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Cross sections for single-electron capture from heliumlike targets by fast heavy nuclei
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Single charge-exchange in collisions of heavy bare nuclei with the ground state of two-electron atomic targets
is described perturbatively as a four-body problem. The employed four-body boundary-corrected continuum
intermediate state (BCIS-4B) method considers the correlated and uncorrelated target wave functions ϕi. A
thorough examination is performed for the formation of any final hydrogen-like nlm state of the captured
electron. For arbitrary projectile and target nuclear charges, the nine-dimensional integral in the transition
amplitude is reduced to a two-dimensional numerical quadrature. The general analysis is applied to one-electron
capture by protons from helium targets beginning with the lower edge (10 keV) of intermediate energies and
extending to the higher (12.5 MeV) domain. These include the main peaks (Massey, Thomas) due to single
and double scattering, respectively. The results encompass over 70 state-selective and state-summed cross
sections (n � 6, 0 � l � n − 1, −l � m � l ). In comparison to measurements, the electronic correlations in
ϕi greatly improve the overall performance of the BCIS-4B method around the Massey peak, below about
100 keV. Moreover, while largely outperforming the three-body boundary-corrected continuum intermediate
state method, the cross sections in the BCIS-4B with the correlated ϕi compare excellently overall with the
available experimental data at 10 to 12 500 keV. Hence, the BCIS-4B method, with its built-in two main capture
mechanisms (one-step Massey and two-step Thomas) is capable of spanning impact energies covering three or
more orders of magnitude at which the state-summed cross sections vary over 11 orders of magnitude.

DOI: 10.1103/PhysRevA.107.052806

I. INTRODUCTION

Charge-exchange in collisions of heavy nuclei with atomic
targets has been the subject of intense experimental and theo-
retical studies over the years. Developments in this problem
area were driven by two main reasons. One is the fun-
damental importance of interactive dynamics in collisions
involving particle rearrangements. The other is in cross-
disciplinary applications ranging from astrophysics [1,2] and
plasma physics [3–6] through thermonuclear fusion [3–8] to
ion transport physics in radiotherapy for medicine [9–21]. On
the theoretical side, explored in detail were both the pertur-
bative (Born-type, distorted-wave-type) methods [22–29] and
the nonperturbative [atomic expansions (AE), close coupling
(CC)] methods [30–37].

The present study is within the quantum-mechanical
perturbative distorted wave formalism for one-electron cap-
ture by heavy nuclei of charge ZP from two-electron
atomic targets (ZT ; e1, e2)1s2 of nuclear charge ZT . This pro-
cess is symbolized as ZP + (ZT ; e1, e2)1s2 → (ZP, e1)nlm +
(ZT , e2)1s, where the captured electron is taken to be in an
arbitrary nlm state (ZP, e1)nlm while, as an example, the tar-
get remainder (ZT , e2)1s is left in its ground state (1s). The
four-body boundary-corrected continuum intermediate state
(BCIS-4B) method is extended to this general process. An ear-
lier application of this method dealt only with the ground state
(nlm = 1s) of the transferred electron [38]. All four particles
were treated as active participants to every considered transi-
tion (1s2 → nlm). The BCIS-4B method satisfies the correct

boundary conditions in both the entrance and exit channels,
following the prescriptions of the Coulomb scattering theory
[22–26,39–41].

Often, single charge-exchange in the original ZP +
(ZT ; e1, e2)1s2 four-body collisions has been described in
an effective one-electron framework, where the noncaptured
electron e2 is taken as passive from the onset. As such, the
only trace of e2 in the ensuing effective model is in a partial
shielding of the bare nuclear charge ZT . In other words, the
modeled target nucleus acquires a screened charge Zeff

T < ZT

on account of the presence of e2. In this formalism, the target
active electron e1 experiences an effective potential V eff

T gen-
erated by ZT and the passive electron e2. As an approximation
of the Roothan-Hartree-Fock (RHF) interaction V RHF

T , the po-
tential V eff

T has usually been chosen to be purely Coulombic
[42], static or their sum [32], and so on.

Due to the complete disappearance of e2, the effective one-
electron problem becomes amenable to descriptions by purely
three-body methods. In this setting, different one-electron tar-
get wave functions were used (hydrogen-like, RHF, etc). Even
within a Coulombic V eff

T , various choices of Zeff
T were made

(e.g., the Slater-Hylleraas or the binding-energy screenings
(BES), etc. [23]). Examples of such simplified perturba-
tive theories are the three-body versions of the continuum
distorted wave (CDW-3B) method [22] and the boundary-
corrected continuum intermediate state (BCIS-3B) method
[42]. It is of interest to learn about the possible differences
between the three- and four-body formalisms. We shall juxta-
pose the findings from the BCIS-3B and BCIS-4B methods.
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NENAD MILOJEVIĆ et al. PHYSICAL REVIEW A 107, 052806 (2023)

In Ref. [42] for the BCIS-3B method, the mentioned one-
electron formalism was employed, describing the ground state
of a two-electron target by a hydrogen-like wave function with
the standard effective or screened Slater-Hylleraas nuclear
charge Zeff

T .
The BCIS-4B method in its prior version is a hybrid

distorted-wave scattering formalism [25,38]. It coincides
with the four-body boundary-corrected first Born (CB1-
4B) method [43,44] in the entrance channel. This BCIS-4B
method is the same as the associated four-body continuum
distorted wave (CDW-4B) method [26,41,45] in the exit chan-
nel. Moreover, the perturbation potential Vi in the transition
amplitude of the prior BCIS-4B method is identical to that
in the prior CB1-4B method. In the entrance channel, the
prior BCIS-4B method includes a single Coulomb distortion
caused by the relative motion of the two heavy scattering
aggregates in the residual field ZP(ZT − 2)/R, which is the
asymptotic value of Vi at large internuclear separations R. The
exit channel of the BCIS-4B method contains the product of
the two distorting factors. One distortion is the electronic full
Coulomb wave function for the two point charges {e1, ZT −
1}. The other factor is the Coulomb distortion for the rel-
ative motion of heavy particles governed by the asymptotic
potential ZP(ZT − 1)/R. Here, ZT − 1 indicates that the bare
nuclear charge ZT is considered as being screened by non-
transferred electron e2 in the target remainder (ZT , e2)1s. The
ionization channel dominates over capture at high energies.
Therefore, inclusion of the transient ionization continua can
appreciably alter the probability of single charge-exchange.

The underlying physical mechanism in the BCIS-4B
method assumes that the active electron is first ionized and
then captured from a continuum into the bound nlm state
(ZP, e1)nlm around the scattered projectile ZP. It is because of
these transient ionizing continuum intermediate states in the
exit channel that the prior BCIS-4B method is categorized as
a second-order distorted wave theory. The said two-step mech-
anism secures a perturbative quantum-mechanical description
of the classical billiard-type Thomas double scattering [40].
This second-order effect refers to two successive collisions of
the active electron e1, one with the projectile and the other
with the target nucleus, ZP − e1 − ZT . In differential cross
sections, such an effect yields a peak at a critical angle θc =
(1/MP ) sin 60◦ mrad in the laboratory system, independent
of incident velocity v. Here, MP is the mass of ZP, so that
for protons as projectiles, it follows that θc = 0.472 mrad in
the laboratory system. At sufficiently high impact energies
E , differential cross sections that include the Thomas double
scattering dominate over the direct collisional pathway ZP −
e1, which is responsible for the kinematic, velocity-matching
capture of e1. This dominance is not restricted to angular
distributions alone. Quite the contrary, unlikely as it may
seem at first, the high-energy asymptotes of the total cross
sections (for any s → s transition) that include the two-step
collisions fall off more slowly as v−11 relative to the v−12

decline caused by the one-step collisions [40].
All the previous applications of the BCIS-3B and BCIS-4B

methods [25,38,46–48] were concerned only with the ground-
to-ground-state capture processes. Recently, the BCIS-3B
method was generalized to transitions involving any final
nlm state of the transferred electron [42,49,50]. This is

a motivation to extend also the BCIS-4B method to one-
electron capture into an arbitrary hydrogen-like nlm state by
bare multiply charged heavy nuclei from the ground state
of helium-like atomic targets. For this collision, the conse-
quences of the two extra effects in the BCIS-4B method
are investigated. One is the interelectronic correlation effects
in the two-electron target wave functions. The other is an
additional channel for the capture of electron e1 by way of
the Coulomb interaction ZP − e2 between the nontransferred
electron e2 and ZP. Neither effect is included in the BCIS-3B
method [42], which, as stated, replaced the original four-body
ZP + (ZT ; e1, e2)1s2 collision with two active electrons by its
three-body charge-exchange companion involving explicitly
only one electron. In the latter scattering, the noncaptured
electron e2 and the e1 − e2 correlations are absent altogether.

