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Relativistic coupled-cluster analysis of the second-order effects on the hyperfine structure in 133Cs
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Using the single and double approximated relativistic coupled-cluster method, we calculate the first-order
hyperfine structure constants for the 6p3/2, 8p3/2, 6d3/2, 7d3/2, and 7d5/2 states in 133Cs, and also evaluate
the second-order magnetic dipole–magnetic dipole, magnetic dipole–electric quadrupole effects caused by the
off-diagonal hyperfine interaction. With these calculations, we reanalyze some recent high-precision experi-
mental measurements of the hyperfine splitting intervals of 133Cs. We find that the second-order magnetic
dipole–magnetic dipole effects are especially sizable at the order of kHz in the B constant for the d3/2,5/2 states.
Our calculations can provide a reference for future higher precision experimental measurements.
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I. INTRODUCTION

The atomic hyperfine structure (HFS) arises from the
electron-nucleus interaction, which is thus sensitive to the
properties of the nucleus and to the electronic wave functions
in the nuclear region [1]. Comparison of measured and calcu-
lated values of the HFS provides information about nuclear as
well as electronic structures. Such hyperfine comparison also
plays a critical role in atomic parity violation (APV) studies,
which is basically a process of evaluating the uncertainty of
theoretical parity nonconserved amplitude [2].

High-precision experimental and theoretical studies on the
HFS of atomic cesium have attracted continuous attention
because the simple electronic structure containing a single
valence electron makes calculations easier and the high atomic
number leads to an enhanced APV effect [3–7]. In recent
years, the measurement accuracy of hyperfine splittings in
several states of cesium has reached a very high level of about
tens to a few kHz (see Ref. [8] for these measurements). This
is not only sufficient to extract the magnetic dipole (M1) HFS
constant A, but also supports the evaluation of the electric
quadrupole (E2) HFS constant B, and can even give nonzero
magnetic octupole (M3) HFS constant C.

In 2003, Gerginov et al. measured the hyperfine splittings
of the 6p3/2 state of Cs with an accuracy of about 2 kHz and
determined the C constant [9]. The influence of second-order
effects on the hyperfine structure constants was also evaluated
[9,10]. From 2018 to 2022, high-precision measurements of
hyperfine splittings of other four states 8p3/2 [11], 6d3/2 [12],
7d3/2 [13], and 7d5/2 [14] had also been reported, and the
corresponding HFS constants A, B, and C had been deter-
mined using the first-order hyperfine interaction (HFI) theory.
However, for experiments with such high precision, the inter-
pretation of measured results may require a more elaborate
theoretical investigation. Since the calculation precision of
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each state is different, when extracting the HFS constants
of these states, it is necessary to evaluate the second-order
effect caused by the off-diagonal HFI to see whether the
second-order effect brings “correction” to the first-order HFS
constants. These analyses also have important guiding signif-
icance for future high-precision experiments.

In the present work, we evaluate the first- and second-
order HFS constants for the 6p3/2, 8p3/2, 6d3/2, 7d3/2,
and 7d5/2 states of 133Cs by the relativistic coupled-cluster
method. Based on our theoretical calculations, the experi-
mental measurements are reanalyzed and the second-order
magnetic dipole–magnetic dipole (M1-M1) and magnetic
dipole–electric quadrupole (M1-E2) effects on the first-order
HFS constant are evaluated. The paper is organized as fol-
lows. In Sec. II, we provide a brief overview of the hyperfine
structure theory and compile the HFS expressions for the
first-order HFS constants of Cs involving the second-order
HFI. In Sec. III, we calculate and analyze the modification of
the first-order HFS constants due to the second-order effects
and present numerical results. Finally, a summary is given in
Sec. IV. Atomic units (a.u.) are used unless otherwise stated.

