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Antihydrogen formation from laser-assisted antiproton-positronium collisions
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The formation of antihydrogen atoms from three-body collisions between positronium atoms and antiprotons
plays a crucial role in the gravitational behavior of antihydrogen at rest (GBAR) experiment devoted to the
measure of the action of gravity on antimatter. One of the main challenges facing this experiment is to find the
means for increasing the production of antihydrogens which are produced by the reaction p̄ + Ps → H̄ + e− with
an extremely low rate. Along these lines, we investigate here the possibility to influence the collision process
by using a laser field. A perturbative approach combining the Coulomb-Born approximation for modeling the
charged-particle collision and a first-order perturbation theory for describing laser-atom interactions is employed
to estimate laser-mediated charge-exchange cross sections. By carefully considering the laser specifications
compatible with the experimental constraints, we present an extensive study of the influence of the laser
parameters (laser wavelength and intensity) on the cross sections in the energy range of interest for GBAR. We
show that under special irradiation conditions the rate of antihydrogen production may be significantly increased
by the presence of the laser field.
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I. INTRODUCTION

In order to make a direct observation of the effect of
gravitation on antimatter, the gravitational behavior of anti-
hydrogen at rest (GBAR) experiment aims at measuring the
influence of earth’s gravity on the trajectory of cold antihy-
drogen atoms. We mention two other experiments, AEḡIS
[1,2] and ALPHA-ḡ [3], which are designed to realize the
same objective as the GBAR experiment. In the first stage
of the GBAR experiment, positively charged ions of antihy-
drogen H̄+ (one antiproton and two positrons) are produced
with the help of two successive low-energy collisions [4,5].
The first reaction is a charge-exchange three-body colli-
sion (a) p̄ + Ps(np, lp) → H̄(nh, lh) + e−, where p̄ stands for
antiproton, Ps(np, lp) for positronium [bound states of an elec-
tron and a positron characterized by the quantum numbers
(np, lp)], and H̄(nh, lh) for antihydrogen in the state (nh, lh).
The second one is a more complex four-body reaction (b)
Ps(np, lp) + H̄(nh, lh) → H̄+ + e−. In view of the extremely
low production rate of H̄+, the current challenge is to optimize
each element of the experiment. In this spirit, we analyze
theoretically the possibility to increase the production rates of
the antihydrogen atoms, by assisting reaction (a) with a laser.
In addition, reaction (a) has already been widely explored with
a large variety of theoretical models in the non-light-assisted
situation (see [6–11] and references therein). These theoret-
ical studies show that antihydrogen atoms would be mainly
produced in excited states and the use of excited states of
positronium instead of the ground state allows one to increase
the production of antihydrogen. In the light-assisted situation,
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the recombination process of an electron with a proton by
using a semiclassical approach has been explored [12].

The main motivation of this work is related to the fact
that since the atomic excited states are less bound compared
to their ground-state counterparts one may expect to have a
reaction more sensitive to the presence of an external laser
field. In the following, cross sections for reaction (a) are ob-
tained in the antiproton energy range of the GBAR experiment
(1–10 keV), by using a semiperturbative approach adapted
from [6,13–15]. This method allows the simultaneous treat-
ment of the electron-atom interaction (within the Coulomb
Born approximation), the electron-laser interaction (Volkov
states), and the laser-atom interactions (within the first-order
time-dependent perturbation theory). In order to model the in-
teraction with light, we only consider quasiresonant excitation
conditions of the positronium leading to optimal situations
for laser-assisted antiproton-positronium collisions. By con-
sidering commercially available lasers whose wavelengths are
around 243 nm (Lyman-α transition) and 2563 nm (Paschen-β
transition), Ps excitation by the one-photon transition from 1s,
3s, and 3d states has been considered. Moreover, an important
issue related to the GBAR experiment is the fact that the
positronium atoms are produced with a velocity distribution
leading to first-order Doppler shifts. The latter must be taken
into account in the description of the collision process. Finally,
laser wavelengths and intensities must be chosen in order to be
compatible with the theoretical framework and also to avoid
the breakdown (by ionization) of the atomic species implied
in the collision.

Concerning the organization of this paper, the details of our
theoretical model are described in the next section. The results
and discussion are given in Sec. III. We summarize in Sec. IV
and discuss some perspectives for future work. Atomic units
are used unless specified otherwise.
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FIG. 1. Coordinates used for reaction (a). The bound states
present in each channel (entrance and exit) are circled: The dark blue
and light green straight lines correspond to the short-range pertur-
bative potential in prior and post forms, respectively. The scattering
angle is defined by θ = (k̂α, k̂β ) and the laser beam plane is shown
in red.

II. THEORETICAL METHODS

Let us consider the laser-assisted three-body reaction (a)
p̄ + Ps(np, lp) − pω0 → H̄(nh, lh) + e−, where positive in-
teger values of p correspond to photon emission by the
three-body particle system, negative ones to photon absorp-
tion, and p = 0 to a laser-assisted collision process with
no net transfer of photons between the system of particles
and the field. In the following we assume that the laser is
treated classically as a spatially homogeneous electric field
(i.e., dipole approximation), linearly polarized with a single
mode E (t ) = E0 sin(ω0t )ẑ. This description is justified within
the limits described as follows.

(i) The pulse durations that we consider (higher than 1 ps)
are sufficiently long so that, on average, the laser intensity
does not vary much from its peak intensity on timescales that
are of the order of typical subfemtosecond collision times.
As a result, the scattering process is described in terms of
time-independent transition rates [14,16].

(ii) The radiation generated by a laser in a coherent state
is close to the classical state of the field for a large number of
photons [17]. This is because for large values of the average
number of photons in the coherent state, quantum corrections
only cause small fluctuations on the classical field. Given the
laser parameters used in this paper, this approximation is more
suitable to simulate the excitation of positronium prepared in
an excited state than this one is in the ground state.

As depicted in Fig. 1, the incident positronium momentum
is defined by kα and is z axis oriented, the ejected-electron
momentum is defined by kβ , and the electric field of the laser
pulse E is taken to be parallel to the incident positronium
momentum. We begin by considering the case for which the
ejected electron is fast so that the electron-atom interaction
can be treated perturbatively by using the first Born approx-
imation [14]. In addition, the Coulomb distortions [see [18]
for the details of this approximation, called the continuum
distorted-wave initial-state (CDW-IS) approximation] in the
entrance channel due to the incoming electron and positron
in the continuum of the residual proton are not included here.
The Coulomb Born approximation (CBA), meaning that plane
waves are used to describe the propagation of the incoming
electron and positron, is preferred. This is due to the fact that
the comparison between experimental data [19] and previous

results obtained using a zero-field approach by Comini et al.
[20] suggests that the CBA is more convenient than the CDW-
IS approximation in the case of ground-state positronium,
which is our main concern here.