First, we will succinctly outline the announced update
of the BCIS-4B method for the mentioned general charge-
exchange problem with the usage of the two-electron target
wave function of Silverman et al. [51] with its 95% ra-
dial static correlations. This upgrade is also adaptable to
the corresponding two-electron uncorrelated wave function
of Hylleraas [52]. With both the correlated and uncorrelated
target wave functions, a large reduction, by analytical means,
is carried out of the starting nine-dimensional integral from
the transition amplitude Ti f for an arbitrary final hydrogen-
like nlm state of the captured electron. The outcome of a
protracted analysis is a two-dimensional numerical quadra-
ture for Ti f . This is of notable practical relevance since one
of the bottlenecks of a number of the second-order pertur-
bative methods is precisely the occurrence of the Coulomb
multi-dimensional integrals in Ti f . Such a stumbling block
is especially exacerbated when both differential (dQ/d�)i f

and total Qi f cross sections contain the Coulomb distorting
functions for electronic and nuclear motions, as in the BCIS-
4B method. The accomplished dimensionality reduction in
this theory cannot be overstated since, with exactly the same
analytical procedure, the original seven-dimensional integral
in Ti f for the BCIS-3B method for any final hydrogen-like nlm
state is also reduced to a two-dimensional quadrature [42].
Customarily, four-body methods are computationally much
more demanding than their three-body counterparts. For in-
stance, the transition amplitudes in the CDW-3B and CDW-4B
methods for single charge-exchange are given by a completely
analytical expression [22] and by a three-dimensional numer-
ical quadrature [45], respectively.

Second, the general result for Ti f in the BCIS-4B method
is used to compute Qi f and (dQ/d�)i f for the process
H+ + He(1s2) → H(nlm) + He+(1s) in a broad range of in-
termediate and high energies (E = 10–12 500 keV). Some
simpler theories, e.g., the CB1 method [or the eikonal ap-
proximation (EA) or symmetric-eikonal (SE) approximation,
etc.] may give reasonable results for Qi f , but only at energies
where the two-step mechanism is insignificant. However, with
the double scattering neglected in such first-order methods,
the Thomas peak is invariably absent from, e.g., (dQ/d�)1s

and, moreover, the ensuing total cross section Q1s ∼ v−12 is at
variance with the correct result Q1s ∼ v−11 (v � 1 a.u.). It is
then important to have a single perturbative theory capable of
simultaneously yielding good results for Qi f and (dQ/d�)i f

from the onset of intermediate E (a few tens of keV, around
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the Massey peak) up to high energies (tens of MeV, covering
the Thomas peak).

The present state-resolved and state-summed cross sec-
tions in the BCIS-4B method include over 70 transitions
1s2 → nlm for 1 � n � 6 with all the degenerate lm sublevels
of the captured electron. Cross sections Q� for any nlm are
deduced from Qn (summed over lm) by assuming the n−3

population of the excited states H(n). The selections of en-
ergies E and the {nl, n, �} states in H(nl, n, �) are guided
by the availability of the measured cross sections. The corre-
sponding experimental data exist for the formation of H(nl )
with n � 4 (2s, 2p, 3s, 3p, 3d, 4s) and H(n) with 2 � n � 6
as well as for H(�) (all n) [32,53–89]. The goal in comparing
these experiments with our theoretical results is to determine
whether the BCIS-4B method can systematically and reliably
describe the measured cross sections. Such comparisons also
include the BCIS-3B method for Qi f and (dQ/d�)i f to assess
the anticipated advantages of passing from a three- to a four-
body theory.

Additionally, special attention is paid to evaluate the in-
fluence of the said two extra effects in the present four-body
formalism. As stated, one is a supplementary capture chan-
nel, where electron e1 is transferred to the projectile by the
action of electron e2 through the ZP − e2 Coulomb potential,
included in the perturbation interaction Vi. The other is the
e1 − e2 correlation in the two-electron target wave function
of Silverman et al. [51] as compared to the associated two-
electron uncorrelated Hylleraas orbitals [52].

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

We examine single-electron capture in collisions of a fast
heavy projectile nucleus P of mass MP and charge ZP with a
two-electron atomic target, assumed to be in its singlet state
(1s2 : 1S), with its total spin equal to zero. In such a helium-
like atomic target, the two electrons are indistinguishable,
except for having different spin projections (up and down).
This permits two separate calculations of the probabilities for
the capture of either electron. Since neither probability de-
pends on spin, the total probability is two times the probability
for capture of either electron. The equivalent procedure, using
no spin-dependent interactions, allows from the onset to con-
sider the two electrons as distinguishable in the ground singlet
state of a helium-like target. In such a setting, e.g., the electron
e1 can be viewed as being captured, while electron e2 would
be in the target single charged ion. The calculated probability
shall be the same if electrons e1 and e2 were to exchange their
roles. Therefore, it suffices to find the probability of only one
of these two equivalent pathways and subsequently double the
result.

This four-body problem with transfer of e1 from a target to
a projectile is customarily schematized as

ZP + (ZT ; e1, e2)1s2: 1S −→ (ZP, e1)nlm + (ZT , e2)1s. (1)

Here, the parentheses symbolize the bound states and nlm is
the triple of the standard quantum numbers of the hydrogen-
like system formed by way of the capture of electron e1 by
ZP. Let �x j and �s j be the position vectors of e j relative to ZT,P,

respectively ( j = 1, 2). The position vector of ZP with respect
to ZT is labeled by �R, where �R = �x1 − �s1 = �x2 − �s2. Further,
in the entrance channel, let �ri be the position vector of ZP

relative to the center of mass of (ZT ; e1, e2)1s2 . Likewise, in the
exit channel, let �r f be the position vector of the center of mass
of (ZT , e2)1s with respect to the center of mass of (ZP, e1)nlm.

The prior form of the transition amplitude in the BCIS-4B
method for collision (1) is defined by

Ti f = 〈χ−
f |Vi|�+

i 〉, Vi = Vi,P1 + Vi,P2,

Vi,P j = ZP

R
− ZP

s j
( j = 1, 2). (2)

Perturbation potential Vi is of short-range at R → ∞ and so
are its two components Vi,P1 and Vi,P2. In process (1), the
direct capture mechanism is by the interaction Vi,P1 of e1 with
ZP. Additionally, an indirect capture of e1 is also possible
through an extra channel by the interaction Vi,P2 of e2 with
ZP. This indirect capture of e1 is mediated by the e1 − e2

correlation in the target. It is then important that the BCIS-
4B method uses a highly correlated wave function for target
(ZT ; e1, e2)1s2: 1S . The wave function of Silverman et al. [51]
with its 95% of all the radial correlations was used in Ref. [38]
for process (1) with nlm = 1s and will also be employed in the
present work for an arbitrary triple nlm.

With the Coulomb distortions E±
i, f =e±iνi, f ln(vR∓�v· �R ), the

channel states are �+
i =ϕi(�x1, �x2)ei�ki ·�riE+

i and

χ−
f = N−(νT )√

2
e−i�k f ·�r f E−

f [ϕnlm(�s1 )ϕ1s(�x2)

× 1F1(−iνT , 1,−ivx1 − i�v · �x1 ) + exc(1, 2)], (3)

where exc(1, 2) symbolizes repetition of the preceding term
in the square brackets by interchanging the role of two elec-
trons. Here, νi = ZP(ZT − 2)/v, ν f = ZP(ZT − 1)/v, νT =
(ZT − 1)/v, and N−(νT ) = eπνT /2
(1 + iνT ). The velocity

vector �v of projectile P is along the Z axis (�v = v �̂Z). The
function N−(νT )1F1(−iνT , 1,−ivx1 − i�v · �x1) in χ−

f is a part
of the electronic full continuum Coulomb wave function for
the attractive potential −(ZT − 1)/x1. The quantity ZT − 1
is the charge of the screened target core (ZT , e2)1s. The
symbol 
 denotes the gamma function and 1F1(a, b, z) is
the confluent hypergeometric function. Furthermore, �ki and
�k f are the initial and final wave vectors, respectively. Wave
function ϕi(�x1, �x2) is the two-electron singlet ground-state
wave function of target (ZT ; e1, e2)1s2: 1S. Also ϕnlm(�s1) and

ϕ1s(�x2) =
√

Z3
T /πe−ZT x2 are the bound-state wave functions

of the hydrogen-like atomic systems (ZP, e1)nlm and (ZT , e2)1s

of binding energies E f1 = −Z2
P/(2n2) and E f2 = −Z2

T /2, re-
spectively. According to the remark made in the paragraph
preceding Eq. (1), the same result for the transition amplitude
Ti f would be obtained if the second term exc(1, 2) in Eq. (3) is
omitted and the remaining expression multiplied by

√
2. This

is how we will presently proceed.
In Eq. (2), the product E+

i E−�
f in �+

i χ−∗
f gives a sin-

gle �R-dependent term E+
i E−�

f = (ρv)2iνi (vR + �v · �R)iξ . Here,

ξ = ZP/v and �ρ is the projection of vector �R onto
the XOY plane (�ρ = �R − �Z , �ρ · �Z = 0). The distortion

052806-3
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(ρv)2iνi ≡ (ρv)2iZP (ZT −2)/v is due to the Coulomb repulsion
between ZP and ZT − 2. The multiplying term (ρv)2iνi does
not contribute to the total cross section for any values of
ZP and ZT [23]. In the special case for a helium target
(ZT = 2), the phase factor (ρv)2iZP (ZT −2)/v reduces to unity.
As such, differential cross sections in the BCIS-4B method
are proportional to |Ti f |2 and this obviates a difficult numer-
ical quadrature in the Fourier-Bessel transform with a highly
oscillatory integrand [23].

