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Electric-dipole transition amplitudes for atoms and ions with one valence electron
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Motivated by recent measurements for several alkali-metal atoms and alkali-metal-like ions, we perform a
detailed study of electric dipole (E1) transition amplitudes in K, Ca+, Rb, Sr+, Cs, Ba+, Fr, and Ra+, which
are of interest for studies of atomic parity violation, electric dipole moments, and polarizabilities. Using the all-
orders correlation potential method, we perform high-precision calculations of E1 transition amplitudes between
low-lying s, p, and d states. We perform a robust error analysis, and compare our calculations to many amplitudes
for which there are high-precision experimental determinations. We find excellent agreement, with deviations at
the level of ∼0.1%. We also compare our results to other theoretical evaluations, and discuss the implications for
uncertainty analyses. Further, combining calculations of branching ratios with recent measurements, we extract
high-precision values for several E1 amplitudes of Ca+, Sr+, Cs, Fr, and Ra+.
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I. INTRODUCTION

Recent advances in experimental and theoretical tech-
niques have created a new era of unprecedented precision
in the study of atomic phenomena. Atomic physics plays an
ever-growing role in fundamental physics studies, including
through atomic parity violation and searches for permanent
electric dipole moments [1,2], as well as for tests of the
CPT theorem and Lorentz symmetry, searches for variation of
fundamental constants, and detection of dark matter and dark
energy [3].

This paper is partly motivated by recent high-precision
measurements of alkalilike atoms and ions, including life-
times for Cs [4,5] and Ra+ [6], and spectroscopic measure-
ments for Rb [7], Cs [8–12], Ca+ [13,14], Ba+ [15–17], and
Ra+ [18–20]. There are recent proposals and experimental
advances towards developing optical atomic clocks in, e.g.,
Ca+ [21], Rb [22–25], Sr+ [26], Cs [27], and Ra+ [28,29].
There has been recent progress towards a new measurement of
atomic parity violation (APV) in Cs [11,30–35], and there is
ongoing work towards APV experiments in Fr [36–39], Ra+
[18,40–42], and Ba+ [43,44]. It is important that new APV
measurements be performed to check and improve upon the
current most-precise Cs measurement [45].

There have also been improvements in theoretical meth-
ods, including the complete inclusion of triple excitations into
coupled-cluster calculations [46–51], and new techniques for
computing APV amplitudes [52]. Further, our recent study of
quantum electrodynamics (QED) corrections to electric dipole
(E1) amplitudes demonstrated that in several cases the QED
correction is larger than the discrepancy between theory and
experiment [53].

Calculations of E1 matrix elements are required to inter-
pret APV measurements, both through a direct calculation of
the APV amplitude [51,52,54–60], and for the determination
of transition polarizabilities required to extract the nuclear

*b.roberts@uq.edu.au

weak charge [61]. Currently, atomic theory is the limiting
factor in studies of APV [2]. Further, there is a 2.8 σ tension in
the Cs 6s-7s vector transition polarizability value derived via
two methods [11,62–64], both of which require atomic theory
input.

Accurate E1 amplitudes are also important in many other
areas, including searches for new physics in other precision
experiments [3], astrophysical analyses [65,66], and studies
of polarizabilities [67] (which in turn are important for the de-
velopment of atomic clocks [68], studies of long-range atomic
interactions [69], and quantum information [70]). Moreover,
E1 amplitudes provide a benchmark for testing atomic theory.
Comparisons between theory and experiment probe the accu-
racy of wave functions at large distances from the nucleus,
complementary to hyperfine comparisons, which probe the
accuracy at small distances [71–73].

In this work, we perform high-precision calculations of E1
amplitudes between s, p, and d states of the alkali-metal atoms
potassium, rubidium, cesium, and francium, and the alkalilike
singly ionized calcium, strontium, barium, and radium. We
compare our results to 46 amplitudes in these systems for
which there are high-precision experimental data available,
finding excellent agreement. The typical differences are at the
level of ∼0.1%; more than half of our calculated amplitudes
lie within experimental uncertainties. This sets a precedent for
state-of-the-art atomic theory. We use a robust method to de-
termine the theory uncertainties, and demonstrate statistically
that these are conservative: all but two amplitudes lie within
combined theory and experimental uncertainties, better than
statistically expected. We also compare our results to other
theoretical evaluations; there is good agreement among most
of the highest-precision calculations with a few exceptions
that will be discussed below.

II. THEORY

We employ an implementation of the all-orders correlation
potential method first introduced in Refs. [74,75]. We refer to
our implementation as atomic many-body perturbation theory
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FIG. 1. Goldstone diagrams for the second-order energy correc-
tion. Backward facing lines denote states in the core (holes) and
internal forward lines are virtual excited states.

in the screened Coulomb interaction (AMPSCI). We outline
the main aspects of the method here; details are presented
in the Appendix. Except where noted, we use atomic units
(h̄ = e = me = cα = 1) with the Gaussian system of electro-
magnetic units.

A. Correlation corrections

We consider N-electron atoms and ions that have a single
valence electron above a closed noble-gas-like core. A natural
starting point is the relativistic Hartree-Fock (RHF) model,
with the wave function for the valence electron found in the
frozen potential of the N − 1 core electrons. A nonlocal
energy-dependent operator, �, is added to the RHF equa-
tion for the valence state to account for the core-valence
correlations [76]:

(hHF + �)ψ (Br) = ε(Br)ψ (Br), (1)

where hHF is the single-particle RHF Hamiltonian. The result-
ing orbitals are known as Brueckner orbitals.

It is possible to calculate � to lowest (second) order in the
Coulomb interaction as in Fig. 1 (see, e.g., Ref. [77]), which
we refer to as �(2). For accurate calculations, correlations be-
yond second-order are required. We use the Feynman diagram
technique developed in Refs. [74,75], in which the dominating
correlations (screening of the Coulomb interaction by the core
electrons, shown in Fig. 2, and the hole-particle interaction,
shown in Fig. 3) are included to all orders. By solving the
Brueckner equation (1), a third set of diagrams (chaining of
the � operator, shown in Fig. 4) is also included to all orders
[76]. We refer to the all-orders correlation potential as �(∞).

B. Interaction with external fields

In the presence of an external field oscillating with fre-
quency ω, the atomic orbitals contain perturbations,

ψ → ψ + δψ = ψ + Xe−iωt + Yeiωt (2)

and ε → ε + δε(e−iωt + eiωt ). This leads to corrections to
matrix elements known as core polarization. To first order in
the external field, the corrections satisfy the time-dependent
Hartree-Fock (TDHF) equations [78]

(hHF − ε − ω)X = −(
t k
q + δV − δε

)
ψ

(hHF − ε + ω)Y = −(
t k†
q + δV † − δε

)
ψ, (3)

+ + + . . .

FIG. 2. Screening of the Coulomb interaction by polarization of
the core (using the Feynman technique).

+ + + . . .

FIG. 3. Hole-particle corrections to the polarization operator.

with δε = 〈ψ |t k
q + δV |ψ〉, where t k

q is the operator of the field
(with rank k and projection q), X and Y are generally not
states of definite angular momentum, and δV is the resulting
correction to the RHF potential:

δV = VHF({ψc + δψc}) − VHF({ψc}). (4)

The set of TDHF equations (3) and (4) are solved self-
consistently for the core; thereby, core polarization is included
to all orders in the Coulomb interaction. Matrix elements in-
cluding core polarization are then calculated as 〈w|t k

q + δV |v〉
[78]. The TDHF method is equivalent to the diagrammatic
random phase approximation with exchange (RPA), see, e.g.,
Ref. [79], though the TDHF method is typically more nu-
merically stable, does not require a basis, and automatically
includes contributions from negative energy states. In the
present case, the external field is that driving the E1 transi-
tion, ω is the transition frequency, t k = d = −er (k = 1), and
δε = 0.

C. Non-Brueckner correlations

By calculating matrix elements as described above, the
most important correlation and core-polarization effects are
included. However, there are other many-body corrections
that cannot be incorporated in that way. The most important
of these are structure radiation (SR), which arises from the
perturbation of the correlation potential by the external field as
shown in Fig. 5, and normalization of states (NS), which arises
due to the change of the normalization of the many-body
wave function [80,81]. These corrections enter at roughly
the same level (�1%) and tend to cancel. Nevertheless, for
high-precision calculations they must be included.