Since in rearrangement collisions the particles are different
in the initial and final states, the interaction potential in the
exit channel is different from the one in the entrance channel.
Therefore, when writing the S-matrix elements, a choice has
to be made between the perturbing potential of the initial state
and the one of the final state. The prior form of the S-matrix
elements is given by [21]

SCBA
kβ ,kα

= −i
∫
R

dt〈�kβ
(t )|Vα|�kα

(t )〉, (1)

where Vα (r, s) = |r|−1 − |s|−1, with r and s the coordinates
of the electron and the positron, respectively (see Fig. 1). It
is worth mentioning that the same transition matrix elements
are obtained using the prior and post forms of Eq. (1) if
the asymptotic states embedded in the laser field |�kα

(t )〉
and |�kβ

(t )〉 are the exact eigenstates of the initial and final
Hamiltonians, respectively. Therefore, no post-prior discrep-
ancies occur on the zero-field cross sections in the Coulomb
Born approximation. Regarding the discrepancies on the CBA
cross sections in the presence of a laser field, they cannot be
prevented, as the method used to deal with the laser-atom
interactions leads to approximate eigenstates of the initial
and final Hamiltonians. By neglecting the effect of the ex-
ternal field on the heavy antiparticle p̄ since mp̄ ∼ 1836me,
one needs to determine the dressed states of the atoms and
of the ejected electron for the computation of Eq. (1). Because
the treatment for the atoms is the same in the two channels,
the positronium has been selected arbitrarily to illustrate the
analytical approach employed.

The asymptotic initial state is described by the time-
dependent Schrödinger equation

i∂t |�kα
(t )〉 = [Hα (r, s) + HI (r, s, t )]|�kα

(t )〉, (2)

Hα (r, s) = − 1
2 (�r + �s) − |r − s|−1, (3)

HI (r, s, t ) = iα(∇s − ∇r ) · A(t ) + [αA(t )]2, (4)

where Hα is the initial unperturbed Hamiltonian, HI is the
interaction term of the entrance channel, and α ∼ 1

137 a.u. is
the fine-structure constant. In Eq. (3) the separation of the Ps
center of mass can be performed by introducing the coordi-
nates ρ = 1

2 (r + s) and q = r − s shown in Fig. 1. The use of
this new set of coordinates allow us to write

Hα (ρ, q) ≡ Hρ
α (ρ) + Hq

α (q) = −1

4
�ρ − �q − 1

q
, (5)

where the corresponding eigenfunctions are given by [22]

�kα
(q, ρ, t ) = (2π )−3/2ei(kα ·ρ−v2t )e−iαA(t )·(r−s)ξL

α (q, t ). (6)

In this equation the first factor describes the motion of the
center of mass characterized by the incident momentum
kα = 2vẑ, where v is the impact velocity. So far we have
assumed that the antiproton is at rest. However, by using the
formula v2 ∼ 2Ep̄/mp̄ we can investigate the situation where
the positronium is at rest and the antiproton is in motion.
The second factor of Eq. (6) is related to the Göppert-Mayer
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gauge transformation, which ensures that the Hamiltonian
HL

I (q, t ) = E (t ) · q is obtained in the length gauge by re-
moving the A2 term in Eq. (4). Finally, the last factor of
Eq. (6) corresponds to the positronium dressed state that
satisfies the time-dependent Schrödinger equation [we use
E (t ) = −α∂t A(t )]

i∂t

∣∣ξL
α (t )

〉 = [Hq
α (q) + HL

I (q, t )]
∣∣ξL

α (t )
〉
. (7)

In what follows we consider electric-field strengths such
as E0 e/a2

0 = 5.142 × 109 V/cm (the atomic unit of field
strength). The positronium dressed states can then be obtained
by use of first-order time-dependent perturbation theory [13].
In particular, the solutions of Eq. (7) are expressed as∣∣ξL

α (t )
〉 = e−iεnp t

[∣∣ψnp

〉 + i
(∣∣υ+

np

〉
eiω0t − ∣∣υ−

np

〉
e−iω0t

)] + O
(
E2

0

)
,

(8)

∣∣υ±
np

〉 = 1

2

(∑
n

|ψn〉〈ψn|
εn − εnp ± ω0

+
∫
R3

dκ
|ψκ〉〈ψκ|

Eκ − εnp ± ω0

)

× E0 · q
∣∣ψnp

〉
, (9)

where 〈ψn|E0 · q|ψnp〉 are the dipole-coupling matrix ele-
ments. The states |ψn〉 are those of a hydrogenoid atom
of reduced mass μ = 1

2 in the absence of the laser field
with binding energies of εn = −μ/2n2. Moreover, the time-
independent states |υ±

np
〉 obtained at first order in the perturba-

tion are expanded in terms of the eigenbasis (including bound
and continuum states) of the reduced Hamiltonian Hq

α (i.e.,
the Coulomb eigenstates |ψκ〉 describing the motion of the
electron with wave vector κ and positive energy Eκ = κ2/2μ

moving in the continuum of the residual positron). With the
help of the spectral representation of the Coulomb Green’s
function [23], the position representation of time-independent
states (9) can be written as

υ±
np

(q) = −1

2

∫
R3

dq′Gc(εnp ∓ ω0, q, q′)E0 · q′ψnp (q′). (10)

The details of the method employed to compute Eq. (10)
are given in Appendix A. Similarly, the wave function cor-
responding to the asymptotic final state can be written as

�kβ
(r, s, t ) = eiαA(t )·sξL

β (s, t )χkβ
(r, t ), (11)

where the antihydrogen states dressed by the laser field |ξβ (t )〉
can be expressed as∣∣ξL

β (t )
〉 = e−iεnh t

[∣∣ψnh

〉 − i
(∣∣υ+

nh

〉
eiω0t − ∣∣υ−

nh

〉
e−iω0t

)] + O
(
E2

0

)
.

(12)

With respect to the Ps case of Eq. (8), one notes (i) a change of
sign in front of the imaginary unit which comes from a gauge
fixing in Eq. (11) and (ii) that the unperturbed wave functions
|ψnh〉 are obtained by using μ = 1 in the general expression
of the hydrogenic wave functions.

In contrast, the laser-electron interaction χkβ
can be treated

exactly by using the nonrelativistic version of the Gordon-
Volkov wave function [24,25], which is a solution of the
time-dependent Schrödinger equation with the Hamiltonian

1
2 [−i∇r + αA(t )]2. The complete expression is

χkβ
(r, t ) = (2π )−3/2e−(i/2)k2

β t+ikβ ·[r−d(t )]−iφ(t ), (13)

d(t ) = α

∫ t

−∞
A(t ′)dt ′ = E0

ω2
0

sin(ω0t )ẑ, (14)

φ(t ) = 1

2
α2

∫ t

−∞
A2(t ′)dt ′ = 〈U 〉t + 1

8

E2
0

ω3
0

sin(2ω0t ), (15)

where A(t ) = E0 cos(ω0t )/αω0 is the vector potential ex-
pressed in the Coulomb gauge (automatically satisfied in the
dipole approximation). The quantum evolution of the electron
in the laser field (13) is a superposition of a quiver motion and
a drift motion [14]. The quiver motion corresponds to the dis-
placement |d(t )| (14) of the electron from its oscillation center
along the polarization direction ẑ. The drift motion, which
involves the cycle-averaged quiver energy of a free electron in
the laser field 〈U 〉 = 1

4 (E0/ω0)2 (i.e., ponderomotive energy)
and cannot be described in the dipole approximation, corre-
sponds to a displacement αφ0(t ) (15) along the propagation
direction of the field.

At this point it is important to note the following. On the
one hand, the dressed atomic states have been obtained at the
lowest order of the time-dependent perturbation theory (8) and
(12) and, according to the theory of multiphoton processes,
are thus valid only for an exchange of one photon between the
atoms and the field. On the other hand, the dressed-electron
state can be described exactly by the Gordon-Volkov wave
function, which is therefore able to represent the electron
quantum motion in the exit channel, regardless of the number
of photons absorbed or emitted between the field and the
outgoing electron.