In the eikonal mass limit (1/MP,T � 1) and at small scat-
tering angles, Eq. (2) reads as

Ti f (�η ) = ZPN−∗(νT )
∫∫∫

d�s1d�s2d �Rϕ∗
nlm(�s1)ϕ∗

1s(�x2)

×
(

2

R
− 1

s1
− 1

s2

)
ϕi(�x1, �x2) ei�ki ·�ri+i�k f ·�r f

× 1F1(iνT , 1, ivx1 + i�v · �x1)(vR + �v · �R)iξ , (4)

�ki · �ri + �k f · �r f = �α · �s1 + �β · �x1

= −�v · �x1 − �α · �R = −�v · �s1 + �β · �R, (5)

where �α = �η − αz �̂v, �β = −�η − βz �̂v, and �̂v = (1/v)�v. Fur-
ther, �α + �β = −�v, αz = v/2 − (1/v)�E , and βz = v/2 +
(1/v)�E . Here, �E = Ei − (E f1 + E f2 ), where Ei is the
binding energy of the ground state of a two-electron tar-
get. The transverse momentum transfer is denoted by �η =
(η cos φη, η sin φη, 0), where �η · �v = 0. The wave function
of the initial ground state of a two-electron target will be
taken as ϕi(�x1, �x2) = ∑

k1, k2
ϕαk1

(�x1)ϕαk2
(�x2). Here, ϕαs (�r ) =

Nαs exp(−αsr), Nαs = as

√
N (s = k1, k2) and N is the nor-

malization constant. The numbers k1 and k2 as well as
the variationally determined parameters αs and as depend
on the choice of wave function. Using 1F1(iνT , 1, ivx1 +
i�v · �x1 ) = ∫ 1

0 dτ f (τ )ei(vx1+�v·�x1 )τ /[
(iνT )
(1 − iνT )], where

f (τ ) = τ iνT −1(1 − τ )−iνT , the transition amplitude Ti f from
Eq. (4) becomes

Ti f (�η ) = M
∫ 1

0
dτ f (τ )Pi f (τ ), M = N−∗(νT )


(iνT )
(1 − iνT )
,

(6)

Pi f (τ ) =
∑
k1,k2

Nαk1
Nαk2

∫
d �R ei�β· �R(vR + �v · �R )iξK( �R ),

(7)

K( �R ) = ZP

∫∫
d�s1 d�s2 ϕ∗

nlm(�s1 )ϕ∗
1s(�x2 ) e−i�v·�s1

×
(

2

R
− 1

s1
− 1

s2

)
e−αk2 x2ψk1 (�x1)

= ZP

[
2

R
W (k1, k2 )

R ( �R ) − W (k1, k2 )
s1

( �R ) − W (k1, k2 )
s2

( �R )

]
,

(8)

W (k1, k2 )
R ( �R ) = Ak1Ck2 , W (k1, k2 )

s1
( �R ) = Bk1Ck2 ,

(9)
W (k1, k2 )

s2
( �R) = Ak1Dk2 ,

Ak1 =
∫

d�s1ϕ
∗
nlm(�s1) e−i�v·�s1ψk1 (�x1),

Bk1 =
∫

d�s1ϕ
∗
nlm(�s1)

1

s1
e−i�v·�s1ψk1 (�x1), (10)

Ck2 =
∫

d�s2 ϕ∗
1s(�x2 ) e−αk2 x2 = 8

√
πZ3/2

T

γ 3
k2

,

Dk2 =
∫

d�s2
1

s2
ϕ∗

1s(�x2 ) e−αk2 x2 , (11)

where ψk1 (�x1) = e−αk1 x1+i(vx1+�v·�x1 )τ and γk2 = ZT + αk2 . With
ϕnlm(�s1) for any nlm, the results for integrals Ak1 , Bk1 , and
Dk2 can be collected from Refs. [24,38,42], so that

Ak1 = 4μk1

√
πNZP

f (−i)l
nr∑

p=0

Cp

2nl (nl − 2)!

l∑
λ1=|m|

(−i)λ1�(λ1, v)
∫ 1

0
dt

tnl −2(1 − t )λ2+1

�2nl −2λ1−1
e−i �Qβ · �RB(�)

ν2λ1,−m( �R),

Cp = (−nr )p(n + l + 1)p

(l + 3/2)p p!
, (12)

Bk1 = μk1

√
π

NZP
f

ZP
(−i)l

nr∑
p=0

Cp

2nl −2(nl − 3)!

l∑
λ1=|m|

(−i)λ1�(λ1, v)
∫ 1

0
dt

tnl −3(1 − t )λ2+1

�2nl −2λ1−3
e−i �Qβ · �RB(�)

ν1λ1,−m( �R),

nr = n − l − 1, a f = ZP

n
, (13)

Dk2 = 4
√

πZ3/2
T

γ 2
k2

[
2

γk2 R
−

(
1 + 2

γk2 R

)
e−γk2 R

]
, nl = p + l + 3, (14)

�(λ1, v ) = (−1)m

√
4π

(λ1|lm)vλ2 (1 − τ )λ2 , NZP
f = 16πZP

[
a3

f

n

(n + l )!

nr!

]1/2
l!(4a f )l

(2l + 1)!
, (15)

(λ1|lm) =
[

(2l + 1)

(2λ1 + 1)

(l + m)!

(λ1 + m)!

(l − m)!

(λ1 − m)!(λ2!)2

]1/2

, λ1 + λ2 = l, μk1 = αk1 − ivτ, (16)

�2 = v2
1t (1 − t ) + a2

f t + μ2
k1

(1 − t ), �v1 = (1 − τ )�v, �Qβ = [(τ − 1)t − τ ]�v, (17)
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where ν j = n j − λ1 and n j = nl + j − 2 ( j = 1, 2). Here, B(�)
ν jλ1,−m( �R) = k̂ν j−1/2(R�)Yλ1,−m( �R ) is the B function [90],

k̂ν j−1/2(R�) = √
2/π (R�)ν j−1/2Kν j−1/2(R�) is the reduced Bessel function, and Kν j−1/2(R�) is the McDonald function [91].

The regular solid harmonic is Ylm(�q ) = qlYlm( �̂q ), where Ylm( �̂q ) is the usual spherical harmonic. Thus, we can write

Pi f (τ ) = 16πZPZ3/2
T (−i)lNZP

f

∑
k1,k2

Nαk1
Nαk2

μk1γ
−3
k2

nr∑
p=0

Cp

2nl (nl − 2)!

l∑
λ1=|m|

(−i)λ1�(λ1, v)
∫ 1

0
dt

tnl −3(1 − t )λ2+1

�2nl −2λ1−3

×
[

2t

�2
I (p, λ1 )
0 − 2(nl − 2)

ZP
I (p, λ1 )
1 + 2t

�2
I (p, λ1 )
k2, 0 + t

�2
γk2 I (p, λ1 )

k2, 1

]
, (18)

I (p, λ1 )
δ =

∫
d �R(vR + �v · �R )iξ e−i �Q· �RB(�)

ν2−δλ1,−m( �R )R δ−1, (19)

I (p, λ1 )
k2, δ

=
∫

d �R (vR + �v · �R )iξ e−i �Q· �Re−γk2 RB(�)
ν2λ1,−m( �R )R δ−1 ; δ = 0, 1. (20)

The results for I (p, λ1 )
δ and I (p, λ1 )

k2, δ
are available from Refs. [24,42,43] in the following forms:

I (p, λ1 )
δ = 4π (−2i)λ1

(
2nδ

p

)
!

nδ
p!

nδ
p∑

pr=0

(−nδ
p)pr(−2nδ
p

)
pr

2pr−nδ
p

pr!
�pr G(δ,�0 )

prλ1,−m( �Q ), (21)

I (p, λ1 )
k2, δ

= 4π (−2i)λ1
(2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr!
�pr G(δ, �1 )

prλ1,−m( �Q ), (22)

G(δ,�ω )
prλ1,−m( �Q ) =

pδ∑
k=0

λ1∑
l1=|m|

�ω
kl1 (δ)Dl1,−m( �Q · �v ) ; ω = 0, 1, (23)

Dl1,−m( �Q · �v ) = (l1|λ1m)(−iv)l2Yl1,−m( �Q ), (24)

(l1|λ1m) =
[

(2λ1 + 1)

(2l1 + 1)

(λ1 + m)!