Expressions for SR were presented, e.g., in Ref. [82]:

δtSR
wv =

∑
ar

tar

[
T k

wrva

εr − εa + ω
+ (−1) jv− jw T k

vrwa

εr − εa − ω

]
−

∑
ab

tbaC
k
wavb −

∑
rn

trnDk
wnvr, (5)

where ti j ≡ 〈i||t k|| j〉, a, b, . . . are core states, n, m, . . . are ex-
cited states, and v, w are valence states. Full expressions for
T k , Ck , and Dk are given in Appendix C. The NS contribution
may be expressed as [80]

δtNorm
wv = −twv

2
[〈w|∂�/∂ε|w〉 + 〈v|∂�/∂ε|v〉]. (6)

In the lowest (third) order, the derivatives are determined
analytically from the diagrams in Fig. 1. The sums over in-
termediate states are performed using the dual-kinetic-balance
B-spline basis as introduced in Ref. [83], which offers a high

Σ + Σ Σ + . . .

FIG. 4. Example � chaining diagrams.
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v w
Σ

v w
Σ

v w
Σ

FIG. 5. Example correlation corrections to matrix elements: � is
the correlation potential, and the dashed line is an external field. The
first two diagrams are included via the use of Brueckner orbitals for
the valence states; the third diagram, structure radiation, is calculated
separately.

level of convergence and stability (see also Refs. [84,85]).
We used 40 splines of order 7 in a cavity of 40 a0 for the
neutral atoms and 30 a0 for the ions. We have checked that
basis truncation errors are negligible at the level of the claimed
uncertainties.

D. Radiative QED corrections

For high-precision calculations it is important to include
radiative QED corrections due to vacuum polarization and
electron self-energy. As demonstrated in Ref. [53], the QED
effects can be pivotal for accurate calculations of E1 matrix
elements in alkali atoms.

These may be incorporated using the radiative potential
method [86], in which an effective potential is added to
the Hamiltonian. This is written as the sum of the Uehling
(vacuum polarization), high- and low-frequency electric self-
energy, and magnetic self-energy potentials:

Vrad(r) = VUeh(r) + Vh(r) + Vl (r) + i(γ · n)Vm(r). (7)

Full expressions, including finite-nuclear-size effects, are
given in Ref. [87]. An approximate form of the Wichmann-
Kroll potential (higher-order vacuum polarization [88]) may
also be added as in Ref. [86], though is entirely negligible.
Including Vrad into the RHF equations gives an important cor-
rection known as core relaxation, which dominates for states
with l > 0 [53,87,89].

Using this method, QED radiative corrections can be in-
cluded into atomic wave functions, and thereby into matrix
elements [53,86,90]. There are also QED contributions arising
from corrections to the external field operator, e.g., vertex
corrections (similar to Fig. 5, with � replaced by the radiative
potential), which we do not include. The self-energy vertex
corrections for E1 amplitudes were estimated to be small in
Ref. [86]; this was confirmed in Ref. [53] by comparing with
rigorous QED [91] in simple atomic potentials. While the
QED corrections to E1 matrix elements may be calculated
accurately using the radiative potential method, this is not the
case in general (e.g., for hyperfine structure or APV matrix
elements), see discussion in Refs. [60,90].

E. Breit interaction

The lowest-order relativistic correction to the electron-
electron Coulomb interaction can be described by the Breit
Hamiltonian (see, e.g., Ref. [92]). It enters as a correction to
the electron Coulomb term in the many-body Hamiltonian:
r−1

i j → r−1
i j + hB

i j , where ri j = |ri − r j |. In the limit of zero
frequency, it may be expressed as

hB
i j = −αi · α j + (αi · ni j )(α j · ni j )

2 ri j
, (8)

TABLE I. Breit corrections to E1 reduced matrix elements and
ionization energies for the lowest states of Cs as calculated in this
work, and comparison with Porsev et al. [48].

E1(ea0) Energy (cm−1)

6s-6p1/2 6s-7p1/2 7s-6p1/2 6s 7s1/2 6p1/2 7p1/2

AMPSCI −0.0008 0.0017 0.0046 2.8 0.0 −7.4 −2.3
Ref. [48] −0.0010 0.0019 0.0049 2.6 0.3 −7.1 −2.5

with ni j=(ri − r j )/ri j . (Frequency-dependent effects can be
neglected in most situations, however, they may become
important for highly charged ions [93].) This leads to a cor-
rection to the RHF potential: VHF → VHF + VB. Including this
into the RHF and TDHF equations allows for the inclusion of
Breit effects into the calculations of atomic energies and wave
functions [94].

As demonstrated in Refs. [94,95], including Breit in
conjunction with correlations is very important. Our Breit
corrections to the Cs energies and E1 matrix elements agree
very well with those presented in Refs. [48,94], as shown in
Table I. Breit corrections to E1 amplitudes for the Ba+ ion
can also be deduced from the calculations in Ref. [50]; these
agree precisely with ours.

F. Contribution from higher-order correlations

In Table II, we present ab initio calculations of ionization
energies for the lowest states of Cs. This shows excellent
agreement with experiment, particularly for s and p states.
The relatively worse agreement for the d states is discussed
below. A similar level of agreement is found for the other
systems.

Finally, we seek to estimate the impact of missed corre-
lation effects. This is achieved by introducing semiempirical
scaling factors into the correlation potential in Eq. (1), � →
λ�, which are tuned to reproduce the experimental energies.
The factors are extremely close to 1, due to the excellent
accuracy of the ab initio results. For example, the factors for
the Cs 6s and 6p1/2 states are λ6s � 1.003 and λ6p1/2 � 0.995.
They differ more for d states, though are still very close to
1, λ5d � 0.94. The effect of the scaling on matrix elements is
small, though does lead to an improvement in the accuracy,
see Table III. We use this shift to gauge one of the main

TABLE II. Ab initio calculations of ionization energies (cm−1)
for the lowest states of Cs, showing the breakdown of contributions;
� shows the deviation from experiment [96].

Level RHF δ� (2) δ� (∞) Breit QED Final Expt. �(%)

6s1/2 27954 4458 −998 2.8 −21.5 31395 31406 −0.04%
6p1/2 18791 1747 −294 −7.4 1.1 20236 20228 0.04%
6p3/2 18389 1550 −258 −0.7 0.1 19680 19674 0.03%
5d3/2 14138 3424 −458 25.8 5.6 17136 16907 1.4%
5d5/2 14163 3240 −402 30.3 4.7 17035 16810 1.3%
7s1/2 12112 957 −208 0.0 −5.0 12856 12871 −0.1%
7p1/2 9223 506 −81 −2.6 0.4 9645 9641 0.04%
7p3/2 9079 458 −74 −0.4 0.0 9463 9460 0.03%
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TABLE III. Example comparison of lowest Cs E1 reduced ma-
trix elements across various approximations (RPA, Breit, QED, SR,
and NS contributions are included) Units: ea0.

|E1| � (2) λ� (2) � (∞) λ� (∞) Expt. [8,11]

|〈6s||d||6p1/2〉| 4.383 4.496 4.507 4.505 4.5057(16)
|〈6s||d||6p3/2〉| 6.164 6.327 6.343 6.340 6.3398(22)
|〈6s||d||7p1/2〉| 0.304 0.282 0.273 0.278 0.27810(45)
|〈6s||d||7p3/2〉| 0.610 0.580 0.570 0.574 0.57417(57)

sources of uncertainty in the calculations as described below.
Importantly, the assigned uncertainty is always larger than the
semiempirical correction.

The most important correlations that are included in
coupled-cluster-type calculations, but not in the current ver-
sion of our method, are ladder diagrams [108]. Such diagrams
are suppressed by an extra energy denominator corresponding
to excitation from the core. They can be important in some
cases, e.g., d states, and become appreciable for moderately-
charged ions [109]. In Ref. [108], it was demonstrated that
the ladder diagrams lead to a dramatic improvement in d-state
energies, while not negatively impacting s or p energies. The
ladder diagram calculations are computationally intensive,
and we do not include them in this work. They are expected to
contribute negligibly to E1 amplitudes, and most of this can
be accounted for via the scaling. A full inclusion of the ladder
diagrams into the AMPSCI correlation potential method and the
subsequent affect on matrix elements will be considered in a
coming work [110].

G. Uncertainty estimate

The dominant source of uncertainty in our calculations
comes from the omission of certain correlation corrections,
e.g., ladder diagrams. We can estimate the impact of this by
comparing the results calculated at different approximations.
To estimate the uncertainty due to missed Brueckner-type
correlation effects, we first take an error term equal to the
semiempirical scaling correction (δλ in the tables). This cor-
rection stems from rescaling the correlation potential, and
as such, is mainly sensitive to correlation errors that are
proportional to the correlation potential, �. To account for
errors which are not linear in �, we also add half the dif-
ference between scaled second-order and scaled all-orders
(λ�(∞) − λ�(2)) results (see Table III). For the considered
ions, where higher-order correlations are expected to be more
important compared to neutral atoms, we instead take the full
(λ�(∞) − λ�(2)) difference on top of the δλ contribution.