Inserting Eqs. (6) and (11) into Eq. (1), we obtain

SCBA
kβ ,kα

= − (2π )−3i
∫
R6

dr ds ei(kα ·ρ−kβ ·r)Vα (r, s)

×
∫
R

dt eiγ (r,t )ξL
β

∗
(s, t )ξL

α (q, t ), (16)

where the time-dependent phase is defined by

γ (r, t ) ≡ γ0t + γ1(r, t ), (17)

γ0 = 1
2 k2

β + εnh − v2 − εnp, (18)

γ1(r, t ) = αl sin(ω0t ) − βl sin
(
ω0t + π

2

)
+ γl sin(2ω0t ) + 〈U 〉t . (19)

In these relations, γ0 is the phase factor derived from the
energy conservation law for the zero-field case and γ1 is
the additional term generated by the external field. The di-
mensionless electron-field coupling parameters which appear
in Eq. (19) are defined by αl = E0 · kβ/ω2

0, βl = E0 · r/ω0,
and γl = E2

0 /8ω3
0, respectively. Using the Jacobi-Anger ex-

pansion, the field-dependent exponential term of Eq. (16) can
be rewritten in terms of an infinite series involving one- and
two-dimensional Bessel functions [26]

eiγ1(r,t ) = ei〈U 〉t
∞∑

k,q=−∞
Jk (αl , γl )Jq(βl )e

i[kω0t−q(ω0t+π/2)].

(20)
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In order to reduce the double sum to a single one the change
of variable p = q − k is performed in Eq. (20) along with the
use of Graf’s addition theorem, which leads to [27,28]

eiγ1(r,t ) = ei〈U 〉t
∞∑

p=−∞
eipω0tχp

∞∑
k=−∞

(−1)k

× Jp−2k (cl )Jk (γl )e
−i(p−2k)ξl , (21)

where p, as already mentioned, corresponds to the number of
photons exchanged between the system of particles and the
field. The coefficients that appear in Eq. (21) are defined by

χp = e−ip(π/2)[1−sgn(αl /βl )], (22)

cl =
√

α2
l + β2

l , (23)

ξl = arctan(βl/αl ). (24)

At this stage, the continuation of analytical calculations is
not feasible since the argument of the Bessel functions in-
volved in Eq. (21) is coordinate dependent. For this reason, we
consider the approximation employed in the low-frequency
regime, which consists, through Eq. (23), in neglecting the
contribution of βl relative to the one of αl . To roughly
estimate the error induced by this approximation on the ar-
gument of coordinate-dependent Bessel functions, we start
by estimating the ratio |βl/αl | by ω0〈r〉(kβ )−1. The latter is
defined in terms of the average Ps Bohr radii 〈r〉 [29]. In
the case of H̄(1s) and using the laser parameters considered
in Sec. III, this ratio is equal to (i) 0.33 for Ps(1s) with
ω0 ∼ 0.1875 a.u. at an antiproton energy of 10 keV and (ii)
0.37 for Ps(3d ) with ω0 ∼ 0.0178 a.u. at an antiproton en-
ergy of 1 keV, respectively. It ensues that the argument can
be estimated as cl ∼ |αl |(1 + 1

2 |βl/αl |2), leading to 1.054|αl |
for (i) and 1.068|αl | for (ii). Therefore, considering the low-
frequency approximation, which implies that cl ∼ |αl | and
ξl ∼ βl/αl ≡ κ · r with κ = E0/αlω0, induces an error of the
order of 10% on the argument of the coordinate-dependent
Bessel functions. This error is comparable to the uncertainties
of the intensities delivered by the laser sources in the experi-
ments. Moreover, the phase factor χp in Eq. (21) which does
not affect the cross-section calculations can be omitted. The
infinite sum over k can also be simplified due to the behavior
of Bessel functions Jk (γl ) ∼ δ0k for small values of γl , which
currently does not exceed 10−6 a.u. The integrations over time
and space are now fully separable. The integration over time
leads to a δ function, and retaining only the lowest order in
the field strength in the product of the atomic dressed states,
the S-matrix elements can be recast in the form

SCBA
kβ ,kα

= −2iπ
∞∑

p=−∞
δ(γ0 + 〈U 〉 + pω0)T CBA

p . (25)

In these relation, T CBA
p ≡ T 1

p + T 2
p + T 3

p is the Floquet
T -matrix elements which describe the transfer of p photons
between the system of particles and the field in the Coulomb
Born approximation. The partial components T j

p , which rep-
resent the effect of the field on the electron ( j = 1),the

positronium ( j = 2) and the antihydrogen ( j = 3), respec-
tively, are given by

T j
p (kβ ) = (2π )−3

∫
R6

dr ds ei[(v−kβ )·r+v·s]Vα (r, s)h j
p(r, s),

(26)

h1
p = Jp(|αl |)e−ipκ·rψ∗

nh
(s)ψnp (r − s), (27)

h2
p = iψ∗

nh
(s)

[
Jp−1(|αl |)e−i(p−1)κ·rυ+

np
(r − s)

− Jp+1(|αl |)e−i(p+1)κ·rυ−
np

(r − s)
]
, (28)

h3
p = i

[
Jp+1(|αl |)e−i(p+1)κ·rυ+∗

nh
(s)

− Jp−1(|αl |)e−i(p−1)κ·rυ−∗
nh

(s)
]
ψnp (r − s). (29)

More details concerning the computation of the above ex-
pressions are given in Appendix B. The differential cross
section for given magnetic quantum numbers of the atoms can
be derived from the Fermi golden rule [14,30]

dσ CBA
mpmh

= (2π )4v−1
∞∑

p=−∞

∣∣∣∣∣
3∑

j=1

T j
pmpmh

(kβ )

∣∣∣∣∣
2

× δ(γ0 + 〈U 〉 + pω0)dkβ, (30)

where dkβ is the infinitesimal component in momentum
space. Using the spherical coordinates (kβ, θ, ϕ) for the rep-
resentation of the kβ vector, one has

dkβ = kβd
(
k2
β/2

)
d k̂β,

with the solid angle d k̂β = sin θdθdϕ. Finally, the total cross
section is obtained by summing over the final states of H̄,
averaging over the initial states of Ps, and performing the
integration over dkβ , which leads to

σ CBA = (2π )4

vl̂p

∞∑
p=−∞

kβ (p)
∫

�

d k̂β

∑
mpmh

∣∣T CBA
pmpmh

(kβ )
∣∣2

(31)

≡
∞∑

p=−∞
σp, (32)

where l̂p ≡ 2lp + 1. It is worth mentioning that since both
antihydrogen and positronium atoms are composed of a sin-
gle positron, there is no need to include the spin degree
of freedom in Eq. (31). The orientation of κ ‖ E0 regard-
less of the choice of the scattering geometry implies that
|T j

pmpmh (kβ )| are ϕ independent. The angular θ dependence
of these components is then contained in the two coeffi-
cients αl and κ defined by αl (θ, p) = E0kβ (p) cos θ/ω2

0 and
κ (θ, p) = ω0/kβ (p) cos θ , respectively.