(l1 + m)!

(λ1 − m)!

(l1 − m)!(l2!)2

]1/2

, (25)

�ω
kl1 (δ) = (

aω
δ bω

δ

)
3F2

(
−kδ,−k̃δ, 1 − iγ1; k + λ1 + 1,−pδ − λ1;

1

Aω

)
, (26)

aω
δ = 
(1 + iξ )(λ1 + 1)pδ

(2Dω )pδ

(�2
ω + Q2)λ1

Fω, Fω = Biξ
ω

�2
ω + Q2

, (27)

bω
δ = (1 + iξ )l1 (−iξ )l2

(Bω )l2

(−pδ )k (iζ2)k

(λ1 + 1)k

(−1)k (Cω )k

k!
, (28)

3F2

(
−kδ,−k̃δ, 1 − iγ1; kλ,−pδ − λ1;

1

Aω

)
=

[kδ ]∑
u=0

(−kδ )u(−k̃δ )u(1 − iγ1)u

(kλ)u(−pδ − λ1)uu!

(
1

Aω

)u

, (29)

Aω = �2
ω

�2
ω + Q2

, Bω = 2(v�ω − i �Q · �v )

�2
ω + Q2

, Cω = v

Bω�ω

− 1, Dω = Aω

�ω

, (30)

where �0 ≡ �, �1 = �0 + γk2 , np = n − λ1 − 1, pδ = pr + δ, nδ
p = np − δ, kδ = (pδ − k)/2, k̃δ = kδ − 1/2, λ1 = l1 +

l2, γ1 = −ξ + il1, kλ = k + λ1 + 1, ζ2 = −ξ − il2, (α)k is the Pochhammer symbol (α)k = α(α + 1)(α + 2) · · · (α + k − 1)
with (α)0 = 1, 3F2 is the Clausen generalized hypergeometric polynomial [92], and the notation [kδ/2] signifies the largest
integer contained in the fraction kδ/2.

The expounded outlines complete the analytical calculation of seven out of nine integrals in Ti f which is thus reduced to a
two-dimensional numerical quadrature

Ti f (�η ) = N
∑
k1,k2

Nαk1
Nαk2

γ 3
k2

∫ 1

0
dτ f (τ )μk1

nr∑
p=0

l∑
λ1=|m|

(−2)λ1Cp�(λ1, v)
[
X (λ1,pr )

0 − X (λ1,pr )
1

]
, N = 16π2ZPZ3/2

T (−i)l eπνT /2


(iνT )
,

(31)
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X (λ1,pr )
δ =

(
2nδ

p

)
!NZP

f

2nl −2−δZδ
P(nl − 2 − δ)!nδ

p!

nδ
p∑

pr=0

(−nδ
p)pr(−2nδ
p

)
pr

2pr−nδ
p

pr!

∫ 1

0
dt

tnl −δ−2(1 − t )λ2+1

�2(nl −λ1−δ)−pr−1

×
{[

2G(0, �0 )
prλ1,−m( �Q ) + 2G(0, �1 )

prλ1,−m( �Q ) + γk2 G(1, �1 )
prλ1,−m( �Q )

]1−δ + [
G(1, �0 )

prλ1,−m( �Q )
]δ

}
. (32)

The differential cross sections (in the center of mass system) and total cross sections are defined by

dQi f

d�

(
a2

0

sr

)
= μ2

4π2
|Ti f (�η )|2, Qi f (πa2

0) = 1

2π2v2

∫ ∞

0
dηη|Ti f (�η )|2, (33)

where μ = MPMT /(MP + MT ) is the reduced mass of the
projectile and target nuclei and “sr” stands for steradians. In
Qi f , the integral over angle φη from �η is equal to 2π since Ti f

does not depend on φη. The integrals over the real variables t
and τ are carried out numerically with the Gauss-Legendre
quadratures. For integration over τ, the Cauchy regulariza-
tion of function f (τ ) is employed [25,38]. As in Ref. [93],
the remaining integration over η can also be performed by
the Gauss-Legendre quadrature after a variable change such
as η = (1 + x)

√
2/(1 − x2), where x ∈ [−1,+1]. This scales

the integration points in Qi f toward the dominant forward
cone. Alternatively, one can use the Gauss-Laguerre quadra-
ture over η with a scaling η′ = η/γ , where parameter γ

(which varies for different impact energies E ) is chosen to
preponderantly concentrate the integration grid within the for-
ward direction.

III. RESULTS

The outlines for process (1) will now be applied to one-
electron capture by protons from helium targets:

H+ + He(1s2 : 1S) −→ H(nlm) + He+(1s), (34)

H+ + He(1s2 : 1S) −→ H(nl ) + He+(1s), (35)

H+ + He(1s2 : 1S) −→ H(n) + He+(1s), (36)

H+ + He(1s2 : 1S) −→ H(�) + He+(1s). (37)

The presently computed cross sections, using the two-
electron correlated and uncorrelated wave functions of
He(1s2 : 1S) from Refs. [51,52] will be referred to as
the “BCIS-4B (Silv)” and “BCIS-4B (Hyll)” methods, re-
spectively. The correlated wave function from Ref. [51]
is an open-shell (1s1s′) two-parameter wave function,
ϕi(�x1, �x2) = N (e−α1x1−α2x2 + e−α2x1−α1x2 ) with the binding
energy Ei = −2.8756614 and the normalization constant
N = [(α1α2)−3 + (α1/2 + α2/2)−6]−1/2/(π

√
2), where α1 =

2.183171 and α2 = 1.18853. The uncorrelated wave function
from Ref. [52] is a closed-shell (1s1s) one-parameter wave
function, ϕi(�x1, �x2) = (Zeff

T )3π−1e−Zeff
T (x1+x2 ) with the effec-

tive target nuclear charge Zeff
T = ZT − 5/16 = 1.6875 and the

binding energy Ei = −2.84765625. Both the BCIS-4B (Silv)
and BCIS-4B (Hyll) methods are employed for total cross
sections. For differential cross sections, only the BCIS-4B
(Silv) method is shown. Thus, in Sec. III when dealing with

dQ/d�, the abridged acronym “BCIS-4B” will mean “BCIS-
4B (Silv).”

For more than 70 transitions 1s2 → nlm, total and dif-
ferential cross sections are reported at impact energies E =
10–4000 keV and E = 30–12 500 keV, respectively. State-
selective cross sections are denoted by Xnlm with X =
Q (total) or X = dQ/d� (differential). The cross sec-
tions summed over all the pertinent values of m and lm are
labeled by Xnl and Xn, respectively. The cross section X�,nmax

refers to the sum of Xn (1 � n � nmax) for a fixed maximum
value nmax of n. In the cross sections summed over all n,

the approximate contributions of the states with n > nmax are
included by the Oppenheimer n−3 scaling rule [94,95]

X�,2 = X1 + 1.616X2, X�,3 = X1 + X2 + 2.081X3,

X�,4 = X1 + X2 + X3 + 2.561X4. (38)

The role of the final excited states is known to be lessened
with the increased E . We use nmax = 2, 3, and 4 to arrive at
X�,2, X�,3, and X�,4, respectively. The difference between the
obtained results for X�,3 and X�,4 is completely negligible,
and at higher E , so is the discrepancy between X�,2 and X�,3.

Theoretical state-selective and state-summed cross sec-
tions are compared with the experimental data available from
different measurements [32,53–89]. As to formation of the
target remainder He+(n′l ′m′), only the cross sections for
n′l ′m′ = 1s (ground state) are included in our computations.
The estimates of the contributions from all the excited n′l ′m′
states of He+(n′l ′m′) do not exceed 5% according to both
theory and measurements [23,96–98]. The quoted measure-
ments for state-resolved and state-summed transitions refer
to total cross sections. The measured differential cross sec-
tions (angular distributions) in the cited references are for the
state-summed transitions alone, i.e., for (dQ/d�)� .