There are also the non-Brueckner correlation effects, SR
and NS. Based on the spread of these values between various
levels of approximation, we estimate the uncertainty stem-
ming from this contribution to be approximately 30%. We
further add a conservative uncertainty of 50% of the Breit
contribution (Breit contributes negligibly to most E1 ampli-
tudes, though is more important for the considered ions, and
for transitions involving d states). Based on the results of
our recent work [53], we take the uncertainty in the QED
correction to be 25%. The final theory uncertainty is then
taken as the sum in quadrature of all the above.

It is possible to calculate ratios between fine-structure pairs
of matrix elements with very high precision. Such ratios differ
from exact angular constants only due to relativistic effects,
and depend weakly on correlations. Theoretical ratios may
be combined with experimental data to extract values for E1
matrix elements with high precision. The uncertainty in these
ratios is dominated by SR and we conservatively add 100%
of the combined SR+NS contribution on top of the above
estimate.

The appropriateness of our method for determining the
theory uncertainties is demonstrated by comparing with ex-
isting experimental results. As shown below, the comparison
is better than expected, indicating our uncertainties are con-
servative. This gives us confidence in our calculations and
uncertainties for the transitions where high-precision exper-
iment is not yet available.

III. RESULTS AND COMPARISON

We performed high-precision calculations for E1 transi-
tions between the low-lying s, p, and d states of K, Ca+
Rb, Sr+, Cs, Ba+, Fr, and Ra+. We find overall excellent
agreement between our calculations and experiment, with
typical deviations at the 0.1% level. The most extensive ex-
perimental data available is for Cs. In Table IV we present
the full breakdown of contributions to the theoretical calcula-
tions for the Cs transitions, and comparison with experiment.
Complete tables of the results for the other systems are
presented in Appendix A. We present calculated ratios for
several Cs transitions in Table V, along with experimental
values for comparison. The agreement with experiment is
excellent.

We discuss the comparisons with experiment and other
theory for a few instructive cases in the following sections. To
aid in the comparison between results, we present plots of our
calculations alongside known experimental values and other
theory results. We only plot those transitions for which there
is sufficient other theory or experimental results to compare.
In the figures, we refer to the method used for the theoretical
calculations: CCSD is the coupled-cluster approach including
single and double excitations (see, e.g., Ref. [124]); CCSDpT
is as above with certain valence triple excitations included
perturbatively [106,125,126]; CCSDvT is with valence triple
excitations fully included in the CC formulation [46]; CCSDT
is with both valence and core triples included [49]; PTSCI is
the perturbation theory in the screened Coulomb interaction
(correlation potential method) [74,75]; and AMPSCI refers to
our implementation of the PTSCI method as described in the
theory section.

1. Calcium ion

For Ca+, our calculations are in excellent agreement with
experiment, and with the calculations of Ref. [115], as shown
in Fig. 6. However, there is strong tension between our re-
sults and those of Refs. [114,116]. The 4s − 4p3/2 result of
Ref. [114] disagrees with experiment at the 5 σ level, and the
4s − 4p j and 4s − 4p3/2 results of Ref. [116] disagree at the
3 σ and 5 σ levels, respectively.
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TABLE IV. Calculations of reduced matrix elements (absolute values) between the lowest few states of Cs, and comparison with experiment
(units: ea0). Here, δV is the core polarization (RPA) correction, � is the all-orders (Brueckner) correlation correction, SR+N is the combined
structure radiation and normalization correction, δλ is the scaling correction, and � is the deviation from experiment († means theory value
lies within experimental uncertainty).

|〈−||d||+〉| RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

6p1/2−6s 5.2777 −0.3030 −0.4634 −0.0008 0.0034 −0.0073 −0.0015 4.5052(54) 4.5057(16) [11]a −0.01%†

6p3/2−6s 7.4264 −0.4128 −0.6641 −0.0009 0.0051 −0.0112 −0.0023 6.3402(79) 6.3398(22) [11]a 0.01%†

7p1/2−6s 0.3717 −0.1335 0.0170 0.0017 −0.0023 0.0188 0.0043 0.2776(75) 0.27810(45) [8] −0.2%
7p3/2−6s 0.6947 −0.1864 0.0396 0.0002 −0.0026 0.0243 0.0044 0.5741(89) 0.57417(57) [8] −0.01%†

6p1/2−7s 4.4131 0.0368 −0.1946 0.0046 −0.0044 −0.0313 0.0147 4.239(18) 4.249(4) [10] −0.2%
6p3/2−7s 6.6710 0.0420 −0.2112 0.0012 −0.0054 −0.0427 0.0191 6.474(23) 6.489(5) [10] −0.2%
7p1/2−7s 11.0089 −0.0877 −0.5904 −0.0023 0.0070 −0.0166 −0.0223 10.297(23) 10.308(15)b −0.1%†

10.325(5)c −0.3%
7p3/2−7s 15.3448 −0.1172 −0.8790 −0.0005 0.0101 −0.0227 −0.0320 14.303(33) 14.320(20)b −0.1%†

14.344(7)c −0.3%
6p1/2−5d3/2 8.9783 −0.3397 −1.6856 −0.0107 −0.0029 −0.0287 0.0939 7.01(10) 7.06(1)e(4)t

d −0.7%
6p3/2−5d3/2 4.0625 −0.1465 −0.7838 −0.0054 −0.0014 −0.0129 0.0449 3.157(45) 3.18(1)e(2)t

d −0.8%
7p1/2−5d3/2 4.0395 0.1075 −2.2035 −0.0185 −0.0036 −0.0427 0.1467 2.03(15) 2.033(5) [9] −0.1%
7p3/2−5d3/2 1.6880 0.0478 −0.9741 −0.0068 −0.0017 −0.0182 0.0638 0.799(64) 0.799(5)d −0.01%†

0.795(4)d 0.5%†

6p3/2−5d5/2 12.1864 −0.4350 −2.2430 −0.0201 −0.0034 −0.0401 0.1319 9.58(13) 9.650(18) [5] −0.7%
7p3/2−5d5/2 5.0246 0.1407 −2.7820 −0.0253 −0.0045 −0.0528 0.1941 2.49(20) 2.493(15)d −0.01%†

2.481(11)d 0.4%†

aAverage of Refs. [97–105];
bTh.+Expt. [106,107];
cTh.+Expt. [11,107];
dTh.+Expt. (this work, see text).

As discussed above, we may combine theoretical ratios
with experimental data to extract experimental values for
dipole amplitudes. We calculate the ratio

|〈4p1/2||d||3d3/2〉|
|〈4p3/2||d||3d3/2〉| = 2.2404(3). (9)

Combining this with the experimental 4p3/2 − 3d3/2 value of
1.092(2) ea0 [111–113], we extract:

|〈4p1/2||d||3d3/2〉| = 2.447(4) ea0, (10)

where the uncertainty is dominated by experiment.

TABLE V. Ratios of reduced E1 matrix elements between the
lowest few fine-structure pairs of Cs as calculated in this work, and
comparison with experiment.

E1 Ratio: |A/B|
A B Theory Expt.

6s−6p3/2 6s−6p1/2 1.40733(22) 1.4074(3) [99]
6s−7p3/2 6s−7p1/2 2.070(35) 2.0646(26) [8]
7s−6p3/2 7s−6p1/2 1.5273(15) 1.5272(17) [10]
7s−7p3/2 7s−7p1/2 1.38913(17)
5d3/2−6p1/2 5d3/2−6p3/2 2.2184(18)
5d3/2−7p1/2 5d3/2−7p3/2 2.535(20)
6p3/2−5d5/2 6p3/2−5d3/2 3.0330(16)
7p3/2−5d5/2 7p3/2−5d3/2 3.1222(92)

2. Rubidium

For the Rb transitions we find excellent agreement with ex-
periment, and good agreement with most other high-precision
calculations, see Fig. 7. For the 5s − 6p j transitions, our cal-
culations agree extremely well with the recent experimental
results of Harold et al. [118], and with the CCSDpT calcula-
tions also from Ref. [118]. However, we disagree significantly
with the CCSDpT results of Ref. [122], which also disagree
with experiment at the 9 σ level. The ratio of the lowest
s-p matrix elements was also measured recently with high
precision [117,129], and is in perfect agreement with our
calculation:

|〈5s||d||5p3/2〉|
|〈5s||d||5p1/2〉| =

{
1.41141(9) Theory

1.41144(1) Expt. [117,129].
(11)

3. Strontium ion

For Sr+, our calculations are in good agreement with
experiment and with previous theory calculations [116,130–
133]. The experimental amplitudes were determined in this
work by combining high-precision measurements of branch-
ing ratios from Ref. [134] with lifetime measurements from
Ref. [135]. The experimental error (∼1%) is dominated by
uncertainty in the lifetimes, and is larger than for the other
atoms considered here. We may, however, directly compare
our calculations to the high-precision experimental branching
fractions from Ref. [134], as shown in Table VI. The compar-
ison shows excellent agreement with theory, again indicating
that our theoretical uncertainties are conservative.
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FIG. 6. Reduced E1 matrix elements (absolute values, in units ea0) for Ca+ transitions. The shaded regions are experimental values with
1 σ uncertainties from Refs. [111–113] (the lighter shaded region is the value extracted from experiment [112] in this work, see text for details).
The red points are the AMPSCI calculations from this work, and the black points are other theory values: Sahoo 2009 [114], Safronova 2011
[115], and Kaur 2015 [116].