Since the norm of the final momentum in Eq. (31) is fixed
by the δ function in Eq. (30), we also note that the number of
photons in the case of net absorption (p < 0) by the electron-
atom system can be arbitrarily large. In contrast, the decrease
of the electron momentum in the case of photon emis-
sion (p > 0) should be limited by the condition kβ (p) � 0,
which implies that p � �ω−1

0 (v2 + εnp − εnh − 〈U 〉)
 for all
relevant contributions of positive order involved in the cross-
section calculation. Moreover, since the laser-atom coupling
is taken into account to lowest order in the field, the widths
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FIG. 2. Energy-level diagram of Ps. Light green straight lines
represent states produced within the framework of the GBAR exper-
iment, red straight lines states not produced, and double blue lines
virtual transitions involved in the laser-assisted reaction.

of the atomic levels cannot be introduced consistently. As a
result, our model is not valid at resonance [31]. Nevertheless,
our model provides useful information about the behavior of
the cross section in the vicinity of the resonance. The values
of laser detuning and field strength in the perturbative regime
are discussed later according to experimental constraints for
the GBAR experiment.

III. RESULTS AND DISCUSSION

Since the calculations are very time consuming, we have
parallelized our program written in FORTRAN 95. The par-
allelization has been performed using the message passing
interface on the variables (p, θ ) involved in Eq. (31). The
computation of the numerous integrals is performed by using
the method of Gaussian quadrature with a number of integra-
tion points varying between 32 and 96. In order to achieve the
convergence of the scattering amplitude, the required number
of partial waves (see l , l f , and lc in Appendix B) varies
between 16 and 24 as a function of the atomic states Ps(np, lp)
and H̄(nh, lh) and the antiproton impact energies.

One of the key issues of the present study is the positro-
nium states involved in the reaction with or without the
presence of an external laser. In the following the different
positronium states produced (or not) within the framework of
the GBAR experiment are discussed (see Fig. 2). A detailed
and recent account of the experimental progress in positron-
ium physics can be found in the review in [32]. Positronium
is a system consisting of an electron and its antiparticle, a
positron. The system is unstable. Depending on the relative
spin states, the two particles annihilate each other into two or
three γ rays.

(i) State Ps(1s). The ortho-positronium o-Ps(1s), whose
annihilation lifetime is 142 ns, is the only state of Ps produced
in the absence of any laser source. It is produced via the
capture of an electron by a positron and resulting from the
bombardment of a positron beam on a nanoporous silica plate
situated in a tube forming the collision cell.

(ii) State Ps(2p). The production of Ps(2p) requiring the
use of a UV-C laser source with wavelength of 243 nm is
currently improbable since the laser-repetition period avail-
able for the GBAR experiment is 13 ns. Indeed, the latter is
almost more than three times larger than the radiative lifetime
of this state, equal to 3.2 ns. Furthermore, as described later,
the first-order Doppler effect is also a major obstacle to the
production of the 2p state. This is the reason why we present
only the cross sections for Ps(2p) in the zero-field case.

(iii) State Ps(3d ). The production of Ps(3d ) (having a
radiative lifetime of 31 ns) is obtained from the ground state
via a two-photon transition (see Fig. 2) of frequency ω =
3.024 eV (410 nm). The process is performed by using two
counterpropagating Ti:sapphire laser beams that are doubled
in frequency in order to compensate for the first-order Doppler
effect [4].

(iv) State Ps(3s). This state cannot be produced using the
protocol employed for Ps(3d ). Indeed, the probability that
Ps(3s) will be photoionized by the absorption of a supple-
mentary photon is much higher compared to the same process
for Ps(3d ). This is due to the fact that in the experimental
configuration used for Ps(3d ), the photoionization probability
for Ps(3s) is of the order of 63%, compared to 5% for Ps(3d )
(details of the calculation are available in [4,20]). However,
Ps(3s) constitutes an interesting candidate because of its long
radiative lifetime of 320 ns and its coupling with the external
field. In addition, three-body reaction cross sections may be
computed with much less computational effort due to the s
(lp = 0) character of this Ps state.

In what follows, the cross sections are given in units of
πa2

0 = 0.88 × 10−16 cm2 as a function of the antiproton im-
pact energy.

A. Zero-field case

According to the considerations above, we start by present-
ing the zero-field partial cross sections for Ps(3d ) in Fig. 3,
which have been obtained by summing cross sections of re-
action (a) with the same principal quantum number nh from
nh = 2 up to nh = 7. They have been calculated in the CBA
formalism by considering the prior form of the S-matrix ele-
ments. In comparison with the CBA cross sections computed
in the post form by Comini et al. for nh = 2, the convergence
of our calculations has been verified, as long as there is no
post-prior discrepancy in the absence of a laser field. Nev-
ertheless, since the states of the produced H̄ are generally
not measured experimentally, one must consider the so-called
inclusive cross section defined by

Ps(np, lp) + p̄ →
sup nh∑
nh=1

nh−1∑
lh=0

H̄(nh, lh) + e−. (33)

These cross sections with Ps in different initial states (np, lp)
are depicted in Fig. 4. It is important to mention that the
inclusive cross section associated with Ps(1s) differs from
those associated with the excited states of Ps, for which all
output channels are open at 1 keV. In particular, only the H̄(1s)
channel is open at 1 keV, followed by the contribution of the
H̄(2s + 2p) channels above 3.12 keV and the H̄(3s + 3p +
3d ) channels above 4.86 keV. This leads to several jumps in
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FIG. 3. Antihydrogen production partial cross sections (sum over
lh only) from Ps(3d ) as a function of antiproton impact energy. The
CBA cross sections previously computed by Comini [20] for the
channels H̄(2s + 2p) are shown. The solid lines serve as guidelines.

the behavior of the Ps(1s) inclusive cross section. Moreover,
we can clearly see that below 7 keV, a preparation of Ps
atom np = 3 states leads to an important increase of the inclu-
sive capture cross sections with respect to the situation with
Ps(1s). The only available experimental data for reaction (a)
displayed in Fig. 4 are from the work published by Merrison
et al. [19]. In this experiment, protons at about 10 keV were
sent through a cloud of ground-state positronium and the total

et al. [19]

FIG. 4. Inclusive cross sections of antihydrogen production from
Ps(np, lp) up to the state H̄(7i), as a function of the antiproton impact
energy. The three experimental points are due to Merrison et al. [19].
The solid lines serve as guidelines.

et al. [18]

FIG. 5. Inclusive cross sections of antihydrogen production re-
sulting from the CCC [8], UBA [33,34] [up to the state H̄(7i)], and
present CBA [up to the state H̄(7i)] calculations, for a specific state
of Ps, as a function of the antiproton impact energy. The dashed
lines for Ps(1s) cross sections, resulting from the resolution of the
Faddeev-Merkuriev equations, are due to Valdes et al. [11]. The solid
lines serve as guidelines.

hydrogen production cross section was measured based on the
detection of the escaping free positron.

In Fig. 5 we compare our CBA inclusive cross sec-
tions with those obtained from the two-center close-coupling
convergent (CCC) method and the unitarized Born approxi-
mation (UBA) [33,34]. Although the CBA cross sections re-
main higher than the CCC cross sections at antiproton
energies up to 10 keV, the obtained results show that the
Coulomb Born approximation is strengthened as the impact
energy increases. At low antiproton energies (around 1 keV),
the CCC and CBA cross sections related to Ps(3s, 3d ) differ
approximatively by an order of magnitude (approximately
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10πa2
0). However, the results of the ab initio calculations

based on the Faddeev-Merkuriev equations [11,35] for the
reaction Ps(1s) + p̄ → H̄(2s + 2p) + e− are in very good
agreement with those of the CCC calculations. The latter are
depicted for antiproton energies ranging from 3.12 to 4.86
keV (see the discussion above). Moreover, only CBA cross
sections computed with Ps(1s) and Ps(3s) seem to agree with
CCC cross sections for antiproton energies greater than 6 and
8 keV, respectively. In contrast, the UBA cross sections are
closer to the CCC cross sections. This is because at low an-
tiproton energies, the UBA formalism describes the collision
more appropriately than the CBA formalism. Indeed, it con-
sists in a modification of the Born series [36], which allows
one to extend the range in energy over which the development
of the first order remains valid.