The total Q (Figs. 1 to 3) and differential dQ/d� (Figs. 4
to 8) cross sections computed at 10 to 4000 and 30 to
12 500 keV, respectively, are accurate to within two decimal
places (the tabular data are available from the authors upon
request). Cross sections Q�,nmax at 10 to 4000 keV are for
nmax = 4 and (dQ/d�)�,nmax at 30 to 12 500 keV are for
nmax = 1–4. Whenever it is unnecessary to specify the value
of nmax, we shall write Q� and (dQ/d�)� . In the ordinates of
Figs. 1 to 8, no subscript will be indicated in Q nor in dQ/d�.
It will be clear from the context whether Q and dQ/d� refer
to the given state-selective or state-summed cross sections.
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FIG. 1. Formation of H(nl ), H(n = 2), and H(n = 3) in the H+ + He(1s2) collisions (35) and (36).

A. Total cross sections

In Figs. 1 to 3, our total cross sections are
{Q2s, Q2p, Q2} [Fig. 1(a)], {Q3s, Q3p, Q3d , Q3} [Fig. 1(b)],
{Q4s, Q4p, Q4d , Q4 f , Q4} [Fig. 2(a)], Q5 [Fig. 2(b)], Q6

[Fig. 3(a)], and Q�,4 [Fig. 3(b)]. Therein, the results of the
BCIS-4B (Silv) and BCIS-4B (Hyll) methods are given by
the full lines drawn in black and red colors, respectively.
If both these lines appear on the same plot, the black full
lines are labeled by “Silv” to refer to the correlated wave
function ϕi of Silverman et al. [51]. However, in the legends
to the figures, the sole acronym BCIS-4B, without specifying
“Silv” or “Hyll,” will always imply the BCIS-4B (Silv)
method (in accordance with the same convention already
stated for dQ/d�). The dashed lines in Figs. 1 to 3 are for the
BCIS-3B method [42] and the red-filled star-symbols are for
the close-coupling (CC) method [33].

The measured state-resolved and state-summed total cross
sections, shown in Figs. 1 to 3, exist for Q2s, Q2p, Q2, Q3s,
Q3p, Q3d , Q3, Q4s, Q4, Q5, Q6, and Q� . Remarkably, most
of these measurements, performed during the past 70 years
by means of different techniques, are seen in Figs. 1 to 3
to be in reasonable mutual agreement at E � 50 keV, i.e.,
slightly above the Massey peaks. Around and below 50 keV,
down to 10 keV, depending on the particular values of nl in
Qnl , the quality of the existing experimental data from dif-
ferent measurements is visibly uneven. In particular, the most
pronounced such discrepancies, e.g., within even an order of
magnitude at 10 keV, are for Q2s [Fig. 1(a)]. Also above the
Massey peak, there are some occasional disagreements among
a few measured cross sections [notably for Q3d in Fig. 1(b)].

For Qnl , Qn and Q� (Figs. 1 to 3), the BCIS-4B (Silv)
results are generally in excellent agreement with the corre-
sponding measured cross sections. Both the BCIS-4B (Silv)

results and the measured cross sections exhibit the Massey
peaks at the similar positions. The observed differences in
the locations of the Massey peaks in the BCIS-4B (Silv) and
BCIS-4B (Hyll) predictions are due to the usage of different
values for the collisional energy defect �E , depending on the
initial and final binding energies. For n = 2, 3, and 4, cross
sections Qnl and Qn are plotted together in Figs. 1 and 2(a) to
directly visualize the relative contributions of Qnl to Qn.

Below about 100 keV (Figs. 1 to 3), the cross sections in
the BCIS-4B (Silv) method lie markedly above those in the
BCIS-4B (Hyll) method. However, at 100 to 1000 keV, the
BCIS-4B (Silv) and BCIS-4B (Hyll) methods are very close
to each other as well as to the cross sections in the BCIS-3B
method. Further, for Q2s, Q2p, Q2, Q3s, Q3p, Q3d , Q3, and Q�

at 50-200 keV, the BCIS-4B (Silv) method is in good accord
with the CC method [33]. An exception is noted for Q3d at 200
keV where the CC method overestimates (within a factor of 4)
the measured cross section [66], which is seen to be perfectly
represented by the BCIS-4B (Silv) method.

For spherically symmetric states (l = 0) in Figs. 1 and 2(a),
the BCIS-4B (Silv) results agree favorably with the measured
cross sections starting above or equal to 30, 25, and 40 keV
for Q2s, Q3s, and Q4s, respectively. For Q2s, particularly below
30 keV, a large scatter of the existing experimental data from
different recordings hampers testings of the depicted theoret-
ical line shapes and calls for new measurements to clarify the
situation. However, regarding Q3s and Q4s, various measure-
ments are mutually concordant. This offers a more definitive
test of the theoretical predictions. It is observed in Figs. 1(b)
and 2(a) that, this time, the BCIS-4B (Hyll) results for Q3s

and Q4s are in the lead since they provide perfect agreement
with the experimental data at E � 10 keV. There is a physical
reason for this interesting switch. One can easily show that
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FIG. 2. Formation of H(nl ), H(n = 4), and H(n = 5) in the H+ + He(1s2) collisions (35) and (36).

FIG. 3. Formation of H(n = 6) and H(�) in the H+ + He(1s2) collisions (36) and (37).
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the overlaps of the initial and final bound states in Ti f for
Qnl are better optimized to fit the velocity-matching condition
around the Massey peaks with the more appropriate or flexible
spatial dependence of the open-shell (1s1s′) [51] than with
the closed-shell (1s1s) [52] orbitals ϕi(�x1, �x2) for every l > 0,
while the converse is true for the single case l = 0.

In the case of the spherically asymmetric states (l > 0),
the BCIS-4B (Silv) results faithfully reproduce the experi-
mental data at E � 10, 15, and 30 keV for Q2p, Q3p, and
Q3d , respectively. Further, in Figs. 1(a) and 1(b), the BCIS-4B
(Silv) results also accurately represent the measured cross
sections summed over the lm states, i.e., Q2 and Q3, respec-
tively. Herein, the lowest validity limits of the BCIS-4B (Silv)
findings for Q2 and Q3 are shifted to even smaller energies E
than those for Q2s and Q3s, respectively. This is explained by
the fact that, around the Massey peaks, cross sections Qn are
appreciably affected by the significant contributions from Qnl

with l > 0, i.e., from Q2p in Q2 [Fig. 1(a)] as well as from Q3p

and Q3d in Q3 [Fig. 1(b)].
For n = 4, the experimental data for processes (35) and

(36) exist only for Q4s and Q4 [Fig. 2(a)] but, for complete-
ness, all the theoretical cross sections Q4l (0 � l � 3) are
plotted. As mentioned, the BCIS-4B (Silv) results are almost
coincident with the measurements on Q4s at E � 40 keV.
Further, beginning already with E = 10 keV, a nearly ideal
agreement is recorded in Fig. 2(a) between the BCIS-4B (Silv)
results and the measured cross sections Q4. Hence, also for
Q4, the BCIS-4B (Silv) predictions extend their applicability
domain to energies E lower than those for Q4s. Here too, as
per Fig. 2(a), the explanation is in the considerable contribu-
tions from the pertinent subshell cross sections Q4p, Q4d and
Q4 f to Q4.

For the higher levels (n > 4), a few past measurements
were carried out on Q5 [Fig. 2(b)] and Q6 [Fig. 3(a)]. Mainly
the Massey peak regions (10 to 115 keV) were covered by
these measurements that are very well reproduced by the
BCIS-4B (Silv) method. The BCIS-4B (Silv) method and
the measurements are seen Figs. 1 to 3 to closely obey the
adiabatic criterion. According to this criterion, the Massey
peak positions are shifted to higher E when l is decreased in
Qnl for a fixed n and also when n is augmented in Qn. Among
all the nl states 1 � l � n − 1 for a fixed n, the energies Emax

at the Massey peak locations are the largest for Qns (l = 0).
As to capture into any state of atomic hydrogen H(�),

the results for Q�,4 in the BCIS-4B (Silv) method shown in
Fig. 3(b) are very harmonious with the associated measure-
ments at 20 to 4000 keV. The same conclusion remains true
also above 4000 keV [not shown in Fig. 3(b) to avoid clutter],
including 10 500 keV, which is the highest energy at which
Q� has been measured [89]. Specifically, at 10 to 10 500
keV, the perfect performance of the BCIS-4B method is found
to extend over 11 orders of magnitude of Q� at energies E
covering three or more orders of magnitudes. Such an accom-
plishment is very important for advancing this problem area
since the validity of perturbative theories is usually taken for
granted to be limited primarily to high energies (above 100
keV/amu). However, as demonstrated here, such a restriction
is surmounted by the BCIS-4B (Silv) method.