II. THEORETICAL METHOD

A. The hyperfine interaction

Compared with fine structure splitting, hyperfine splitting
is much smaller, so the hyperfine interaction may be treated
as a perturbation. The hyperfine interaction Hamiltonian for a
relativistic electron can be expressed as [1,15]

HHFI =
∑

k

T (k) · M (k), (1)

where T (k) and M (k) are the spherical tensor operators of rank
k (k > 0) in the electronic and nuclear coordinate spaces,
respectively. The matrix element between two hyperfine states
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can be calculated according to

EHFS
F = 〈γ ′IJ ′F ′M ′

F |HHFI|γ IJFMF 〉 = δF ′F δM ′
F MF (−1)I+J+F

∑
k

{
F J I
k I J ′

}
〈γ ′J ′‖T (k)‖γ J〉〈I‖M (k)‖I〉, (2)

where I, J, and F are the nuclear, atomic, and total angular momentum, and |γ IJFMF 〉 is the hyperfine state constructed from
coupling a nuclear eigenstate |IMI〉 with an atomic eigenstate |γ JMJ〉 with γ representing the remaining electronic quantum
numbers. The first-order correction E (1)

F of HFI to the energy can thus be defined as

E (1)
F = (−1)I+J+F

∑
k

{
F J I
k I J

}
〈γ J‖T (k)‖γ J〉〈I‖M (k)‖I〉. (3)

The nuclear matrix elements are given in terms of conventional nuclear moments through

〈II|M (1)|II〉 = μ, (4)

〈II|M (2)|II〉 = 1
2 Q, (5)

〈II|M (3)|II〉 = −�, (6)

where μ is the nuclear magnetic dipole moment, Q is the nuclear electric quadrupole moment, and � is the nuclear magnetic
octupole moment. Restricted to k � 3, E (1)

F in Eq. (3) can be parameterized in terms of the magnetic dipole (M1), electric
quadrupole (E2), and magnetic octupole (M3) HFS constants A, B, and C according to

A = μ

I

〈γ J‖T (1)‖γ J〉√
J (J + 1)(2J + 1)

, (7)

B = 2Q

[
2J (2J − 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

〈γ J‖T (2)‖γ J〉, (8)

C = �

[
J (2J − 1)(J − 1)

(J + 1)(J + 2)(2J + 1)(2J + 3)

]1/2

〈γ J‖T (3)‖γ J〉. (9)

Then the second-order correction E (2)
F of hyperfine interaction to the energy is defined as [16]

E (2)
F =

∑
γ J ′

∑
k1,k2

〈(γ IJ ′)FMF |T (k1 ) · M (k1 )|(γ IJ )FMF 〉
Eγ J − Eγ ′J ′

〈(γ IJ ′)FMF |T (k2 ) · M (k2 )|(γ IJ )FMF 〉

≈
∑

J ′

∣∣∣∣
{

F J I
k1 I J ′

}∣∣∣∣
2

η

︸ ︷︷ ︸
M1−M1: k1=k2=1

+
∑

J ′

{
F J I
k1 I J ′

}{
F J I
k2 I J ′

}
ζ

︸ ︷︷ ︸
M1−E2: k1=1,k2=2

, (10)

where

η = (I + 1)(2I + 1)

I
μ2 |〈γ J ′‖T (1)‖γ J〉|2

Eγ J − Eγ J ′
, (11)

ζ = (I + 1)(2I + 1)

I

√
2I + 3

2I − 1
μQ

〈γ J ′‖T (1)‖γ J〉〈γ J ′‖T (2)‖γ J〉
Eγ J − Eγ J ′

. (12)

In the above, the summation involves all possible excited electronic states, and 〈γ ′J ′‖T (k)‖γ J〉 is the reduced matrix element of
the electronic part. Here we focus on M1 and E2 off-diagonal reduced matrix elements between two nearby fine-structure levels,
i.e., J ′ = J ± 1, because these contributions dominate owing to small energy denominators.

The single-particle reduced matrix elements of the operators T (1), T (2), and T (3) are given by

〈κv‖T (1)‖κw〉 = −〈−κv‖C(1)‖κw〉(κv + κw )
∫ ∞

0
dr

Pv (r)Qw(r) + Pw(r)Qv (r)

r2
, (13)

〈κv‖T (2)‖κw〉 = −〈κv‖C(2)‖κw〉
∫ ∞

0
dr

Pv (r)Pw(r) + Qv (r)Qw(r)

r3
, (14)
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TABLE I. The parameters of the Gaussian basis set, where N is
the size of basis set for each symmetry, and Nc and Nv represent,
respectively, the numbers of core and virtual orbitals.

s p d f g h i

α × 103 0.725 0.525 0.570 86 86 86 86
β 1.85 1.85 1.90 2.1 2.1 2.1 2.1
N 40 40 40 25 20 15 10
Nc 6 5 3 1 1 1 1
Nv 29 28 27 17 17 15 10

and

〈κv‖T (3)‖κw〉 = −1

3
〈−κv‖C(3)‖κw〉(κv + κw )