4. Cesium

The agreement for transitions involving the lowest s and
p states in Cs is particularly good, as shown in Fig. 8. There
is also very good agreement between theory calculations of
different groups. One of the differences between theory val-
ues is that between our results and those of Ref. [127] for
the 6s − 7pj transitions. As can be seen from Table IV, the
large structure radiation correction for these transitions has
the same sign and magnitude to account for the difference.
We also note that the apparent large difference is also due to
the smallness of the matrix element; the absolute difference is
small, �0.03 ea0.

A new measurement of the Cs 5d5/2 lifetime has been
reported by Pucher et al. [5], finding τ = 1353(5) ns. This
measurement is in disagreement with a much earlier measure-
ment of DiBerardino et al. [136], τ = 1281(9) ns. However,
it resolves tensions between experimental determinations of
Cs lifetimes and polarizabilities, as predicted by Safronova
et al. [138] (see detailed discussions in Refs. [5,138]). There
is a single E1 decay pathway for the 5d5/2 state, allowing
an unambiguous determination for the 5d5/2−5p3/2 matrix
element:

|〈5d5/2||d||5p3/2〉| = 9.650(18) ea0. (12)

This is in excellent agreement with our calculation, and that of
Safronova et al. [128,138], but is in strong disagreement with
the calculation of Sahoo [139] (at the 3 σ level). This is shown
in Fig. 9.

Lifetimes for the 7p1/2 and 7p3/2 states were deter-
mined recently by Toh et al. [9], finding 165.21(29) ns and
137.54(16) ns, respectively. Combining the 7p1/2 lifetime
with known E1 matrix elements, the authors determined the
E1 matrix element for the 7p1/2 − 5d3/2 transition with high
precision. The resulting value, 2.033(5) ea0, is in excellent
agreement with our calculations.

Since the 7p3/2 state has four E1 decay pathways (to 6s,
7s, 5d3/2, and 5d5/2), in order to determine the 7p3/2−5d j

matrix elements, one requires accurate determinations for the
6s−7p3/2 and 7s−7p3/2 matrix elements, and the ratio be-
tween the 7p3/2 − 5d j matrix elements. The 6s−7p3/2 matrix
element is known to high precision [8], though there is some
ambiguity for the 7s−7p3/2 case.

There are two values for each of the 7s−7p j matrix
elements, each determined from transition polarizabilities
measured in Ref. [107] in combination with the theo-
retical ratio of 7s−7p j matrix elements. The values for
7s−7p3/2 are 14.320(20) ea0 [106,111] and 14.344(7) ea0

[11], which disagree at the 1 σ level, despite being derived

FIG. 7. Rb transitions (in units ea0). Experimental values are from Leonard 2015 [111,117] and Herold 2012 [118]; other theory values
are from Safronova 1999 [106], Pal 2007 [119], Safronova 2011 [120], Arora, Safronova, Clark 2011 [118,121], Arora, Sahoo 2012 [122], and
Dzuba 2012 [123].

052812-6



ELECTRIC-DIPOLE TRANSITION AMPLITUDES FOR … PHYSICAL REVIEW A 107, 052812 (2023)

TABLE VI. Branching fractions for decays from the Sr+ 5p
states, and comparison with experiment. The notation used in
Ref. [134] is repeated here for convenience.

Upper Lower Label [134] Theory Expt. [134]

5p1/2 5s p 0.94496(60) 0.94498(8)
5d3/2 1 − p 0.05504(60) 0.05502(8)

5p3/2 5s q 0.94065(8) 0.9406(2)
5d3/2 r 0.00630(15) 0.0063(3)
5d5/2 s = 1 − q − r 0.05305(12) 0.0531(2)

from the same experiment [107] (and similar for 7s−7p1/2).
The former agrees more closely with theoretical predictions
[48,51,56,106,127,128], though the latter has smaller un-
certainty. We also note that the lifetime measurement for
7p3/2 state [9] appears to favor a smaller magnitude for the
7s−7p j matrix elements. Due to this ambiguity, we do not
include these matrix elements in our uncertainty analysis. The
7s−7p1/2 matrix element is very important for calculations of
atomic parity violation (see, e.g., Ref. [56]), so this warrants
further study.

Combining the above matrix elements with the ratio from
Table V allows us to extract high-precision values for the
7p3/2−5d j matrix elements. Using the more precise 7s−7p3/2

value [14.344(7) ea0 [11]], we extract

|〈5d3/2||d||7p3/2〉| = 0.795(4) ea0, (13)

|〈5d5/2||d||7p3/2〉| = 2.481(11) ea0. (14)

[The other value leads to 0.799(5) and 2.493(15), respec-
tively.] The uncertainties are dominated by experiment.

We may also use our calculated ratios along with the above-
determined 5p3/2−5d5/2 matrix element to determine the two
6p j−5d3/2 matrix elements:

|〈5d3/2||d||6p1/2〉| = 7.06(1)ex(4)th ea0, (15)

|〈5d3/2||d||6p3/2〉| = 3.182(6)ex(17)th ea0. (16)

Unlike in the previous case, this uncertainty is dominated by
theory (from the ratios in Table V), though it is smaller than
for the direct calculations. These are in disagreement with

those derived from the lifetime measurements of Ref. [136],
however, are consistent with polarizabilities [128,138], and
agree well with our calculations and those of Safronova et al.
Ref. [128] (see Fig. 9).

It is worth remarking that in several cases newer more pre-
cise experiments have indicated better agreement with theory
than was previously determined. For example, consider the
following quote from Dzuba et al. [127]: “The 5d-6p [E1
matrix elements] for Cs have poor accuracy, deviating from
experiment by about 4%. This is indicative of the poor calcu-
lation of d states;” in fact, the 5d3/2−6p3/2 calculation from
Ref. [127] agrees very well with the new experimental value
[5], deviating by just 0.6%. This has important implications
for the assumed accuracy of subsequent atomic calculations.

5. Barium ion

There are very precise recent experimental data avail-
able for several Ba+ transitions. With the exception of the
6s−6p3/2 transition (discussed below), our calculations agree
exceptionally well with experiment, as shown in Fig. 10.
There is also fair agreement among the results of most other
calculations, though the spread in values is larger than for
Cs. Detailed calculations were performed for Ba+ recently in
Ref. [50], where particular attention was paid to the role of
triple excitations. Those calculations are in good agreement
with ours, though our calculations lie closer to the experi-
mental values. Our calculations are in significant tension with
those of Ref. [144]. Note that the 6s−6p1/2 calculation of
Ref. [144] agreed precisely with the midpoint of the best
experimental value that was available at the time of the cal-
culation [147,148], but disagrees (by 3.4 σ ) with the more
accurate subsequent measurement of Ref. [140].

For the 6s−6p3/2, our calculation disagrees with experi-
ment at the 2 σ level, the largest disagreement for all our
calculations. Even here, the absolute agreement is very good
– the midpoints of the theory and experiment differ by only
0.01 ea0 (or 0.3%), however, both the experimental and esti-
mated theory uncertainties are small.