We also computed the total cross sections Q�,1 at 10 to
12 500 keV in the BCIS-4B (Silv) method with and without

the mentioned extra capture channel, i.e., by including and
excluding potential Vi,P2 from perturbation Vi, respectively.
The results indicate that the measurements favor the theo-
retical predictions with the inclusion of Vi,P2, i.e., with the
complete prior interaction Vi. To illustrate this important point,
it suffices to give the percentage of the relative deviations of
Q�,1 (Vi,P2 excluded) from Q�,1 (Vi,P2 included) as 0.41%,
9.03%, 15.42%, 20.77%, 28.83%, 41.68%, and 44.9% at 30,
60, 100, 150, 300, 1300, and 2500 keV, respectively. Hence,
in Q, the importance of the extra capture channel by way of
Vi,P2 rises with augmentation of E . This is reminiscent of the
well-established increased role of the dynamic e1 − e2 corre-
lations at higher E when a four-body transition amplitude in
its post form is considered [45], which contains the electronic
repulsive potential 1/r12 = 1/|�s1 − �s2| in the perturbation. In
the exit channel, the Taylor expansion of 1/s2 shows that
1/s2 ≈ 1/r12 at R → ∞.

To recapitulate, it appears from the presented analysis that
between the BCIS-4B (Silv) and BCIS-3B methods, the first
is by far more beneficial to use than the second. Moreover,
within a four-body formulation, it is much more advantageous
to employ the BCIS-4B (Silv) method than the BCIS-4B
(Hyll) method. Crucially, both conclusions are established
in the very important energy domain, which surrounds the
Massey peak (10 to 100 keV) where, generally, the BCIS-
4B (Silv) method very successfully reproduces the measured
cross sections.

B. Differential cross sections

In the total cross sections Q, the integrals over scattering
angles can smooth out some of the hidden structures. This
could be exacerbated when the differential cross section to
be integrated vary over several orders of magnitude. Due
to large masses of heavy scattering aggregates, such varia-
tions regularly occur within merely a couple of milliradians.
Therefore, there is every interest to peer into the possible
structures of angular distributions of the formed hydrogen
atoms. This could offer certain valuable insights into the com-
peting mechanisms for charge exchange, depending on the
energy E . Thus, comparing theories with measurements on
differential cross sections should represent a more stringent
testing ground, which can shed some additional light onto the
studied problem.

Theoretical and experimental cross sections (dQ/d�)n and
(dQ/d�)� are in Figs. 4 to 8 at 30 to 12 500 keV. Herein,
as stated, all our four-body computations are in the BCIS-4B
(Silv) method. Thus, we will refer to this theory simply as
the BCIS-4B method. In Fig. 8, also graphed are the results
in the BCIS-3B method alongside those from the nonpertur-
bative methods based on the expansions in atomic orbitals
[32,34,36].

As stated earlier, differential cross sections (dQ/d�)�,nmax

are for nmax = 1 (30, 60 keV), nmax = 4 (0.1, 0.15,
0.3, 1.3, 2.5 MeV), nmax = 3 (5, 7.5 MeV), and nmax =
2 (12.5 MeV). In Figs. 4 to 7, the results in the BCIS-
4B method are presented for (dQ/d�)n with 1 � n � nmax

as well as for (dQ/d�)�,nmax . Figures 4 and 5(a) are for
three intermediate energies (E = 100, 150, 300 keV), while
Figs. 5(b), 6, and 7 are for five higher energies (E = 1.3,
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FIG. 4. Formation of H(n) and H(�) in the H+ + He(1s2) collisions (36) and (37).

2.5, 5.0, 7.5, 12.5 MeV). Finally, Fig. 8 juxtaposes some
illustrative theoretical results from the perturbative and non-
perturbative methods. All these figures on dQ/d� include
also the pertinent experimental data. In Figs. 4 to 8, scattering
angles θ and differential cross sections dQ/d� are in the
laboratory reference frame.

Generally, the BCIS-4B method is observed to success-
fully reproduce the measured cross sections at most scattering
angles in Figs. 4 to 8. Both theoretical and measured cross sec-
tions show certain distinctly characteristic curvature changes
at the so-called dark angle θd ≈ 0.5 mrad (close to the Thomas
critical angle θc = 0.47 mrad). Of course, energies 100 to
300 keV [Figs. 4, 5(a)] are insufficiently high to enable any
clear delineation of the potentially hidden Thomas peaks.
However, these are bound to emerge for faster protons, as in-
deed seen at 1.3 to 12.5 MeV [Figs. 5(b), 6, 7, and 8(d) to 8(f)].

For 100 and 150 keV, around θd , unlike the measurements on
(dQ/d�)� , some pronounced minima or dips of (dQ/d�)�,4

appear in the theoretical line shapes, as inherited from each
(dQ/d�)n with n = 1–4. However, at 300 keV [Fig. 5(a)],
the BCIS-4B method for (dQ/d�)n with 2 � n � 4 exhibits
no minimum or dip. Rather, in these cases, some broadened
plateaus occur within 0.4 to 0.8 mrad.

Naturally, for quantitative comparisons between the pre-
dicted and measured data, the sum of the computed
cross sections (dQ/d�)n over n � 1 is needed to obtain
(dQ/d�)�,nmax . The dominant contributor to (dQ/d�)�,nmax

for any nmax > 1 is provided by (dQ/d�)1, which has a
minimum or dip within 0.4 to 0.8 mrad [Figs. 4(a) 4(b),
and 5(a)]. At 100 to 300 keV, the minima in different cross
sections (dQ/d�)1 are only partially compensated by the
summed contributions from the excited states (dQ/d�)n for

FIG. 5. H+ + He → H(n, �) + He+.
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FIG. 6. H+ + He → H(n, �) + He+.

n � 2. Consequently, the state-summed cross sections such
as (dQ/d�)�,4 from the BCIS-4B method in Figs. 4(a),
4(b) and 5(a) also show the minima at 0.4 to 0.8 mrad,
where the experimental data depict only the marked slope
changes.

The physics of this latter slope change, detected in the
experimental data, is understood by the following arguments.
Small angle counts of the formed hydrogens recorded in the
detectors are due to protons passing far from the helium
targets. These large impact parameters correspond to small
nuclear deflections, i.e., to negligible Rutherford nucleus-
nucleus scatterings. Consequently, the mechanism behind the
forward peak is the dominance of proton-electron collisions.
Conversely, larger angle counts of atomic hydrogens detected
in the measuring devices come from close encounters of the

aggregates (small impact parameters) at which the nucleus-
nucleus repulsions dominate the projectile-electron attraction.
These two mechanisms yield very different line-shapes that
are peaked and flattened at smaller and larger angles, respec-
tively. The combining line shape shows a slope change and
the inflection point occurs at the intermediate angles, around
θd , where neither mechanism prevails, as evidenced by the
measured differential cross sections shown in Figs. 4(a), 4(b)
and 5(a). This reasoning helps clarify the components of a
given total cross section, as well. Measured total cross sec-
tions Q at a fixed E , as an average of all the recoded counts
at each angle, are dominated by the forward cone for heavy
scattering aggregates. As such, for ion-atom collisions, the
Rutherford internuclear scattering is of no relevance to total
cross sections (even down to approximately 0.1 keV/amu).

FIG. 7. H+ + He → H(n, �) + He+.
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FIG. 8. Formation of H(�) in the H+ + He(1s2) collision (37).

On the theoretical side, a dip in a differential cross sec-
tion particularly from the BCIS-4B method, arises from a par-
tial cancellation between the repulsive 2ZP/R and attractive
(−ZP/s1 − ZP/s2) potentials in the perturbation interaction Vi.
This cancellation is not complete, i.e., (dQ/d�)1 �= 0 at θd

because of a partial compensation by the interference effect
between the two highly oscillatory distorting functions (the
logarithmic phase for heavy particles and the full Coulomb
wave for the electronic motion). A compensation of this type
is missing from, e.g., the CB1-4B method which contains
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only the heavy particle distortion and consequently leads to an
almost true node (zero) of (dQ/d�)1 at θd [38]. Even without
the presence of the said opposing interactions in potential Vi,
minima similar to those in Figs. 4(a), 4(b) and, 5(a) also ap-
pear (depending on E ) in some other perturbative CDW-type
methods [23,29] as well as in the nonperturbative AE-type
methods [32,36,37].