B. Cross sections with Ps(1s) in the presence
of an external laser field

One of the most efficient ways to produce a gas made
of positronium is to irradiate a nanoporous material with
a highly energetic positron beam. The positrons lose their
initial kinetic energies by collisions with the atoms of the
solid and the positronium is formed by capturing one elec-
tron from one orbital state of the solid. In the case of
nanoporous materials, the positronium is mostly formed in the
proximity to the internal surfaces of the pores and diffuses
inside the solid until it escapes into the vacuum. Various
experiments [37] have established that when the positro-
nium is prepared by using nanoporous materials such as
silica, depending on the size of the pores, the atoms are
emitted either with an energy corresponding to the temper-
ature of the solid (usually the room temperature associated
with an average thermal energy of 25 meV) or with an en-
ergy significantly higher (typically around 48 meV). Indeed,
for small nanopores (d � 5.5 nm [38]) the bound energy of
positronium inside the pore [which can be estimated using
(h̄π )2/med2] exceeds the thermal energy leading to a higher
escaping energy. In the setup of the GBAR experiment, a di-
ameter of d = 3–4 nm leads to 〈EPs〉 = 48 meV, where 〈EPs〉
is the confinement energy of Ps atom. In the following we
will consider these two physical situations and assume that
positronium atoms thermalize quasi-instantaneously inside
the pore to a Maxwell-Boltzmann distribution [39,40]. From
the above discussion, one deduces the full width at half max-
imum of the broadening of spectral lines due to the Doppler
effect [41]

�νD = ν0

c

√
8〈EPs〉 ln 2/mPs, (34)

where ν0 = ω0/2π is the frequency of the emitting source.
Let us start by considering the case of 25 meV confinement
energy. Using Eq. (34) and considering a laser frequency
ν0 ∼ ν21 = 1233 THz in the vicinity of the Lyman-α tran-
sition, we obtain that �νD = 454.3 GHz. This value can be
compared to the experimental value of 672 ± 43 GHz ob-
tained by Deller et al. [38], suggesting the use of a laser source
with a large spectral width. Therefore, we propose to consider
the laser sources given in the following. These laser sources

have a large pulse duration according to the considerations
made in Sec. II.

The laser source L1 that can be built at CERN is a
Fourier-transform-limited laser pulse. It has an energy per
pulse of Eτ = 10 μJ, a beam spot size of w0 = 0.5 mm,
and a pulse duration of τ = 2 ps. It leads to a spec-
tral width of �ν0 = 0.441/τ = 220.5 GHz in the case
of a Gaussian beam profile and a peak intensity of
Icr = Eτ /πw2

0τ = 6.37 × 108 W/cm2 (i.e., an electric-field
strength of Ecr = 6.93 × 105 V/cm). The main inconvenient
of this source is that its pulse duration is very short com-
pared to the interaction time (time for which an antiproton
of the incident beam is likely to interact with a positron-
ium atom contained in the tubular cell) given by tint = l/vp̄,
where vp̄ = √

2Ep̄/mp̄ is the antiproton velocity. Indeed, if
one considers a collision cell of length l = 20 mm [5], we ob-
tain that tint = 13–46 ns for an antiproton energy range from
1 to 12 keV.

The chirped pulse laser source L2 was proposed by Deller
et al. This later presents the advantage of having a spectral
width �ν0 = 225 ± 3 GHz similar to a Fourier-transform-
limited laser source L1, with a pulse duration of τ = 8 ± 1 ns.
The energy per pulse of this laser is Eτ = 1.2 ± 0.3 mJ
and the peak intensity for the same spot size as for L1

is Icr = 1.91 × 107 W/cm2 (i.e., an electric-field strength of
Ecr = 1.22 × 105 V/cm).

First of all, in order to obtain an appreciable density of pho-
tons in the vicinity of the resonance, we will consider in the
following and for the two types of lasers a frequency detuning
�ν = 1

2�ν0 ∼ −110 GHz, where �ν ≡ ν0 − ν21. This fre-
quency detuning implies that the natural width �rad(2p) of
the final state 2p may be neglected for the cross-section com-
putation. Indeed, we have �ν �rad(2p) = 0.313 GHz and
therefore it is not necessary to add an imaginary component
at the energies involved in the Coulomb Green’s operator.

Second, in order to justify the use of a first-order pertur-
bation theory for modeling the positronium-laser interaction,
the value of E0 is chosen such that the transition probability
obtained from the projection of the initial state (8) on the state
|2p〉 remains smaller than unity, namely,

�1 < |�ω|, (35)

where �1 = |〈2p|E0 · r|1s〉| corresponds to the Rabi fre-
quency. From the considerations above, we subsequently
consider E0 � 5 × 104 V/cm < Ecr for the source L1 (i.e.
�ν = −110.25 GHz), which leads to (�1/�ω)2 � 0.747, in
agreement with (35), where �1 � 2π × 95.32 GHz.

Furthermore, as the electric-field strength that we consider
leads to a very small value of the electron-field coupling
parameter (|αl |p=0 � 4 × 10−4 below 20 keV of antiproton
energy), the dressed states of the electron do not contribute
significantly to the calculation of σ CBA [42]. In other words,
the behavior of Bessel functions in the vicinity of the origin
implies that for p = 0 the term T 1

0 (27) is dominant among
the other matrix elements T . It leads to σ0 ∼ σ CBA(E0 = 0)
in Eq. (32), for which the convergence is obtained by lim-
iting the summation to |p| � 1. Furthermore, by isolating
in T 2

p the resonant term Gc(εnp + ω0) multiplied by Jp+1

[see Eq. (28)], one notices that the process of one-photon
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5×104

3×104

FIG. 6. Antihydrogen production partial cross sections involving
the exchange of p photons, for the output channels H̄(2s + 2p) and
different values of the electric-field strength. The antiproton impact-
ing energy is (a) 6 keV and (b) 15 keV.

absorption (p = −1) is dominant with respect to the process
of one-photon emission (p = +1). This leads us to consider
that

σ CBA ∼ σ0 + σ−1. (36)

This behavior is illustrated in Fig. 6, where the partial cross
sections p̄ + Ps(1s) → H̄(2s + 2p) + e− involving the ex-
change of p photons [see Eq. (32)] are depicted for two
incident antiproton energies. The choice of these particular
output channels is justified by the fact that the species H̄(2s)
and H̄(2p) have the highest contributions for the production
of H̄ via reaction (a). The corresponding partial CBA cross
section obtained by summing the contributions σp in Eq. (36)
is depicted in Fig. 7.