×
∫ ∞

0
dr

Pv (r)Qw(r) + Pw(r)Qv (r)

r4
, (15)

where the relativistic angular-momentum quantum number
κ = 
(
 + 1) − j( j + 1) − 1/4, and P and Q are, respec-
tively, the large and small radial components of the Dirac wave
function. The reduced matrix element

〈κv‖C(k)‖κw〉 = (−1) jv+1/2
√

(2 jv + 1)(2 jw + 1)

×
{

jv k jw
1/2 0 −1/2

}
π (
v, k, 
w ) (16)

satisfies the condition π (
v, k, 
w ) = 1 when 
v + k + 
w is
even; otherwise π (
v, k, 
w ) = 0.

We employed a finite basis set, composed of
even-tempered Gaussian-type functions expressed as
Gi = Nir
+1e−αir2

, to expand the Dirac radial wave functions
P and Q as in Ref. [17], where Ni is the normalization factor,
and αi = αβ i−1, with the two independent parameters α and
β being optimized separately for each orbital symmetries.
Table I lists the Gaussian basis parameters, where N is the
size of basis set for each symmetry, and Nc and Nv represent,
respectively, the number of core and virtual orbitals.

To accurately calculate the matrix elements in Eqs. (7)–
(12), we must determine the wave function of the atomic state,
which involves solving the electron correlation problem. In
the present work, the correlation effects are investigated using
ab init io methods at different levels, including the Dirac-
Fock (DF) approximation, and linearized and fully single-
and double-excitation relativistic coupled-cluster methods,
denoted respectively by LCCSD and CCSD. The detailed
description of these methods can be found in our previous
works for Fr, Ra+, and Th3+ in Refs. [18–20]. In practice,
the no-pair Dirac Hamiltonian was set as the starting point.
The Fermi nuclear distribution was employed to describe the
Coulomb potential between electrons and the nucleus. All the
core and virtual orbitals with energies of smaller than 10000
a.u. were included in the correlation calculations.

B. Expressions of A, B, and C constants involving
second-order HFI

From the previous subsection, we know that to ac-
curately determine the first-order constants A, B, and C
from the measured HFS intervals, it is necessary to have

FIG. 1. Schematic diagram of HFS in 133Cs for states of J =
3/2 and J = 5/2, where �EFF ′ with F ′ = F − 1 (same as below)
denotes the energy difference between two adjacent hyperfine levels
determined by experiment; see Table II.

knowledge of higher order effects. If we only consider the
M1-M1 and M1-E2 second-order interactions described by
the second-order constants η and ζ (here we assume all other
second- and higher order effects are negligible), the energy
level of total quantum number of F can be expressed as
EHFS

F = EJ + E (1)
F (A, B,C) + E (2)

F (η, ζ ). Then the hyperfine
interval �EFF ′ = EHFS

F − EHFS
F ′ can be written as �EFF ′ =

�E (1)
FF ′(A, B,C) + �E (2)

FF ′(η, ζ ), which can be determined ex-
perimentally. Figure 1 shows the hyperfine structure of 133Cs
in the J = 3/2 and J = 5/2 manifolds. We may solve for A,
B, and C in terms of the HFS intervals �EFF ′ , as well as η and
ζ . The following expressions are the A, B, and C constants for
the states np3/2, nd3/2, and nd5/2.

For the np3/2 state,

Anp3/2 = 11

120
�E54 + 2

21
�E43 + 3

56
�E32

+ 1

1512
ηnp3/2 − 1

1260
ζ np3/2 , (17)

Bnp3/2 = 77

120
�E54 − 1

3
�E43 − 5

8
�E32

+ 1

36
ηnp3/2 + 1

120
ζ np3/2 , (18)

Cnp3/2 = 7

480
�E54 − 1

24
�E43 + 1

32
�E32

+ 1

480
ζ np3/2 . (19)

For the nd3/2 state,

And3/2 = 11

120
�E54 + 2

21
�E43 + 3

56
�E32

− 1

2520
ηnd3/2 − 1

60
ζ nd3/2 , (20)

Bnd3/2 = 77

120
�E54 − 1

3
�E43 − 5

8
�E32

+ 1

180
ηnd3/2 − 7

120

√
1

105
ζ nd3/2 , (21)

Cnd3/2 = 7

480
�E54 − 1

24
�E43 + 1

32
�E32

+ 1

480

√
1

105
ζ nd3/2 . (22)
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TABLE II. A summary of the experimental hyperfine splittings (in MHz) for the five states in 133Cs. �JJ ′ = Eγ J − Eγ J ′ represents the
interval between two nearby fine-structure levels, where J ′ = J ± 1.