The locations of the theoretically predicted minima on
Figs. 4(a), 4(b) and 5(a) shift toward the lower scattering
angles θ with the increased E . Therein, for the excited states
(n > 1) at a fixed E , the dips are progressively moved to
smaller θ compared with n = 1. As a result, a partial filling
occurs of the given dip when summing over (dQ/d�)n in
(dQ/d�)�,nmax for nmax > 1. The pattern of the theoretical
functions (dQ/d�)�,4 is similar at 100, 150, and 300 keV
[Figs. 4(a), 4(b) and 5(a)]. It shows two maxima, separated by
a dip, which is subsequently followed by a flatter line-shape
tail. The two peaks occur at θ = 0 and around θ ≈ 0.95 mrad
(≈2θc). The peak in the forward direction (θ = 0) stems from
the projectile-electron interactions (particularly ZP − e1). The
slowly decreasing part of the angular distribution is typical
of the Rutherford nucleus-nucleus collisions (ZP − ZT ). In
the BCIS-4B method, dominance of the forward peak or the
nucleus-nucleus tail is easily identified by switching on or
off the two potentials 2ZP/R and (−ZP/s1 − ZP/s2) in the
perturbation interaction Vi from Ti f .

Specifically, as per theory, our computations confirm that
the two competing potentials 2ZP/R and ZP(−1/s1 − 1/s2) in
Vi have unequal effects at different scattering angles. Thus, the
potential 2ZP/R becomes insignificant when θ approaches the
forward scattering region θ = 0, but dominates at larger val-
ues of θ . By contrast, ZP(−1/s1 − 1/s2) prevails near θ = 0,
but is practically negligible at larger θ . These two mechanisms
in the BCIS-4B method yield a slope change in the curves
for differential cross sections (dQ/d�)i f . The location of the
slope change is precisely near θd , where the contributions
from 2ZP/R and ZP(−1/s1 − 1/s2) are of comparable mag-
nitude. This is where the dip appears. After the dip, potential
2ZP/R is the main contributor to Vi and, thus, flattening of
the angular distribution points to the pattern of the Ruther-
ford scattering. Independence of the total cross sections Qi f

of the internuclear potential VPT = ZPZT /R is also readily
explained. In the heavy mass limit, transition amplitude Ti f

is influenced by VPT only through a phase, which disappears
from Qi f upon integrating |Ti f |2 over scattering angles, or
equivalently, over transverse momentum transfers η.

In this slope change of the theoretical curves from
Figs. 4(a), 4(b), and 5(a), the passage from the forward peak
to the leveled region of the Rutherford scattering goes through
a minimum and a maximum. That is how the forward peak
at zero angle is accompanied, near 0.95 mrad, by the second
peak which is unrelated to the Thomas peak. The position of
this second peak also depends on E . It is slightly shifted at,
e.g., 150 keV [Fig. 4(b)] with respect to 100 keV [Fig. 4(a)].
As mentioned, there is no dip at 300 keV [Fig. 5(a)] for
Qn�2. However, for Qn=1 and Q� , a slight structure appears.
Therein, a left bulge near θc = 0.47 mrad is an embryo of the
Thomas double scattering peak. As noted, while 300 keV is
too low for the Thomas peak to become plainly transparent,
the conditions for its emergence become more favorable at

higher energies. Thus, with increasing E , the genuine Thomas
peaks are clearly delineated, as seen is Figs. 5(b) to 7.

As discussed, at sufficiently high E , the critical angle θc

depends only on the mass ratio me/MP (electron to incident
nucleus) and not on E nor on any quantum number. This also
applies to the BCIS-4B method, which at 1.3 to 12.5 MeV
[Figs. 5(b) to 7] predicts the Thomas peaks at their correct lo-
cations for (dQ/d�)n with 1 � n � nmax and (dQ/d�)�,nmax .
The BCIS-4B method and the measurements show the unsplit
Thomas peaks in Figs. 5(b) to 7. In the CDW-3B and CDW-
4B methods [22,26,40,41,45,99], the Thomas peaks are often
split at θc ≈ 0.47 mrad due to a destructive interference of
the distortions of the unperturbed states in the entrance and
exit channels by the initial and final full electronic Coulomb
wave functions, respectively [99].

With the augmented E , the width of the Thomas peak is
gradually narrowed and the height is concomitantly increased
[Figs. 5(b) to 7]. Moreover, comparing the structures at θ = 0
(single scattering) and θc = 0.47 mrad (double scattering)
in these figures, it is noted that the Thomas peaks become
stronger than the forward peaks with the increased E . At still
larger energies than those from Figs. 5(b) to 7 (not shown
here since there are no experimental data), the Thomas peaks
tends to largely overwhelm the forward peaks. This shows
the dominance of the second- over the first-order scattering
mechanisms at very high energies E .

Between the forward and Thomas maximum, there is a
minimum located near θ = 0.28 mrad at each E in Figs. 5(b)
to 7. The location of this minimum does not depend on the
quantum numbers, i.e., it is the same in (dQ/d�)n for 1 �
n � nmax. Such a minimum is due to a destructive interference
between the first- and second-order scattering mechanisms
[40,99]. Moreover, Figs. 5(b) to 7 show that the BCIS-4B
method gives another two structures after the Thomas critical
angle θc. Namely, there is a dip at about 0.60 mrad and a very
broad peak near 0.80 mrad. Both dips (0.28 and 0.60 mrad)
become shallower with augmented energy E . The wide peaks
centered at about 0.80 mrad in Figs. 5(b) to 7 merge smoothly
into the tails of the Rutherford scattering.

In all the measured differential cross sections [88]
[Figs. 5(b) to 7], the larger estimated error bars are around
the dips at 0.28 and 0.60 mrad as well as near the peaks
at 0.47 and 0.80 mrad. The largest estimated uncertainties
of the measurements [88] are for θ � 0.6 mrad at 2.5 MeV
[Fig. 6(a)], 5 MeV [Fig. 6(b)], 7.5 MeV [Fig. 7(a)], and
12.5 MeV [Fig. 7(b)]. After the Thomas peaks, the measure-
ments too seem to indicate some curvature changes within
0.6 to 0.8 mrad. In Figs. 5(b) to 7, there is much scattering
among the experimental data points at different angles. This
precludes an adequate structure-by-structure comparison of
the measured and theoretical data.

Revisiting Figs. 4(a) and 4(b) at 100 and 150 keV, re-
spectively, Fig. 5(a) (300 keV) shows that the dip around
0.55 mrad becomes noticeably wider and shouldered with a
bulge marking the onset of the Thomas peak, which eventually
develops at higher energies. Below 100 keV, the dips are still
present and possess their straight, unstructured forms, accord-
ing to Figs. 8(a) to 8(c) at 30 and 60 keV. A further insight
can be gained by comparing the angular distributions from
the BCIS-4B method with those from the other perturbative
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[42] and nonperturbative theories [32,34,36]. In Figs. 8(a)
to 8(c), both the shapes and magnitudes of differential cross
sections change considerably when passing from one method
to another. At 30 keV [Fig. 8(a)] and 1300 keV [Fig. 8(d)],
the BCIS-4B method compares much more favorably with the
measurements than the BCIS-3B method.

In a combined experimental and theoretical study at 25
to 100 keV [32], a pronounced dip around 0.5 mrad in
dQ/d� was obtained in the close-coupling two-state atomic
expansion (TSAE) method when describing the internuclear
interaction VPT by a static potential VPT,S . However, the use
of the Coulomb interaction VPT,C = ZPZT /R in the TSAE
method [32] gives dQ/d�, in huge disagreement with the
experimental data for 30 keV at all angles θ. This situation
was salvaged by employing VPT as a sum of the Coulombic
VPT,C and static VPT,S interactions. The resulting dQ/d� was
smooth and without any dip, including the area around θd

[32], as is also seen in our Fig. 8(b). This shows that the
angular region of the dip and the curvature change in dQ/d�

is extremely sensitive to the choice of different forms of the
nucleus-nucleus interaction.

The convergence properties of the close-coupling meth-
ods can partially be inferred from Fig. 8(b) by comparing
the expansions with two [32] and 40 [34] states. The lat-
ter (with VPT,C) improves the former (with VPT,S) below 0.8
mrad when compared to the experimental data [32]. At en-
ergy E = 60 keV [Fig. 8(c)], the angular distribution in the
BCIS-4B method appears to be similar to that of the basis
generator method (BGM) [36]. At the shifted locations as
well as with the different depths and breadths, these latter
two theories predict the dips within 0.5 to 0.6 mrad, where
the experimental data show merely a slope change. Prior to
the dips, the two predictions (the present and Ref. [36]) are
in good agreement with the measurement [85]. After the dip,
toward the Rutherford angular region, the experimental data
in Fig. 8(c) lie between the BCIS-4B and BGM line shapes.