In Fig. 8(a) we represent the gain produced by the presence
of the laser on the inclusive cross sections. This is done for a
laser frequency detuning of �ν = −110.25 GHz. Close to 6
keV where the cross section is maximum our model predicts
an increase of 18.9% for the source L1 (E0 = 5 × 104 V/cm)
and 27% for the source L2 (E0 = 5.8 × 104 V/cm). The latter
simulation corresponds to the limit of validity of our model
with (�1/�ω)2 = 0.966. Moreover, the role played by the
Doppler effect on the inclusive cross section is also investi-
gated in Fig. 8(b). In order to do so we use the values for the
frequency detunings

�ν := �ν + 1
2�νD = 116.9 GHz, (37)

�ν := �ν − 1
2�νD = −337.4 GHz, (38)

where �νD = 454.3 GHz is the Doppler broadening width
previously obtained from Eq. (34) for 〈EPs〉 = 25 meV. As
expected, for �ν = 116.9 GHz (37) we find almost the same

5×104

3×104

[20]

FIG. 7. Antihydrogen production partial cross sections as a func-
tion of the impacting antiproton energy, for different values of the
laser electric field E0. The zero-field CBA cross sections previously
computed by Comini [20] for the channels H̄(1s) and H̄(2s + 2p) are
shown. The dashed and solid lines serve as guidelines.

results already obtained for �ν = −110.25 GHz. This is due
to the fact that these two values are symmetrically distributed
with respect to the resonance situation (zero detuning). How-
ever, for �ν = −337.4 GHz (38), the situation is completely
different. This is because we are much further from resonance
where the photon density is small. The consequence is a
decrease of the cross section which is almost identical to the
one without the external field. Thus, a future investigation
at 〈EPs〉 = 48 meV for Ps(1s) with the same laser parame-
ters will not lead to higher cross sections far away from the
resonance.

C. Cross sections for Ps(3s) and Ps(3d ) in the presence
of a laser field

Since the use of a chirped pulse laser which verified
|�ν| 1

2�νD seems to be the best theoretical and experimental
compromise given the investigations made for Ps(1s), we will
consider an IR-B laser having a wavelength around 2563 nm
with the same detuning as before (i.e., �ν = −110.25 GHz)
for the investigation of Ps(np = 3). This leads to consider
a laser frequency located near the Paschen-β line, as we
can see in Fig. 2. Such a laser source can be adapted from
laser L2 (described in [38]), which use an optical parametric
oscillator. The advantage considering this source is to get a
full overlap of the Doppler broadening width at Ps confine-
ment energies of 25 meV (�νD = 43.04 GHz) and 48 meV
(�νD = 59.64 GHz). In this section we will also investigate
the more realistic case of 〈EPs〉 = 48 meV [see the discussion
in Sec. III B above Eq. (34)].
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FIG. 8. (a) Relative increase in percentage and with respect to the
zero-field situation of the inclusive cross section for two values of the
laser electric field. (b) Inclusive cross sections for E0 = 0 (without
Doppler broadening), E0 = 5 × 104 V/cm and �ν = −110.25 GHz
(with Doppler broadening), and �νD = 454.3 GHz leading to
�ν = −337.4 GHz and �ν = 116.9 GHz. The dashed and solid
lines serve as guidelines.

For Ps(3s) let us first consider the 3s-5p transition. We
check that the width of the spectral line associated with the
radiative relaxation of the final state �rad(5p) = 21.46 MHz
remains negligible in front of the laser detuning. With respect
to the case of Ps(1s), we consider here a smaller electric-field
strength E0 = 2.5 × 104 V/cm, which should lead to larger
changes of the cross sections. This is due to the fact that
since the 3s state is less bound than 1s, it must be more
sensitive to the presence of an external perturbation. The
corresponding coupling constant is (�1/�ω)2 = 0.573, with
�1 = 2π × 83.46 GHz.

FIG. 9. Antihydrogen production partial cross sections from
Ps(3s) due to the one-photon absorption by the system, as a
function of antiproton impact energy E0 = 2.5 × 104 V/cm and
�ν = −110.25 GHz. The dashed and solid lines serve as guidelines.

In Fig. 9 partial cross sections σ−1 (summed over lh only)
due to the absorption of one photon [see Eq. (36)] are depicted
for the ideal situation without Doppler broadening (�νD = 0).
Inclusive cross sections are shown in Fig. 10. Different laser
detuning are considered depending on the mean energy of Ps
when the Doppler broadening is considered (see Table I). At
2 keV of antiproton energy where the zero-field inclusive
cross section take on substantial values, we observe that our

FIG. 10. Inclusive cross sections for E0 = 0 (without Doppler
broadening) and E0 = 2.5 × 104 V/cm and �ν = −110.25 GHz
(with Doppler broadening), with �νD = 43 GHz (blue triangles) and
�νD = 59.6 GHz (brown triangles). The dashed and solid lines serve
as guidelines.
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TABLE I. Laser detunings and corresponding coupling param-
eters for E0 = 2.5 × 104 V/cm as a function of the Ps confinement
energy (the initial value of laser detuning when 〈EPs〉 = 0 is
�ν = −110.25 GHz).

〈EPs〉 (meV) �νD (GHz) �ν (GHz) (�1/�ω)2

25 43.04 min −131.8 0.401
25 43.04 max −88.7 0.885
48 59.64 min −140.1 0.355
48 59.64 max −80.4 1.077

model predicts an increase (with respect to the zero-field sit-
uation) of the inclusive cross section depending on the laser
detuning. This increase is of the order of 61.1% for 〈EPs〉 = 0,
at least 46.1% for 〈EPs〉 = 25 meV, and at least 42% for
〈EPs〉 = 48 meV. For the sake of clarity, the predictions for
higher antiproton energies and/or as close as possible to reso-
nance are given in Table II.

For Ps(3d ) let us now consider the 3d-(np = 5) transi-
tion using the same laser parameters as for Ps(3s). Since
the width of the spectral line associated with the radiative
relaxation of the final state 5 f is 3.57 MHz, the condi-
tion �ν = −110.25 GHz (�rad(5p), �rad(5 f )) is still valid.
Moreover, the value of the transition probability obtained for
the parameters E0 = 2.5 × 104 V/cm and 〈EPs〉 = 0 (leading
to �1 = 2π × 95.62 GHz) is (�1/�ω)2 = 0.752. We ob-
serve that the coupling of the initial state 3d to the final
state 5 f (associated with an orbital lp + 1) is more favorable
than to the state 5p (associated with lp − 1). Indeed, the Rabi
frequency is expressed as

�1 = 2πE0

√(
�

(lp−1)
1

)2 + (
�

(lp+1)
1

)2
, (39)

�
(lp−1)
1 ≡ |〈5p|ẑ · r|3d〉| = 4.51 × 10−4 Hz cm/V, (40)

�
(lp+1)
1 ≡ |〈5 f |ẑ · r|3d〉| = 3.80 × 10−3 Hz cm/V, (41)

which implies that �
(lp−1)
1 ∼ 0.12�

(lp+1)
1 .

In Fig. 11 partial cross sections σ−1 are depicted without
Doppler broadening (�νD = 0). As before, the inclusive cross
sections are also shown in Fig. 12. However, since the Rabi
frequency is slightly higher than the one of Ps(3s), the con-
dition (35) is not satisfied as close as possible to resonance,
i.e., for �ν := (−88.7 GHz,−80.4 GHz), and since the con-
vergence of σ−1 for the channel H̄(nh = 6) is not obtained at
12 keV, the inclusive cross sections are shown for antiproton
energy up to 10 keV.

At 2 keV of antiproton energy, our model predicts an in-
crease of the zero-field inclusive cross section of the order of
17.6% for 〈EPs〉 = 0, at least 12.3% for 〈EPs〉 = 25 meV, and
at least 10.7% for 〈EPs〉 = 48 meV (see Table II for the other
estimates). These increases are smaller to those obtained for
Ps(3s).