We also calculate the ratio of the 6s−6p j matrix elements,
and find a 2 σ tension with experiment:

|〈6s||d||6p3/2〉|
|〈6s||d||6p1/2〉| =

{
1.4116(2) Theory

1.4140(12) Expt. [140].
(17)

FIG. 8. Cs 6s transitions (in units ea0). Experimental values are from Toh 2019 [11] and Damitz 2019 [8]; theory values are from Safronova
1999 [106], Dzuba 2001 [56,127], Porsev 2010 [48], Safronova 2016 [128], and Sahoo 2021 [51].
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FIG. 9. Cs 5d transitions (in units ea0). Experimental values are from DiBerardino 1998 [136], and Pucher 2020 [5]; other theory values
are from Dzuba 2001 [127,137], Safronova 2004 [138], Sahoo 2016 [139], and Safronova 2016 [128]. The Expt+Th values were determined
in this work (see text). The experimental results from Ref. [136] (shown in gray) are inconsistent with measurements of polarizabilities (see
text and Refs. [5,138]). The calculations of Ref. [139] agrees almost exactly with the previous experiment [136], though disagrees (by 2.8 σ )
with more accurate subsequent measurements [5].

Since the theory accuracy is expected to be high this is an
important discrepancy, as noted previously [141]. Ratios de-
rived from other high-precision theory, 1.412 [127], 1.4109(2)
[141,143], 1.411 [133], and 1.412 [50], also disagree with the
measured value, though are in agreement with our calculation.
This may indicate that the experimental uncertainties for the
6s−6p j transitions have been underestimated. (The ratio 1.40
from Ref. [142] disagrees both with experiment and other
theory.)

6. Francium

For Fr, there is good agreement between most theory re-
sults and experiment, as shown in Fig. 11. However, there
are a few significant outliers, and limited experimental data.
There is tension between our calculations and those of
Refs. [152,153] for the 7s−7p3/2 and 7p − 6d transitions, sig-
nificantly larger disagreement than expected from the claimed
uncertainties. Although there is insufficient high-precision ex-
perimental data for Fr available to distinguish between the
theory results for the p-d transitions, based on the 7s−7p3/2

transition, as well as the p-d results in Cs [Fig. 9], Ba+
[Fig. 10], and Ra+ [Fig. 12], we expect our calculations are
most accurate.

Calculations of E1 ratios for Fr are presented in Table VII.
Combining these with the measured 8s lifetime, 53.3(4) ns
[158], we extract:

|〈8s||d||7p1/2〉| = 4.234(17)ex(10)th ea0, (18)

|〈8s||d||7p3/2〉| = 7.460(31)ex(12)th ea0, (19)

where the uncertainties are dominated by experiment. These
are in excellent agreement with our calculations.

7. Radium ion

The lifetime of the 7p3/2 state in Ra+ was measured very
recently [6], and found to be τ = 4.78(3) ns. By combining
this measurement with data for branching ratios and frequen-
cies from Refs. [19,20], the authors of Ref. [6] were able to
extract accurate determinations of the 7s−7p3/2, 6d3/2−7p3/2,

FIG. 10. Ba+ transitions (in units ea0). Experimental values are from Ref. [111] (Woods 2010 [140], Arnold 2019 [141], Zhang 2020 [17]);
theory values are from Dzuba 2001 [127], Sahoo 2006 [142], Iskrenova-Tchoukova 2008 [143], Sahoo 2009 [144], Kaur 2021 [133], Porsev
2021 [50]; Average 2009 is average of experiments [145–149] as quoted in Ref. [144].
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FIG. 11. Francium transitions (in units ea0). Experimental values are from Refs. [111,150]; other theory values are from Safronova 1999
[106], Dzuba 2001 [109,127], Safronova 2007 [151], Sahoo 2015 [152], Sahoo 2016 [153], Tang 2017 [154]. For the p-d transitions there is a
large spread in the theory values. Based on the p-d results in Cs, Ba+, and Ra+, we expect our calculations to be the most accurate.

and 6d5/2−7p3/2 E1 matrix elements. These determinations
are in excellent agreement with our calculations.

Our calculations are also in good agreement with most
previous high-precision calculations, shown in Figs. 12 and
13. The calculations of Ref. [155] differ substantially from
ours and from the experimental results. This may be due to the
relatively simple CCSD method used there, though the CCSD
values from Ref. [151] agree well. The CCSDpT results of
Ref. [144] disagree significantly with the other calculations
(including other CC calculations), and their result for the
7s−7p3/2 disagrees significantly with the experimental result
(by 2.3 σ ).

Finally, we also calculate ratios of E1 reduced matrix el-
ements between some of the lowest states of Ra+, shown in
Table VIII. The 7p3/2−6d j ratio was determined experimen-
tally in Ref. [19] (using wavelengths measured in Ref. [20]).
This only just agrees with the calculated ratio, with a 1 σ

deviation. Our calculated ratio agrees nearly perfectly with
another theory value of 3.189(10) (CCSDT), also presented in
Ref. [19]. We can combine our calculated ratio with the 7p3/2

matrix elements from Ref. [6] to extract accurate values for
the 7s1/2−7p1/2 and 6d3/2−7p1/2 matrix elements. We find:

|〈7s1/2||d||7p1/2〉| = 3.229(9)ex(1)th ea0, (20)

|〈6d3/2||d||7p1/2〉| = 3.564(26)ex(7)th ea0, (21)

where the uncertainties are dominated by experiment.

IV. DISCUSSION

Of the 46 E1 transitions we consider here that have un-
ambiguous high-precision measurements, only two of our
theoretical values lie outside the 1 σ deviation from experi-
ment (combining theory and experimental uncertainties). This
is much better than statistically expected, indicating that our
theory uncertainties are conservative.

The biggest discrepancy occurs for the 6s−6p3/2 transition
in Ba+, which deviates by 2 σ (Fig. 10). A single 2 σ dis-
agreement in 46 cases is about what is statistically expected.
Note that the absolute agreement here is still very good: the
midpoints differ by only 0.01 ea0, though the claimed un-
certainties are even smaller. We also note that a surprising
disagreement between theory and experiment for the ratio of
amplitudes in Ba+ [Eq. (17)] may indicate the experimental
uncertainties have been underestimated, as discussed above.
The other discrepancy occurs for the 7s−7p1/2 transition in Fr,
which disagrees by 1.3 σ (Fig. 11). The absolute disagreement
is small here also, at just 0.01 ea0.

FIG. 12. Ra+ 7p3/2 transitions (in units ea0). Experimental values are from Ref. [6]; other theory values are from Dzuba 2001 [109,127],
Safronova 2007 [151], Wansbeek 2008 [155], Pal 2009 [156], Sahoo 2009 [144], Fan 2019 [19], and Li 2021 [157]. Overall, there is good
agreement between results, except for those from Refs. [144,155,157].
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FIG. 13. Ra+ 7p1/2 transitions (in units ea0). The light shaded
regions show the values extracted in this work from experiment [6].
Other theory values are from Dzuba 2001 [127], Safronova 2007
[151], Wansbeek 2008 [155], Pal 2009 [156], Sahoo 2009 [144], Li
2021 [157], and Porsev 2021 [111,159].

While within the uncertainties, the largest relative differ-
ence between the theory and experimental midpoints occurs
for the 6d3/2−7p3/2 transition in Ra+ (0.8%, Fig. 12). This
is due to the smallness of the matrix element, the absolute
difference is only 0.01 ea0.

Overall, we find excellent agreement between our calcula-
tions and those based on the CC method, provided that triple
excitations are included in those calculations. There are a few
notable exceptions as discussed above. One observation is that
there is sometimes a large spread in results calculated using
CC methods (e.g., see Figs. 6, 9, 10). This may be due to the
sensitivity of the method to basis choices and to the details
of including triple excitations. Further, recent high-precision
measurements have demonstrated that, in a few cases, cal-
culations based on the CC method have significantly lower
accuracy than originally claimed (e.g., see Figs. 6, 7, 9, 10,
12). This highlights the need for a robust and reliable method
for determining theoretical uncertainties.

In other cases, however, the agreement with recent ex-
periment is found to be substantially better than originally
expected. For example, our calculations and the CCSDT cal-
culations of Refs. [19,159] for Ra+ were performed before
the measurements of Ref. [6], and agree exceptionally well,
see Fig. 12. Also, the accuracy of the PTSCI calculations
of Ref. [127] were found to be much better than originally
claimed, particularly for transitions involving d states (e.g.,
see Figs. 9, 10, 12).

TABLE VII. Ratios of reduced E1 matrix elements between the
lowest few states of Fr.

E1 Ratio: |A/B|
A B Theory Expt.

7s−7p3/2 7s−7p1/2 1.3770(7) 1.379(4) [150]
8s−7p3/2 8s−7p1/2 1.762(7)
6d3/2−7p1/2 6d3/2−7p3/2 2.174(2)
7p3/2−6d5/2 7p3/2−6d3/2 3.072(3)

TABLE VIII. Ratios of reduced E1 matrix elements between the
lowest few states of Ra+.