Level �E65 �E54 �E43 �E32 �E21 Source �JJ ′ [21]

6p3/2 251.0916(20) 201.2871(11) 151.2247(16) Ref. [9] 16609672.05
8p3/2 38.130(30) 30.242(82) 23.026(38) Ref. [11] 2478462.54
6d3/2 81.615(30) 65.335(14) 49.164(24) Ref. [12] −1285069.55
7d3/2 36.725(6) 29.415(6) 22.082(7) Ref. [13] −627729.52
7d5/2 −10.225(9) −8.542(7) −6.849(7) −5.134(29) −3.320(7) Ref. [14] 627729.52

For the nd5/2 state,

And5/2 = 61

1320
�E65 + 267

3080
�E54 + 9

280
�E43 + 9

280
�E32

+ 9

280
�E21 + 1

3780
ηnd5/2 − 1

210

√
1

105
ζ nd5/2 , (23)

Bnd5/2 = 245

264
�E65 + 1

88
�E54 − 5

8
�E43 − 5

8
�E32

− 5

8
�E21 + 1

54
ηnd5/2 + 1

12

√
1

105
ζ nd5/2 , (24)

Cnd5/2 = − 21

352
�E65 + 45

352
�E54 − 11

352
�E43 − 11

352
�E32

− 11

352
�E21 + 1

48

√
1

105
ζ nd5/2 . (25)

In the above Eqs. (17)–(25), all the required �EFF ′ from
Refs. [9,11–14] are summarized in Table II, where �JJ ′ rep-
resents the interval between two nearby fine-structure levels
obtained from Ref. [21].

III. RESULTS AND DISCUSSION

It can be seen from Eqs. (17)–(25) that the second-order
HFS constants η and ζ need to be evaluated using atomic
structure theory in order to accurately extract the first-order
HFS constants A, B, and C. Since the diagonal hyperfine
matrix elements of the first-order HFS constants in Eqs. (7)–
(9) and the off-diagonal hyperfine matrix elements of the
second-order HFS constants in Eqs. (11) and (12) are obtained
simultaneously, we calculated the first-order HFS constants A
and B and compared the results with the experimental values
to verify the reliability of our calculation before evaluating the
second-order HFS constants η and ζ . In addition, the magnetic
octupole hyperfine-interaction diagonal matrix elements are
also calculated in this work, and combined with the reported C
constants, the magnetic octupole moment of 133Cs is analyzed.
The magnetic dipole moment μ is taken from Ref. [22] as
2.5827681(14)μN , and the electric quadrupole moment Q is
taken from Ref. [9] as −0.00355(4) b.

A. First-order HFS constant A

The HFS constants A of 133Cs at different correlation
levels, including DF, LCCSD, and full CCSD calculations,
are tabulated in Table III, where the CCSD results are our

TABLE III. The HFS constant A (MHz) of 133Cs at different correlation levels: DF, LCCSD, and CCSD, where the CCSD results are our
recommended values with percentage uncertainty “Unc.%” due to higher order correlation effect beyond the CCSD method. Other theoretical
and experimental values are also listed for comparison.

Apresent Aother

DF LCCSD CCSD Unc.% Theory Experiment

6p1/2 160.32 310.25 292.16 6.2 291.49 [23] 289.6 [24] 291.9309(12) [25] 291.9135(15) [26] 291.929(1) [27]
290.41 [6] 289.655 [28] 291.918(8) [29] 291.922(20) [30] 291.885(80) [31]

6p3/2 23.86 51.85 49.53 4.7 47.6 [9] 48.51 [24] 50.28827(23) [9] 50.28163(86) [32] 50.275(3) [33]
8p1/2 26.98 44.28 42.51 4.2 42.32 [6] 42.43 [24] 42.933(8) [11] 42.95(25) [34] 42.92(25) [35]