Finally, the inclusive gains for Ps(3s) and Ps(3d ) are rep-
resented in Fig. 13. They have been obtained for 〈EPs〉 = 0
and E0 = 2.5 × 104 V/cm. It is worth noticing that the influ-
ence of the external electric field may increase significantly
the production of antihydrogen [more that a factor of 2 for
Ps(3s) and Ps(3d ) at antiproton energies higher than 9 keV].

TABLE II. Inclusive cross sections σ CBA[Ps(np = 3)] and corre-
sponding gains obtained for E0 = 2.5 × 104 V/cm as functions of the
antiproton and Ps confinement energies. For each antiproton energy,
the cross-section values are obtained by considering laser detunings
given in Fig. 10 for Ps(3s) and Fig. 12 for Ps(3d ). The numbers in
square brackets refer to multiplication by powers of 10.

Ep̄ (keV) 〈EPs〉 (meV) σ (E0) (πa2
0 ) σ (E0)/σ (0)

Ps(3s)
4 0 2.01961[2] 1.963
4 25 1.73034[2] 1.682
4 25 2.52618[2] 2.455
4 48 1.65268[2] 1.606
4 48 2.86664[2] 2.786
6 0 5.86088[1] 1.780
6 25 5.08085[1] 1.543
6 25 7.32758[1] 2.225
6 48 4.87143[1] 1.479
6 48 8.14481[1] 2.474
8 0 2.22749[1] 1.997
8 25 1.88705[1] 1.691
8 25 2.84976[1] 2.554
8 48 1.79564[1] 1.609
8 48 3.22424[1] 2.890
10 0 9.77465[0] 2.234
10 25 8.13940[0] 1.860
10 25 1.27748[1] 2.919
10 48 7.70037[0] 1.760
10 48 1.45626 [1] 3.328

Ps(3d )
1 0 9.13012[3] 1.194
1 25 8.68561[3] 1.136
1 48 8.56469[3] 1.120
2 0 2.04156[3] 1.176
2 25 1.95009[3] 1.123
2 48 1.92269[3] 1.107
3 0 6.31964[2] 1.183
3 25 6.02748[2] 1.128
3 48 5.94467[2] 1.113
4 0 2.42560[2] 1.242
4 25 2.28450[2] 1.170
4 48 2.24558[2] 1.150
6 0 5.64857[1] 1.537
6 25 5.06263[1] 1.377
6 48 4.90488[1] 1.334
8 0 1.95196[1] 2.054
8 25 1.65307[1] 1.739
8 48 1.57280[1] 1.655
10 0 8.49007[0] 2.775
10 25 6.86887[0] 2.245
10 48 6.43348[0] 2.103

As we can see, we have checked that the results are almost
unchanged with an increase in the number of antihydrogen
states included in the calculation.

IV. CONCLUSION

In this work we have studied theoretically the possibility
to increase the probability to form an antihydrogen atom by
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FIG. 11. Antihydrogen production partial cross sections from
Ps(3d ) due to the one-photon absorption by the system, as a
function of antiproton impact energy E0 = 2.5 × 104 V/cm and
�ν = −110.25 GHz. The dashed and solid lines serve as guidelines.

irradiating, with an appropriate laser source, a three-body
charge-exchange collision in which an antiproton impacts a
positronium atom. For that purpose, a perturbative approach
using the Coulomb-Born approximation for modeling the
charged-particle collision and a first-order perturbation theory
for describing laser-atoms interactions has been employed. In
order to find the best irradiation conditions, much effort was
devoted to incorporating into the modeling the experimen-

FIG. 12. Inclusive cross sections for E0 = 0 (without Doppler
broadening) and E0 = 2.5 × 104 V/cm and �ν = −110.25 GHz
(with Doppler broadening) with �νD = 43 GHz (blue triangles) and
�νD = 59.6 GHz (brown triangles). The dashed and solid lines serve
as guidelines.

FIG. 13. Inclusive gains for Ps(np = 3) obtained by considering
E0 = 2.5 × 104 V/cm and �ν = −110.25 GHz (without Doppler
broadening) by including the first six states of H̄ (circles), the first 15
states of H̄ (down triangles), and the first 21 states of H̄ (up triangles).
The dashed and solid lines serve as guidelines.

tal constraints encountered in the GBAR experiment. Laser
wavelengths and intensities were carefully chosen to be com-
patible with the hypothesis of the theoretical approach and to
preserve the integrity of the atomic partners involved in the
collision.

Three states of Ps(1s; 3s; 3d ) were considered. For each of
them, possible quasiresonant one-photon transitions leading
to optimal irradiation conditions were examined. Further-
more, Doppler broadening due to the Ps velocity was taken
into account in the model. By using commercially avail-
able laser sources with wavelengths around the Lyman-α and
Paschen-β transitions of Ps, we showed that the three-body
cross sections can be significantly increased in comparison
with the zero-field situation. For antiproton energies corre-
sponding to the maximum cross sections for the zero-field
case and without including the Doppler broadening, we found
an increase of 18.9% for Ps(1s) (6 keV antiproton energy
and a laser intensity of 3.3 × 106 W/cm2) and 19.4% for
Ps(3d ) (1 keV antiproton energy and a laser intensity of 8.3 ×
105 W/cm2). These results were obtained for a laser detun-
ing of �ν = −110.25 GHz. Much more important increases
(greater than 200%) can be obtained for higher antiproton
energies.

For future work we envisage the use of the same method-
ology for studying the second reaction (b) of interest for
the GBAR experiment, which is a more complex four-body
reaction, Ps(np, lp) + H̄(nh, lh) → H̄+ + e−, in which the an-
tihydrogen produced in the first reaction interacts with another
positronium to create an antihydrogen ion. It will allow one
to determine the production rate of the GBAR experiment
according to the model proposed in [20,43].
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APPENDIX A: COMPUTATION OF the INTEGRAL INVOLVING the COULOMB GREEN’S OPERATOR

In the position representation, the Coulomb Green’s function Gc of energy variable �∓ ≡ εnp ∓ ω0 is solution of the operator
equation [23] (

�∓ − Hq
α

)
Gc(�∓, q, q′) = δ(q − q′), (A1)

where the nonrelativistic reduced Coulomb Hamiltonian

Hq
α = −(2μ)−1�q − Z

q
(A2)

for the two-body problem is used with μ = 1
2 and Z = 1 [see Eq. (5)]. In order to compute υ±

np
(q), a separation of the radial

and angular components is performed, which can be expressed in terms of r and s vectors in the laboratory frame [6]. Since the
Coulomb potential is spherically symmetric, the Coulomb Green’s function can be expanded in partial waves

Gc(�∓, q, q′) =
∑
lm

gl (�∓, q, q′)Y m
l

∗(q̂)Y m
l (q̂′), (A3)

where gl is the radial component of degree l . According to the orientation of the electric field along the z axis, the same operation
can be performed in the scalar product on the right-hand side of Eq. (10), which can be written as E0 · q′ = 2(π/3)1/2E0q′Y 0

1 (q̂′).
Consequently, the integration of three spherical harmonics of common argument q̂′ gives the 3 j coefficients, with an angular
momentum Lp = lp ± 1 for the spherical harmonic function of argument q̂ in Eq. (A3) according to the selection rules for the
electric dipole transition E1, which has been treated using the development [44]