E1 Ratio: |A/B|
A B Theory Expt.

7s−7p3/2 7s−7p1/2 1.3885(2)
8s−7p3/2 8s−7p1/2 1.843(9)
6d3/2−7p1/2 6d3/2−7p3/2 2.356(4)
7p3/2−6d5/2 7p3/2−6d3/2 3.190(10) 3.164(21) [19]

V. CONCLUSION

We performed all-orders many-body calculations of E1
transition amplitudes between low-lying s, p, and d states
of K, Ca+, Rb, Sr+, Cs, Ba+, Fr, and Ra+, using the cor-
relation potential method. We compared our results with
available high-precision experimental data, and find excellent
agreement, with typical deviations at the level of ∼0.1% (or
∼0.001 ea0 – 0.01 ea0). Over half of our calculated ampli-
tudes lie within experimental uncertainties, demonstrating the
accuracy of the method. As well as its accuracy, a major
benefit of this approach is the efficiency; the entirety of the
calculations presented here were performed with just hours of
computation. It is our plan to make our AMPSCI implementa-
tion publicly available in the near future.

Furthermore, we showed that our method for gauging the
theory uncertainty is robust; the comparison between theory
and experiment is better than statistically expected, indicat-
ing our uncertainties are conservative. We also compared our
results to a number of previous theoretical determinations,
finding good agreement among most of the high-precision
calculations. Finally, we combined our calculations of E1
ratios with recent experimental data to extract E1 amplitudes
for several transitions in Ca+, Sr+, Cs, Fr, and Ra+, as sum-
marized in Table IX. Our results have implications for the
accuracy analyses of atomic structure calculations and for the
interpretation of atomic parity violation measurements.

Note added in proof. Recently, a work presenting calcula-
tions of E1 matrix elements for Cs has appeared in Ref. [165].
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APPENDIX A: TABLES OF E1 MATRIX ELEMENTS

Our results for K, Rb, and Fr are given in Table X, along
with a comparison with experiment. The results for Cs are
given in Table IV of the main text, and those for the ions Ca+,
Sr+, Ba+, and Ra+ are in Table XI.

APPENDIX B: ALL-ORDERS FEYNMAN TECHNIQUE

The second-order Goldstone diagrams (Fig. 1) may be
expressed as the two Feynman diagrams in Fig. 14 (see
Ref. [166]). The internal Fermion lines represent the RHF
Green’s function, G(ε), external Fermion lines represent the
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TABLE IX. Summary of E1 reduced matrix elements (ea0) ex-
tracted from experiment in this work by combining measurements of
lifetimes (τ ), branching fractions, and other E1 matrix elements with
our theoretical ratios (see text for details). Except where noted, the
uncertainty is dominated by experiment.

Transition |〈a||d||b〉| Method

Ca+

3d3/2 − 4p1/2 2.447(4) E1 [112,113] + Ratio
Sr+

5s1/2−5p1/2 3.076(24) τ [135] + Branching [134]
5s1/2−5p3/2 4.360(23) τ [135] + Branching [134]
4d3/2−5p1/2 3.093(15) τ [135] + Branching [134]
4d3/2−5p3/2 1.378(34) τ [135] + Branching [134]
4d5/2−5p3/2 4.175(22) τ [135] + Branching [134]

Cs
5d5/2−5p3/2 9.650(18) τ [5]
5d3/2−6p1/2 7.06(1)ex(4)th τ [5] + Ratio
5d3/2−6p3/2 3.182(6)ex(17)th τ [5] + Ratio
5d3/2−7p3/2 0.795(4) τ [5] + E1 [11,107] + Ratio

0.799(5) τ [5] + E1 [106,107] + Ratio
5d5/2−7p3/2 2.481(11) τ [5] + E1 [11,107] + Ratio

2.493(15) τ [5] + E1 [106,107] + Ratio
Fr

8s1/2−7p1/2 4.234(20) τ [158] + Ratio
8s1/2−7p3/2 7.460(33) τ [158] + Ratio

Ra+

7s1/2−7p1/2 3.229(9) E1 [6] + Ratio
6d3/2−7p1/2 3.564(27) E1 [6] + Ratio

valence wave function, and the photon lines represent the
non-relativistic Coulomb operator, Q12 = r−1

12 . Evaluation of
such diagrams does not require a summation over intermediate
states using a basis, but rather an integration over energies.
The loop in Fig. 14 may be described by the polarization
operator:

�12(ω) =
∫

dε′

2π
G12(ε′)G21(ω + ε′), (B1)

where the integral is performed analytically. The direct part
of the potential may therefore be expressed as1

�
(2,d )
12 (ε) =

∫
dω

2π
G12(ε + ω)Q1i�i j (ω)Qj2, (B2)

where ε is the Hartree-Fock energy of the valence state.
The screening, which is enhanced by the number of elec-

trons in the outer core shells, can be taken into account by
a continued insertion of polarization loops into the Coulomb
lines, as shown in Fig. 2. This chain of diagrams forms a
geometric series and is summed exactly:

Q̃(ω) = Q[1 + i �(ω)Q]−1. (B3)

The hole-particle interaction (Fig. 3) arises due to the de-
viation of the RHF potential for the excited core electron in
the polarization loop from that for the nonexcited one [75];
the electron in the polarization loop moves in the field of N−2
core electrons instead of the V N−1 potential [75]. This is taken

1Subscripts are shorthand: G12 ≡ G(r1, r2). Integration is implied
over internal indices: G1iGi2 = ∫

d3riG(r1, ri )G(ri, r2).

FIG. 14. Second-order direct and exchange correlation diagrams
in the Feynman technique.

into account by removing the self-interaction part of the RHF
potential for the excited states. The potential that simultane-
ously describes the occupied core and excited states is

V = V N−1 − (1 − Pc)Vself (1 − Pc), (B4)

where Pc is the core projection operator, and Vself is the
self-interaction part of the RHF potential for the polarized
electron. We use this potential when forming the polarization
operator. It is typically reasonable to consider only the
zero-multipolarity part of Vself ; the higher-multipole parts
contribute negligibly. The full screened Coulomb operator is
then calculated as in Fig. 15.

The direct part may then be written as

�
(∞,d )
12 =

∫
dω

2π
G12(ε + ω)Q1i�i j (ω)Q̃ j2(ω), (B5)

which includes hole-particle interaction and screening to all
orders (including dominating single, double, triple, quadruple,
etc. excitations). While it is possible to calculate the exchange
part of the potential using the same technique, as was done in
Ref. [56], the double frequency integral makes this computa-
tionally demanding. At the same time, the exchange part of
the correlation potential is much smaller, and its contribution
to E1 matrix elements is particularly small. Therefore, it is
reasonable to calculate this approximately, which we do via
screening factors [75]. The Coulomb operator is expanded
over multipolarities Q = ∑

k qk , and the screening factors
are defined such that Q̃(ω) ≈ ∑

k fkqk . These are calculated
by evaluating the direct energy correction with and without
screening: f (v)

k = 〈v|�(scr.)
k |v〉 / 〈v|�k|v〉. We use the scaled

Coulomb operators to calculate the exchange part of � using
the Goldstone technique as in Fig. 1. While it is reasonable
to use the same fk for each valence state, we calculate them
independently for each state (i.e., including the energy depen-
dence of �).

APPENDIX C: STRUCTURE RADIATION

The Coulomb integrals have angular decomposition:

gabcd =
∫

φ†
a (r1)φ†

b (r2)r−1
12 φc(r1)φd (r2) d3r1d3r2

=
∑

k

Ak
abcd Qk

abcd , (C1)

FIG. 15. All-order screening of the Coulomb operator including
the hole-particle interaction.
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TABLE X. Contributions to reduced E1 matrix elements (absolute values, units: ea0) between the lowest few states of K, Rb, and Fr, and
comparison with experiment († means final theory value lies within experimental uncertainty).

K RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

4p1/2−4s 4.5546 −0.1540 −0.2754 0.0000 0.0007 −0.0065 −0.0068 4.1125(75) 4.106(2) [160] 0.16%
4p3/2−4s 6.4391 −0.2170 −0.3899 0.0001 0.0009 −0.0092 −0.0097 5.814(11) 5.807(3) [160] 0.13%
5p1/2−4s 0.3117 −0.0690 0.0149 0.0004 −0.0005 0.0072 0.0038 0.2687(45)
5p3/2−4s 0.4561 −0.0974 0.0223 −0.0001 −0.0006 0.0101 0.0054 0.3959(63)
4p1/2−5s 3.9741 0.0239 −0.1071 0.0011 −0.0009 −0.0142 0.0091 3.886(10)
4p3/2−5s 5.6580 0.0334 −0.1471 0.0000 −0.0012 −0.0201 0.0129 5.536(14)
5p1/2−5s 9.9348 −0.0419 −0.3805 −0.0002 0.0015 −0.0088 −0.0210 9.484(21)
5p3/2−5s 14.0312 −0.0590 −0.5409 0.0005 0.0020 −0.0123 −0.0299 13.392(30)
4p1/2−3d3/2 8.5962 −0.1307 −0.4963 0.0001 −0.0002 −0.0090 −0.0016 7.9585(40) 7.984(35) [161]a −0.3%†

4p3/2−3d3/2 3.8546 −0.0583 −0.2218 −0.0003 0.0000 −0.0040 −0.0007 3.5693(18) 3.580(16) [161]a −0.3%†

5p1/2−3d3/2 8.1984 0.0271 −1.0741 −0.0069 −0.0001 −0.0155 0.0143 7.143(16)
5p3/2−3d3/2 3.6547 0.0122 −0.4815 −0.0026 −0.0001 −0.0069 0.0064 3.1821(70)
4p3/2−3d5/2 11.5637 −0.1750 −0.6654 −0.0012 −0.0001 −0.0121 −0.0007 10.7091(50) 10.741(47) [161]a −0.3%†

5p3/2−3d5/2 10.9552 0.0364 −1.4413 −0.0092 −0.0003 −0.0207 0.0321 9.552(33)

Rb RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

5p1/2−5s 4.8189 −0.2130 −0.3558 −0.0003 0.0019 −0.0067 −0.0069 4.2381(78) 4.233(2) [117]b 0.12%
5p3/2−5s 6.8017 −0.2965 −0.5063 −0.0002 0.0027 −0.0097 −0.0100 5.982(11) 5.978(4) [117]b 0.06%†

6p1/2−5s 0.3825 −0.0952 0.0206 0.0009 −0.0012 0.0112 0.0045 0.3232(58) 0.3235(9) [118] −0.14%†

6p3/2−5s 0.6055 −0.1339 0.0340 0.0001 −0.0015 0.0151 0.0064 0.5256(80) 0.5230(8) [118] 0.51%
5p1/2−6s 4.2564 0.0275 −0.1316 0.0027 −0.0024 −0.0203 0.0125 4.145(14)
5p3/2−6s 6.1865 0.0360 −0.1639 0.0006 −0.0030 −0.0283 0.0177 6.046(20)
6p1/2−6s 10.2856 −0.0589 −0.4803 −0.0011 0.0040 −0.0114 −0.0248 9.713(25)
6p3/2−6s 14.4576 −0.0813 −0.6944 0.0001 0.0056 −0.0159 −0.0363 13.635(37)
5p1/2−4d3/2 9.0464 −0.2086 −0.8214 −0.0023 −0.0006 −0.0129 0.0187 8.019(19) 8.051(63) [161]a −0.40%†

5p3/2−4d3/2 4.0817 −0.0923 −0.3711 −0.0017 −0.0002 −0.0057 0.0089 3.6196(92) 3.633(28) [161]a −0.37%†

6p1/2−4d3/2 6.7251 0.0523 −1.6275 −0.0151 −0.0011 −0.0251 0.0809 5.190(82)
6p3/2−4d3/2 2.9551 0.0236 −0.7313 −0.0058 −0.0006 −0.0110 0.0358 2.266(36)
5p3/2−4d5/2 12.2411 −0.2761 −1.1031 −0.0060 −0.0006 −0.0175 0.0273 10.865(28) 10.899(86) [161]a −0.31%†

6p3/2−4d5/2 8.8290 0.0704 −2.1549 −0.0201 −0.0016 −0.0328 0.1107 6.80(11)

Fr RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

7p1/2−7s 5.1438 −0.3697 −0.4851 −0.0012 0.0064 −0.0049 0.0001 4.2895(55) 4.277(8) [150] 0.29%
7p3/2−7s 7.0904 −0.4636 −0.7204 −0.0011 0.0105 −0.0097 0.0004 5.9065(85) 5.898(15) [150] 0.14%†

8p1/2−7s 0.4589 −0.1615 −0.0170 0.0028 −0.0040 0.0241 0.0008 0.3041(80)
8p3/2−7s 1.0959 −0.2184 0.0068 −0.0001 −0.0032 0.0264 −0.0004 0.9070(85)
7p1/2−8s 4.5340 0.0300 −0.3137 0.0084 −0.0075 −0.0385 0.0188 4.231(23) 4.234(20) [158]c −0.06%†

7p3/2−8s 7.7431 0.0059 −0.2485 0.0011 −0.0090 −0.0488 0.0112 7.455(19) 7.460(33) [158]c −0.07%†

8p1/2−8s 10.7837 −0.1048 −0.5753 −0.0039 0.0130 −0.0193 −0.0144 10.079(16)
8p3/2−8s 14.4326 −0.1210 −0.9487 0.0001 0.0205 −0.0244 −0.0212 13.338(24)
7p1/2−6d3/2 9.2215 −0.4309 −1.5856 −0.0115 −0.0055 −0.0220 0.0375 7.204(39)
7p3/2−6d3/2 4.2831 −0.1735 −0.7938 −0.0074 −0.0029 −0.0105 0.0191 3.314(20)
8p1/2−6d3/2 4.6250 0.1281 −2.2134 −0.0290 −0.0091 −0.0554 0.0673 2.514(71)
8p3/2−6d3/2 1.6874 0.0574 −0.9619 −0.0091 −0.0039 −0.0213 0.0280 0.777(29)
7p3/2−6d5/2 12.8041 −0.5081 −2.1149 −0.0255 −0.0066 −0.0364 0.0670 10.180(69)
8p3/2−6d5/2 4.8747 0.1647 −2.5077 −0.0335 −0.0097 −0.0587 0.1058 2.54(11)

aCombined experiment [162] and theory [161];
bAverage of Refs. [150,163,164];
cExtracted in this work combining experiment [158] with theoretical ratios.

g̃abcd ≡ gabcd − gabdc =
∑

k

Ak
abcd W k

abcd , (C2)

where the angular factor, A, depends on magnetic quantum numbers, while Q and W do not,

A = (−1)ma−mb
∑

q

(−1)k+q

(
ja k jc

−ma −q mc

)(
jb k jd

−mb q md

)
,
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TABLE XI. Contributions to reduced E1 matrix elements (absolute values, units: ea0) between the lowest few states of Ca+, Sr+, Ba+,
and Ra+, and comparison with experiment († means theory value lies within experimental uncertainty). A negative RHF value indicates the
sign changes between that and final theory value.

Ca+ RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

4p1/2−4s 3.2012 −0.1856 −0.1160 0.0001 0.0004 −0.0045 −0.0014 2.8943(30) 2.8928(43) [112] 0.05%†

4p3/2−4s 4.5269 −0.2614 −0.1639 0.0002 0.0006 −0.0064 −0.0020 4.0938(42) 4.092(6) [112] 0.05%†

5p1/2−4s 0.0061 0.0793 0.0086 −0.0004 0.0004 −0.0103 −0.0005 0.0834(37)
5p3/2−4s −0.0081 0.1122 0.0115 0.0001 0.0006 −0.0144 −0.0007 0.1012(52)
4p1/2−5s 2.1084 0.0328 −0.0554 0.0009 −0.0007 −0.0156 0.0049 2.0753(70)
4p3/2−5s 3.0142 0.0455 −0.0769 0.0002 −0.0009 −0.0220 0.0070 2.9671(98)
5p1/2−5s 6.4426 −0.0620 −0.1400 0.0001 0.0008 −0.0095 −0.0061 6.2258(70)
5p3/2−5s 9.1006 −0.0872 −0.1984 0.0004 0.0011 −0.0134 −0.0087 8.794(10)
4p1/2−3d3/2 3.0825 −0.1482 −0.4730 −0.0022 −0.0003 −0.0247 0.0185 2.452(21) 2.447(4) [112,113]a 0.24%
4p3/2−3d3/2 1.3764 −0.0658 −0.2122 −0.0009 −0.0001 −0.0110 0.0083 1.0947(94) 1.092(2) [112,113] 0.24%
5p1/2−3d3/2 −0.0063 −0.0579 0.1769 0.0011 0.0001 0.0091 −0.0101 0.113(11)
5p3/2−3d3/2 0.0008 −0.0258 0.0783 0.0004 0.0001 0.0041 −0.0044 0.0534(47)
4p3/2−3d5/2 4.1348 −0.1967 −0.6343 −0.0039 −0.0004 −0.0332 0.0252 3.291(28) 3.283(6) [112,113] 0.26%
5p3/2−3d5/2 0.0011 −0.0768 0.2345 0.0016 0.0001 0.0121 −0.0135 0.159(14)