42.95(9)a 42.93(7)b 42.97(10) [36]
8p3/2 4.07 7.58 7.40 2.5 7.44 [6] 7.27 [24] 7.609(8) [11] 7.42(6) [37] 7.644(25) [38]

7.626(5) [39] 7.58(1) [40]
6d3/2 9.30 17.61 16.76 5.1 16.93 [6] 17.80 [41] 16.338(3) [12] 16.34(3) [42] 16.17(17) [43]
6d5/2 3.58 −3.87 −3.43 13 −3.48 [6] −3.89 [41] −4.629(14) [44] −4.59(6) [45] −4.66(4) [42]

−4.56(9) [43] −4.69(4) [46]
7d3/2 4.71 7.79 7.42 5.0 7.48 [6] 7.88 [41] 7.3509(9) [13] 7.386(15) [47] 7.38(1) [48]

7.36(3) [49] 7.36(7) [50] 7.39(6) [51]
7d5/2 1.89 −1.43 −1.26 13 −1.13 [6] −1.42[41] −1.70867(62)[14] −1.717(15)[47] −1.81(5)[50]

−1.79(5)[51]

aRef. [52], a fitting method by Grunefeld et al.
bRef. [52], a ratio method by Grunefeld et al.
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TABLE IV. The HFS constant B (MHz) of 133Cs at different correlation levels: DF, LCCSD, and CCSD, where the CCSD results are our
recommended values with percentage uncertainty “Unc.%” due to higher-order correlation effect beyond the CCSD method. Other theoretical
and experimental values are also listed here for comparison.

Bpresent Bother

DF LCCSD CCSD Unc.% Theory Experiment

6p3/2 −0.2226 −0.5177 −0.4901 5.6 −0.5041a, −0.4935b −0.4940(17)[9] −0.5266(57)[32] −0.53(2)[33]
8p3/2 −0.0380 −0.0729 −0.0701 3.9 −0.005(40)[11] −0.090(24)[39] −0.049(42)[53]

−0.14(5)[40]
6d3/2 −0.0290 −0.0583 −0.0569 2.5 −0.136(24)[12] −0.36(1)[54] −0.1(2)[42]

0.11(127)[43]
6d5/2 −0.0374 −0.0793 −0.0775 2.6 −0.10(15)[44] −0.78(66)[45] 0.9(8)[42]

−0.35(183)[43] 0.18(73)[46]
7d3/2 −0.0147 −0.0258 −0.0249 3.5 −0.041(8)[13] −0.18(16)[47] −0.18(10)[48]

−0.1(2)[49] −0.88(87)[50] −0.19(18)[51]
7d5/2 −0.0188 −0.0351 −0.0339 3.6 −0.050(14)[14] −0.18(52)[47] 1.10(106)[50]

1.05(29)[51]

aRef. [9], 142Q, semiempirical estimation by Gerginov et al .
bRef. [9], 139Q, MBPT calculation by Gerginov et al .

recommended values with percentage uncertainty “Unc.%
” mainly from higher order correlation effect beyond the
CCSD method. The uncertainty may be assumed to be
not greater than the contribution of the lower-order non-
linear terms, i.e., CCSD − LCCSD, or 5% of the total
electron correlation, i.e., (CCSD − DF) × 5%. Therefore, to
be more conservative, we take the greater between |(CCSD −
LCCSD)/CCSD| and |(CCSD − DF)/CCSD × 5%| as the
uncertainty. Other theoretical [6,9,23,24,28,39,41,52] and ex-
perimental [9,11,12,14,25–27,29–38,40,42,42–45,47,49–51]
values are also listed in the table to compare with our CCSD
results, with particular attention on those in bold.

One can see from Table III the importance of correlation
effect in calculating A. For the p1/2,3/2 and d3/2 states, the total
electron correlation effect is nearly half of the CCSD result.
For the 6d5/2 and 7d5/2 states, the inclusion of correlation
effect by CCSD improves the DF values by 210% and 250%,
respectively, regardless of the sign, which suggests that the
correlation effect plays a significant role in d5/2. Moreover, the
opposite sign between CCSD and DF values of d5/2 reveals a
strong cancellation among different correlation effects.

Our CCSD values are also compared with other theoretical
and experimental results. One can see that, except for d5/2, our
values are in agreement with other ab init io theoretical results
[6,9,23,24,28,39,41,52], and the differences from experimen-
tal results are within 3%, which do not exceed our estimated
uncertainties. For d5/2, the difference between our theory and
experiment is about 26%, indicating the importance of higher
order correlation effects not included here.