Y
mp

Lp
(q̂) = (−1)Lp+mpq−Lp

∑
λμ

(−1)λ
√
L̂p!L̂p4π [λ̂!( ̂Lp − λ)!]−1rLp−λsλ

(
Lp − λ λ Lp

mp − μ μ −mp

)
Y

mp−μ

Lp−λ
(r̂)Y μ

λ (ŝ), (A4)

where 0 � λ � Lp, |μ| � λ, and λ̂ stands for 2λ + 1. In addition,

υ±
np

(r − s) = − 1

2
E0(4π l̂p)1/2

∑
Lp

L̂p(L̂p!)1/2(−1)Lp

(
1 lp Lp

0 0 0

)(
1 lp Lp

0 mp −mp

)
q−LpK±

npLp
(q)

×
∑
λμ

(−1)λ[λ̂!( ̂Lp − λ)!]−1/2

(
Lp − λ λ Lp

mp − μ μ −mp

)
rLp−λsλY

mp−μ

Lp−λ
(r̂)Y μ

λ (ŝ), (A5)

K±
npLp

(q) =
∫
R+

dq′q′3gLp (�∓, q, q′)Rnplp (q′). (A6)

Using the projection of the scalar product into the complete basis set of the Legendre polynomial, the radial component of the
relation (A5) can be written as

Vα−β (r, s)q−LpK±
npLp

(q) = 4π
∑
lm

J l,±
npLp

(r, s)Y m
l

∗(r̂)Y m
l (ŝ), (A7)

J l,±
npLp

(r, s) = 1

2

∫ 1

−1
dξ Vα−β (r, s)q−LpK±

npLp
(q)Pl (ξ ), (A8)

where q = (r2 + s2 − 2rsξ )1/2 and Vα−β stands for the prior or post form of the perturbative potential [see the discussion in
Sec. II above Eq. (1)]. We note that the perturbative potential is only present in the integrand of Eq. (A8) if the S-matrix
elements are evaluated in the post form. For the evaluation of Eq. (A6), since the spectral representation of gLp involves an
infinite series which is difficult to compute, we prefer to use the closed-from representation. This representation was first given
by Hostler [45] and can be written in terms of regular and irregular Whittaker functions as

gLp (�∓, q, q′) = − β∓
qq′

�(Lp + 1 − β∓)

(2Lp + 1)!
Mβ∓,Lp+1/2(2q</β∓)Wβ∓,Lp+1/2(2q>/β∓). (A9)

In this relation, q< = inf(q, q′), q> = sup(q, q′), β∓ = √
μ(−2�∓)−1/2 is the Sommerfeld parameters of the entrance channel,

and � is the Euler function. Using the expression given in [46], the Whittaker functions of Eq. (A9) can be expressed in terms
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of Coulomb radial functions FLp (regular) and GLp (irregular), which leads to

gLp (�∓, q, q′) = −2i
β∓
qq′ FLp (−iβ∓,−iq</β∓)H−

Lp
(−iβ∓,−iq>/β∓), (A10)

with H−
Lp

= GLp − iFLp . Finally, Eq. (A10) can be computed numerically by using the COULCC subroutine detailed in [47].

APPENDIX B: PARTIAL WAVE EXPANSION OF THE T -MATRIX ELEMENTS

The equivalent of Eq. (A6) for antihydrogen H̄ is given by

K±
nhLh

(s) =
∫
R+

ds′s′3gLh (�∓, s, s′)Rnhlh (s′), (B1)

where |lh − 1| � Lh � lh + 1 and �∓ ≡ εnh ∓ ω0. Using the standard plane-wave expansion [48] and the analytical develop-
ments of Appendix A, Eqs. (26)–(29) can be computed using the expressions

T j
pmpmh

(kβ ) = (π
√

π )−1(l̂pl̂h)1/2
∑

l f

Y
mp−mh

l f
(k̂β )

∑
(l )lc

ili+l ′i −l f −lc t
pmpmh

j(l )lcl f
, (B2)

t
pmpmh

1(l )lcl f
=

lp∑
λ=0

(l̂p!)1/2(−1)lpAmpmh

(l )λlcl f
(lp, lh)Rp

1(l )λlcl f
(lp, lh), (B3)

t
pmpmh

2(l )lcl f
= i

2
E0

∑
Lp

L̂p(L̂p!)1/2(−1)Lp+mp

(
1 lp Lp

0 0 0

)(
1 lp Lp

0 mp −mp

) Lp∑
λ=0

Ampmh

(l )λlcl f
(Lp, lh)Rp

2(l )λlcl f
(Lp, lh), (B4)

t
pmpmh

3(l )lcl f
= i

2
E0

∑
Lh

L̂h(l̂p!)1/2(−1)lp+mh

(
1 lh Lh

0 0 0

)(
1 lh Lh

0 mh −mh

) lp∑
λ=0

Ampmh

(l )λlcl f
(lp,Lh)Rp

3(l )λlcl f
(lp,Lh). (B5)

In the above expressions, (l ) ≡ (l, li, l ′
i ).

Coefficients are derived from the integration over the radial coordinates

Rp
j(l )λlcl f

(lα, lβ ) =
∫
R2+

dr ds rlα−λ+2sλ+2 jli (vr) jl f (kβr) jl ′i (vs)Lp
jllc

(r, s; lα, lβ ), (B6)

Lp
1llc

(r, s; lp, lh) = Jp(|αl |) jlc (pκr)J l
nplp

(r, s)Rnhlh (s), (B7)

J l
nplp

(r, s) = 1

2

(
1

r
− 1

s

)∫ 1

−1
dξ q−lpRnplp (q)Pl (ξ ), (B8)

Lp
2llc

(r, s;Lp, lh) = Jp+1(|αl |) jlc [(p + 1)κr]J l,−
npLp

(r, s)Rnhlh (s) − (p + 1,−) → (p − 1,+), (B9)

Lp
3llc

(r, s; lp,Lh) = Jp−1(|αl |) jlc [(p − 1)κr]J l
nplp

(r, s)K−∗
nhLh

(s) − (p − 1,−) → (p + 1,+). (B10)

It should be noted that the rating (p + 1,−) → (p − 1,+) refers to the substitution of the integer p + 1 and the index − by the
integer p − 1 and the index +.

Common coefficients are derived from the integration over the angular coordinates

Ampmh

(l )λlcl f
(lα, lβ ) = (−)λ l̂ l̂i l̂ ′

i l̂c l̂1/2
f

{(2λ)![2(lα − λ)]!}1/2

∑
(χ )

χ̂ χ̂ ′χ̂c

(
l f lα − λ χ

0 0 0

)(
lc l χc

0 0 0

)(
li χ χc

0 0 0

)(
lβ λ χ ′
0 0 0

)

×
(

l ′
i l χ ′
0 0 0

)∑
μ

(
lα − λ λ lα

mp − μ μ −mp

)(
l f lα − λ χ

mh − mp mp − μ μ − mh

)(
lc l χc

0 μ − mh mh − μ

)

×
(

li χ χc

0 mh − μ μ − mh

)(
lβ λ χ ′

−mh μ mh − μ

)(
l ′
i l χ ′
0 mh − μ μ − mh

)
. (B11)

Here (χ ) ≡ (χ, χ ′, χc). Using the symmetry properties of the 3 j coefficients, we have σmpmh = σ−mp−mh . This implies that only
the evaluation of the terms with (mp � 0 ∩ mh � 0) ∪ (mp > 0 ∩ mh < 0) are necessary to obtain the total cross section given
in Eq. (31). Note that the upper bounds of three angular moments must be imposed. Arbitrarily, we choose to fix sup l , sup l f ,
and sup lc.
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