Sr+ RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

5p1/2−5s 3.4848 −0.2573 −0.1533 0.0000 0.0011 −0.0029 −0.0015 3.0710(29) 3.076(24) [134,135] 0.16%†

5p3/2−5s 4.9211 −0.3583 −0.2171 0.0000 0.0016 −0.0043 −0.0022 4.3409(41) 4.360(23) [134,135] 0.44%†

6p1/2−5s −0.0664 0.1107 0.0072 −0.0008 0.0011 −0.0155 −0.0013 0.0350(55)
6p3/2−5s 0.1606 −0.1567 −0.0069 0.0000 −0.0014 0.0212 0.0019 0.0188(75)
5p1/2−6s 2.3751 0.0361 −0.0652 0.0021 −0.0018 −0.0220 0.0075 2.3319(89)
5p3/2−6s 3.4972 0.0466 −0.0840 0.0007 −0.0022 −0.0308 0.0103 3.438(12)
6p1/2−6s 6.8103 −0.0885 −0.1804 −0.0002 0.0022 −0.0120 −0.0082 6.5232(76)
6p3/2−6s 9.5775 −0.1223 −0.2584 0.0005 0.0031 −0.0166 −0.0122 9.172(11)
5p1/2−4d3/2 3.7292 −0.2384 −0.4012 −0.0032 −0.0007 −0.0226 0.0247 3.088(20) 3.093(15) [134,135] 0.17%†

5p3/2−4d3/2 1.6572 −0.1035 −0.1816 −0.0013 −0.0003 −0.0099 0.0113 1.3719(90) 1.378(34) [134,135] 0.45%†

6p1/2−4d3/2 0.0263 −0.0962 0.1392 0.0022 0.0003 0.0147 −0.0167 0.070(13)
6p3/2−4d3/2 0.0284 −0.0422 0.0606 0.0007 0.0002 0.0064 −0.0071 0.0470(57)
5p3/2−4d5/2 5.0025 −0.3079 −0.5364 −0.0058 −0.0009 −0.0309 0.0341 4.155(27) 4.175(22) [134,135] 0.49%†

6p3/2−4d5/2 0.0758 −0.1242 0.1798 0.0029 0.0004 0.0184 −0.0219 0.131(18)

Ba+ RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

6p1/2−6s 3.8909 −0.3635 −0.2078 −0.0002 0.0020 −0.0012 0.0012 3.3214(43) 3.3251(21) [140] −0.11%
6p3/2−6s 5.4776 −0.4958 −0.2951 −0.0003 0.0031 −0.0024 0.0015 4.6886(60) 4.7017(27) [140] −0.28%
7p1/2−6s −0.0654 0.1549 0.0150 −0.0014 0.0021 −0.0257 0.0012 0.0807(92)
7p3/2−6s 0.2610 −0.2197 −0.0122 0.0000 −0.0024 0.0341 −0.0010 0.060(12)
6p1/2−7s 2.5487 0.0457 −0.0929 0.0036 −0.0032 −0.0342 0.0098 2.478(14)
6p3/2−7s 3.9568 0.0495 −0.1094 0.0011 −0.0039 −0.0471 0.0130 3.860(19)
7p1/2−7s 7.3917 −0.1314 −0.2337 −0.0007 0.0038 −0.0174 −0.0062 7.0061(91)
7p3/2−7s 10.3120 −0.1757 −0.3393 0.0004 0.0057 −0.0237 −0.0101 9.769(14)
6p1/2−5d3/2 3.7454 −0.3225 −0.3826 −0.0041 −0.0013 −0.0283 0.0295 3.036(31) 3.0413(21) [141] −0.16%
6p3/2−5d3/2 1.6354 −0.1333 −0.1751 −0.0016 −0.0006 −0.0117 0.0137 1.327(14) 1.33199(96) [17] −0.39%
7p1/2−5d3/2 0.3513 −0.1395 0.0549 0.0022 0.0004 0.0185 −0.0159 0.272(17)
7p3/2−5d3/2 0.1864 −0.0589 0.0224 0.0005 0.0002 0.0079 −0.0061 0.1523(67)
6p3/2−5d5/2 5.0011 −0.3938 −0.5117 −0.0075 −0.0016 −0.0407 0.0416 4.087(44) 4.1028(25) [17] −0.37%
7p3/2−5d5/2 0.5425 −0.1696 0.0673 0.0024 0.0006 0.0206 −0.0197 0.444(21)

Ra+ RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

7p1/2−7s 3.8766 −0.4304 −0.2163 −0.0003 0.0038 0.0006 0.0015 3.2357(48) 3.229(9) [6]a 0.19%†

7p3/2−7s 5.3395 −0.5426 −0.3135 −0.0003 0.0065 0.0012 0.0019 4.4927(66) 4.484(13) [6] 0.19%†

8p1/2−7s −0.1253 0.1811 0.0302 −0.0025 0.0036 −0.0293 0.0034 0.061(11)
8p3/2−7s 0.6251 −0.2563 −0.0228 −0.0003 −0.0032 0.0357 −0.0025 0.376(13)
7p1/2−8s 2.6367 0.0364 −0.1334 0.0064 −0.0053 −0.0376 0.0128 2.516(17)
7p3/2−8s 4.8100 −0.0024 −0.1298 0.0013 −0.0065 −0.0495 0.0140 4.637(20)
8p1/2−8s 7.3706 −0.1567 −0.2342 −0.0011 0.0071 −0.0201 −0.0066 6.959(10)
8p3/2−8s 9.8806 −0.1816 −0.3581 0.0012 0.0120 −0.0250 −0.0128 9.316(16)
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TABLE XI. (Continued.)

Ra+ RHF δV δ� (∞) Breit QED SR+N δλ Final Expt. �(%)

7p1/2−6d3/2 4.4462 −0.4648 −0.4407 −0.0057 −0.0030 −0.0210 0.0251 3.536(26) 3.564(27) [6]a −0.78%
7p3/2−6d3/2 1.8815 −0.1697 −0.2122 −0.0024 −0.0016 −0.0073 0.0128 1.501(13) 1.513(11) [6] −0.78%
8p1/2−6d3/2 0.1053 −0.1913 0.1080 0.0052 0.0017 0.0334 −0.0217 0.041(24)
8p3/2−6d3/2 0.1683 −0.0762 0.0392 0.0009 0.0006 0.0131 −0.0068 0.1391(80)
7p3/2−6d5/2 5.8616 −0.4887 −0.5703 −0.0112 −0.0038 −0.0375 0.0389 4.789(42) 4.788(14) [6] 0.02%†

8p3/2−6d5/2 0.4623 −0.2054 0.1056 0.0045 0.0017 0.0293 −0.0238 0.374(26)

aExtracted in this work via theoretical ratios; uncertainty is dominated by experiment.

and (:::) is a 3 j symbol. Our Qk and W k differ from the Xk and Zk of Ref. [77] by a factor (−1) ja+ jb+1; our definition takes
advantage of the eightfold symmetry of Q.

With these definitions, we can write explicitly the contribution of the structure radiation correction [Eq. (5)]:

T k
wrvc =

∑
abμλ

(−1)v+r+a+b+k

{
w v k
λ μ b

}{
r c k
λ μ a

}
W μ

wrbaQλ
vabc

εwr − εba

+
∑
anμ

(−1)w−c+k+μ

[μ]

{
w v k
r c μ

}[
W μ

wacnW
μ
varn

εrn − εva
+ W μ

wncaW
μ
vnra

εwn − εca

]

+
∑
mnμλ

(−1)v+r+n+m+k

{
w v k
λ μ n

}{
r c k
λ μ m

}
Qμ

wrnmW λ
vcnm

εnm − εvc
,

Ck
wavc =

∑
bnμ

(−1)k+μ

[μ]

{
w v k
c a μ

}
(−1)w−c W μ

wnabW
μ

vncb

(εwn − εab)(εvn − εbc)

+
∑
mnμλ

(−1)k

{
w v k
μ λ n

}{
c a k
λ μ m

}
(−1)v+a+m+nQμ

vmncW
λ
wanm

(εwa − εnm)(εvc − εnm)
,

where {:::} is a 6 j symbol, εi j ≡ εi + ε j , and Dk is similar to Ck with sums over core and excited states swapped.
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