B. First-order HFS constant B

Similar to the case of A constant, the B constant is also
calculated and listed in Table IV, where the total electron
correlation effect is nearly half of the CCSD, and the uncer-
tainty in CCSD is less than 6%. There are very few theoretical
results for B, only the 6p3/2 state has been reported. For
6p3/2, our CCSD result is in good agreement with the cal-
culation of Gerginov et al . [9], and also with experimental

values [9,32,33]. Except for the 6p3/2 state, the differences
between the CCSD results and the experimental results are
much larger than the estimated uncertainties, and we also find
that the differences between the results of different experi-
mental measurements are quite significant, even reflected in
the magnitude and sign. This may be caused by the following
reasons: (i) The value of the electric quadrupole moment Q we
used was determined in Ref. [9] by comparing the B constant
of the 6p3/2 state measured experimentally with the coupling
coefficient calculated by the third-order MBPT calculation.
However, due to the different measurement accuracy for each
state, this Q value may not be accurate for other states,
leading to differences between our calculated results and the
experimental values. From another point of view, since the
CCSD result of 6p3/2 state is consistent with the experimental
values within uncertainty, it implies that the present CCSD
calculation is consistent with the third-order MBPT theory
in Ref. [9]. (ii) Because the electric quadrupole moment Q
is very small, ≈10−3 b, the B constant is very small and
so it is difficult accurately measured experimentally, which
is why the uncertainties of the experimental values are very
large. It is thus understandable that the measured results differ
significantly. (iii) The higher order electron correlation effects
beyond the CCSD method may also be one of the reasons for
the discrepancy between the calculated and measured values.

C. Magnetic octupole hyperfine interaction

Table V lists the magnetic octupole hyperfine-interaction
diagonal matrix elements from DF, LCCSD, and CCSD cal-
culations in μN × b. The uncertainties of these octupole
parameters are similar to the case of A and B constants. By
comparing the results of DF and CCSD, it is found that the
magnetic octupole hyperfine interaction is sensitive to the
electron correlation effect. For the 6p3/2, 8p3/2, 6d3/2, and
7d3/2 states, the electron correlation effects account for nearly
half of CCSD results. For the 7d5/2 state, the inclusion of
correlation effects change the result of CCSD from the DF
value by 125% regardless of the sign, which suggests that the
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TABLE V. The magnetic octupole hyperfine-interaction diagonal matrix elements C/� ( kHz
μN ×b ) of 133Cs at different correlation levels: DF,

LCCSD, and CCSD, where the CCSD results are our recommended values with percentage uncertainty “Unc.%” due to higher order correlation
effect beyond the CCSD method. “CExpt.” are measured HFS constant C. �(μN × b) listed in “present” column is determined by combining
the measured CExpt. and the calculated C/� by present CCSD method. Other theoretical values are also listed here for comparison.

C/� ( kHz
μN ×b ) CExpt. �(μN × b)

γ J DF LCCSD CCSD Unc.% (kHz) present other

6p3/2 0.4562 0.8959 0.8445 6.1 0.56(7) [9] 0.66 0.82(10) [9]
8p3/2 0.0780 0.1315 0.1260 4.4 16(4) [11] 126.98
6d3/2 0.0243 0.0463 0.0456 2.3 4.3(10) [12] 94.30
7d3/2 0.0123 0.0197 0.0195 1.8 −0.027(530)a,−1.073(530)b −1.38a,−55.03b

7d5/2 0.0044 −0.0170 −0.0180 6.2 0.4(14) [14] −22.22

aThe HFS C=−0.027(530) kHz is taken from Ref. [13], combined with the C/� calculated in this work, �=−1.38 μN × b is obtained.
bThe HFS C=−1.073(530) kHz is derived by Eq.(22), where the �E are taken from Ref. [13] (as shown in Table VII). The � obtained by
combining the calculation of this work is −55.03 μN × b.

correlation effect plays a significant role in d5/2 state. More-
over, the opposite sign of CCSD value and DF value of 7d5/2

state reveals a strong cancellation from different correlation
effects. By comparing the results of LCCSD and CCSD, it can
be found that the electron correlation of the nonlinear terms of
all states are about 1% to 6%, suggesting that the higher order
electron correlation effects are also important.

