around and
above the stopping maximum with target inner-shell configu-
rations frozen. The results are improved when core electrons
are incorporated, indicating that inner-shell excitations play a
significant role in determining the amplitude of the stopping
curve around and above the stopping maximum. In addition,
it is found that host inner-shell configurations have a minor
influence on the charge state of the light projectile proton.
Furthermore, we demonstrate quantitatively the inner-shell
excitation during the process of projectile encountering with
vicinal host atoms; the trend of inner-shell excitation is con-
sistent with that of electronic stopping. The charge analysis
method in this work makes possible direct access to the
electronic excitation on a specific electronic orbital, which
provides insight into the study of electron excitation in ion-
matter interaction.
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