Based on these CCSD calculations of matrix elements, and
combined with the HFS constants C reported in the experi-
ments [9,11–14], we can obtain the nuclear magnetic octupole
moment �. From Table V, it can be seen that based on the
hyperfine structure constants of different states, the derived
� differ significantly, not only in magnitude but also in sign.
For the 6p3/2 state, we get � is 0.66μN × b, which is close to
the MBPT result, 0.82(10)μN × b, reported in the Ref. [9];
the two results are close. For other states, the � obtained
are extremely large. It is worth noting that for the 7d3/2

state, the � obtained by combining the C constant reported
in Ref. [13] with our matrix element is −1.38 μN × b, while
−55.03μN × b when combined with the C constant derived
by Eq. (22) in this work (as shown in Table VII). This shows
that the measurement accuracy needs to be further improved.
In addition, these reported octupole hyperfine interaction di-

TABLE VI. Important off-diagonal matrix elements between two
fine-structure states obtained using the DF, LCCSD, and CCSD
methods. “Unc.%” represents the percentage uncertainty in CCSD.

γ J γ J ′ DF LCCSD CCSD Unc.%

|〈γ J ′‖T (1)‖γ J〉| in MHz/μN

6p3/2 6p1/2 36.52 34.75 32.00 8.6
8p3/2 8p1/2 6.19 5.11 4.65 9.9
6d3/2 6d5/2 −5.85 −105.44 −98.87 35
7d3/2 7d5/2 −2.95 −43.88 −41.24 35
7d5/2 7d3/2 2.95 43.88 41.24 35

|〈γ J ′‖T (2)‖γ J〉| in MHz/b
6p3/2 6p1/2 156.48 361.08 341.20 5.8
8p3/2 8p1/2 26.52 50.26 48.35 4.0
6d3/2 6d5/2 −11.04 −22.07 −21.60 2.4
7d3/2 7d5/2 −5.57 −9.78 −9.45 3.5
7d5/2 7d3/2 5.57 9.78 9.45 7.9

agonal matrix elements can provide reference for extracting �

of 133Cs by more precise experiments in the future.

D. Calculation and analysis of second-order effects

We calculate the off-diagonal hyperfine matrix ele-
ments for the five states and evaluate the influence of
second-order effects. Table VI shows the results of some
off-diagonal hyperfine matrix elements at different corre-
lation levels. “Unc.%” represents the percentage uncer-
tainty due to higher order correlation effect beyond the
CCSD method like in the case of A and B constants
in Tables III and IV, except for the |〈γ J ′‖T (1)‖γ J〉|

TABLE VII. HFS constants A, B, and C in MHz for the states of
6p3/2, 8p3/2, 6d3/2, 7d3/2, and 7d5/2 without and with the second-
order corrections.

∑
X�E × �E are the uncorrected A, B, and C

values, Xη × η are the second-order corrections due to the M1-M1
HFI, and Xζ × ζ are the second-order corrections due to the M1-E2
HFI. [y] denotes the power of 10: 10y.

HFS
∑

X�E × �E Xη × η Xζ × ζ

6p3/2

A 50.28825(23) 2.80(45)[−6] 6.35[−8]
B −0.4940(17) 1.18(19)[−4] −6.67[-7]
C 0.00056(7) 0.00 −1.67[-7]

8p3/2

A 7.609(8) 3.96(40)[−7] 8.77[−9]
B −0.005(40) 1.66(17)[−5] −9.21[-8]
C 0.016(4) 0.00 −2.30[-8]

6d3/2

A 16.338(3) 2.07(1.47)[−4] −3.29[-7]
B −0.136(24) −2.90(2.06)[−3] −1.15[-6]
C 0.0043(10) 0.00 4.11[−8]

7d3/2

A 7.3533(9) 7.38(5.24)[−5] −1.23[-7]
B −0.050(8) −1.03(73)[−3] −4.30[-7]
C −0.001073(530) 0.00 1.54[−8]

7d5/2

A −1.70867(62) 4.92(3.49)[−5] 3.51[−8]
B 0.050(14) 3.44(2.44)[−3] −6.15[-7]
C 0.0004(14) 0.00 −1.54[-7]
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of d3/2,5/2 states. As can be seen from Table VI,
for the |〈6d5/2‖T (1)‖6d3/2〉| and |〈7d5/2‖T (1)‖7d3/2〉|, the to-
tal electron correlation effect and the one represented by
the nonlinear term account for about 90% and 6.5% of
the corresponding CCSD results, respectively. It is noted
that the calculation of diagonal and off-diagonal matrix
elements should have a similar level of accuracy. Here
we define “�%” as the percentage difference between the
CCSD and experimental results relative to CCSD. “�%”
of A for d5/2 is 35%, which is much greater than the
theoretical uncertainty “Unc.%”. Here we take the root

mean square
√

(�Ad5/2
%)2 + (�Ad3/2

%)2 as the uncertainty of

|〈γ J ′‖T (1)‖γ J〉| between d5/2 and d3/2.
With these off-diagonal hyperfine matrix elements in

Table VI, we can calculate the second-order HFS constants,
and η and ζ , using Eqs. (11) and (12), where �JJ ′ can be
found in Table II. The expressions of A, B, and C given
in Sec. II B can be grouped into three parts: The first part
is

∑
X�E × �E , which represents A, B, C extracted from

experimental measurements based only on the first-order HFI
theory, i.e., the uncorrected A, B, C values. The second part
is Xη × η, which represents the correction to the first-order
HFS constants due to the second-order M1-M1 interaction.
And the third part is Xζ × ζ , which represents the correction to
the first-order HFS constants due to the second-order M1-E2
interaction, where X represents the coefficients of �EFF ′ , η,
or ζ in Eqs. (17)–(25). The calculated results of these three
parts are listed in Table VII.

In Table VII,
∑

X�E × �E are the uncorrected A, B, C
as mentioned above, and the uncertainties in parentheses are
derived from experimental values. However, we find that the∑

X�E × �E of the five states are the same as those in
Refs. [9,11–14], except for the B and C constants of the
7d3/2 state, where the uncorrected B and C we derived are
−0.050(8) MHz and −0.001073(530) MHz, respectively. The
corresponding values −0.041(8) MHz and −0.000027(530)
MHz are given in Ref. [13], which are obtained from a global
fitting to the average HFS equations under different conditions
based on the first-order HFI theory. It can also be seen from
Table VII that the contribution of the M1-E2 interaction terms
Xζ × ζ is on the order of mHz to Hz, which can be ignored
under the present experimental accuracy. Although the contri-
bution of the M1-M1 interaction term Xη × η is on the order
of Hz to kHz, this will lead to corrections for some small HFS
constants, which will be discussed next.

For the 6p3/2 state, the Xη × η has an effect on the last digit
of B, but it is consistent within the uncertainty. Beloy and

Derevianko calculated the second-order effects of the 6p3/2

state using the relativistic coupled-cluster method [55] and
obtained the corrections (i.e., Xη × η + Xζ × ζ in Table VII)
to A, B, and C being 2.38, 97.0, and −0.139 Hz, respectively,
which are consistent with our current conclusions. For the
8p3/2 state, the second-order effect can be ignored under the
current measurement accuracy. However, the second-order
effect will become important when the experimental accu-
racy is better than 10 Hz. The M1-M1 interaction terms
result in correction at the last digit of B for the 6d3/2 and
7d3/2,5/2 states. Similarly it also results in correction at the last
digit of A for the 7d5/2 state though within the experimental
uncertainty.

As can be seen from Table VII, the second-order correc-
tions due to the M1-M1 HFI on C are zero. For p3/2 and d3/2

states, the second-order corrections due to the M1-E2 HFI on
C are at the order of Hz. Therefore, when the measurement
accuracy reaches the order of Hz, the second-order effect on
C needs to be taken into account.

IV. SUMMARY

In this work, the first- and second-order HFS constants of
133Cs are calculated using the RCCSD method. The octupole
hyperfine-interaction diagonal matrix elements are also calcu-
lated, and it is found that the measurement accuracy of the
experiment needs to be further improved in order to accu-
rately extract the � of 133Cs. We have demonstrated that the
second-order effects cannot simply be neglected in deducing
the HFS constants from high-precision measurements of the
HFS intervals, especially for the B constant of the 6d3/2 and
7d3/2,5/2 states. When the measurement accuracy is further
improved by 1–2 orders of magnitude, the accurate extraction
of the HFS constants for the p3/2 state also needs to take
the second-order effects into account. The present calculation
can provide a reference for extracting the first-order HFS
constants in future high-precision experiments.
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