Earlier, we noted that electron e2 exerts a considerable
influence on the capture of electron e1, especially when using
a correlated target wave function such as that from Ref. [51].
For the magnitudes of total cross sections Q, this was reflected
in their considerable changes within about 45%, especially
at higher energies. It is then of interest to see the possi-
ble impact of this extra capture channel also on differential
cross sections by employing the same helium wave function
of Silverman et al. [51]. Recall that the supplementary col-
lisional pathway to the capture of electron e1 contains the
Coulomb potential between the nontransferred electron e2

and ZP in the combination Vi,P2 = ZP(1/R − 1/s2) which is
a part of Vi. This is illustrated at 1.3 MeV [Fig. 8(e)] and
12.5 MeV [Fig. 8(f)] using the BCIS-4B method with and
without the said extra channel. At both depicted energies, the
extra channel for the capture of e1 significantly influences
the locations and depths of the minima around 0.3 mrad
caused by a destructive interference between the single- and
double-scattering mechanisms. Also considerably altered by
this extra channel is the Rutherford part of the line shapes
at both energies. For example, no second minimum around
0.625 mrad is seen at 1.3 MeV by excluding the extra channel.
Even at energy as high as 12.5 MeV, the extra channel is
prominently active as it displaces the second minimum from

0.6 mrad (full line) to 0.81 mrad (dashed line). Taken together,
Figs. 8(e) and 8(f) demonstrate the importance of keeping
both channels Vi,P1 = ZP(1/R − 1/s1) and Vi,P2 in Vi from the
transition amplitude Ti f of the BCIS-4B method.

Summarizing Figs. 5(b) to 7, it can be stated that a very
good agreement is observed between the BCIS-4B method
and experiments [88]. The main peaks for single scattering
(forward) and double scattering (Thomas), observed experi-
mentally, are reproduced well by the present state-summed
differential cross sections. As in all the measurements, the
Thomas peak is not split in the BCIS-4B method. This is
advantageous compared to a sharp splitting appearing often
near the center of the Thomas peaks in the CDW-3B and
CDW-4B methods [26,40,41,45]. In the BCIS-4B method,
after the Thomas peak, there is a dip near 0.6 mrad and a
wide peak around 0.8 mrad. This two-fold structure seen in
Figs. 8(d) and 8(f) at high energies 1.3 and 12.5 MeV, respec-
tively (hidden in the experimental data [88] within the very
large estimated uncertainties) shows up in the present theory
also at intermediate energies 100 to 300 keV [Figs. 4(a), 4(b)
and 5(a)]. Each computed state-summed differential cross sec-
tion (dQ/d�)�,nmax for 1 � nmax � 4 in the BCIS-4B method
contains a minima or a dip in a narrow angular region near
0.55 mrad, where the corresponding experimental data exhibit
only a slope change.

IV. CONCLUSION

Within the perturbative second-order distorted wave for-
malism of ion-atom collisions, we examine differential
dQ/d� and total Q cross sections for one-electron capture by
heavy nuclei from helium-like targets in their ground states
(1s2 : 1S). Use is made of the four-body boundary-corrected
continuum intermediate state (BCIS-4B) method to cover a
very broad range of intermediate and high impact energies E
(10 to 12 500 keV). Considered is the passage to the final
hydrogen-like state of the captured electron in any quantum
numbers nlm (principal n, angular l , magnetic m). Of great
practical importance is that seven out of nine integrals in the
defining transition amplitude T are calculated analytically.
The remaining two integrals are carried out numerically. The
obtained comprehensive expressions are applicable to both the
uncorrelated and highly correlated two-electron target wave
functions ϕi. Importantly, the BCIS-4B method contains an
extra channel for capture of the active electron by way of
single scatterings of the nontransferred electron with the pro-
jectile nucleus. The abundantly exploited three-body methods
exclude this channel from the outset.

A general-purpose computer program is written for any
nuclear charges of bare ions as projectiles and helium-
like atoms as targets. This algorithm is here applied
to the prototype H+ + He(1s2) → H(nlm) + He+(1s) colli-
sions to compute the state-selective and state-summed cross
sections (differential, total). Employing the obtained sets
{(dQ/d�)nlm, 1 � n � 4; Qnlm, 1 � n � 6}, deduced are the
assemblies {(dQ/d�)nl , Qnl} (sum over m), {(dQ/d�)n, Qn}
(sum over lm), and {(dQ/d�)�, Q�} (sum over lm and 1 �
n � nmax, including n > nmax by means of the Oppenheimer
n−3 scaling). The predictions by the BCIS-4B method for Qnl ,
Qn, Q� , and (dQ/d�)� are thoroughly compared with all

052806-14



CROSS SECTIONS FOR SINGLE-ELECTRON CAPTURE … PHYSICAL REVIEW A 107, 052806 (2023)

the existing experimental data from different measurements
performed during the past seven decades.

For the illustrated H+ + He(1s2) single charge-exchange
process, by primarily focusing on the BCIS-4B method, our
goal with Q and dQ/d� is fourfold.

(1) To assess the role of electronic correlations, especially
around the Massey peak near 50 keV.

(2) To evaluate the influence of the extra channel for cap-
ture of the active electron through proton scattering with the
nontransferred electron.

(3) To identify the advantages of the BCIS-4B method
relative to the three-body boundary-corrected continuum in-
termediate state (BCIS-3B).

(4) To determine the lowest energy limits of the validity
of the BCIS-4B method for the main examined transitions
He(1s2) → H(nl ), He(1s2) → H(n) and He(1s2) → H(�).

The outcomes of the exhaustive analysis of the computed
Q and dQ/d�, judged by reference to the intrinsic features
of the BCIS-4B method and the pertinent measured cross
sections, run as follows.

(1) The static inter-electron correlations in the initial state
ϕi of He(1s2) are crucial at 10 to 100 keV.

(2) The capture probabilities of the active electron induced
by the interaction of the impinging proton with the nontrans-
ferred electron increase with rising impact energy E .

(3) Overall, the BCIS-4B method largely outperforms the
BCIS-3B method.

(4) The BCIS-4B method with the correlated wave func-
tion ϕi of He(1s2) is in overall excellent agreement with
the experimental data from the smaller intermediate energies
(around 10 to 40 keV, depending on the final state of the
formed atomic hydrogen) to the highest energy (12 500 keV)
considered in the measurements.

As to (dQ/d�)� at high energies (1.3, 2.5, 5.0, 7.5,
12.5 MeV), the BCIS-4B method gives three main structures
consisting of two sharp peaks at θ = 0 and θ = 0.47 mrad
attributed to single and double scatterings, respectively. Be-
tween these latter two peaks, at θ = 0.28 mrad, lies a physical
minimum or a dip of a pronounced depth due to the interfer-
ence of single and double scatterings of the active electron.
All three signatures are also detected in the experimental data
and these fare well with the BCIS-4B method for the corre-
lated ϕi. Additionally, the BCIS-4B method provides a third
peak of a notably lower intensity near θ ≈ 0.80 mrad. The

third peak is preceded by a dip at θ ≈ 0.60 mrad. This third
peak was also observed in the measurements (7.4 MeV [81],
7.5 MeV [88]). It should be noted that both the dip at θ ≈ 0.60
mrad and the peak at θ ≈ 0.80 mrad are found in the BCIS-4B
method at all the presently considered energies (0.03 to 12.5
MeV). In other words, the appearance of the supplementary
minimum (θ ≈ 0.60 mrad) and maximum (θ ≈ 0.80 mrad)
in the measurements on dQ/d� [81,88] at high energies is
well expected from the BCIS-4B method. Thus far, after the
Thomas peak at 0.47 mrad, all the known three-body theories
for single charge-exchange in the H+ + He(1s2) collisions,
including the BCIS-3B method, produced some smooth struc-
tureless Rutherford line-shape tails.

All told, it is clear that the BCIS-4B method is sys-
tematically reliable in accurate descriptions of the available
experimental data on total and differential cross sections for
single-electron capture by protons from helium targets at
widely changing energies E = 20–12 500 keV. This particular
problem is of fundamental and practical importance in several
interdisciplinary research fields where charge-exchange colli-
sions play a significant role.

Yet there is a need for further progress of the theory in
this problem area alongside the current vigorous advances in
both the perturbative and nonperturbative theories that passed
the test of time through a myriad of robust applications on
many colliding systems. Among other possibilities, an inves-
tigative path forward would be worthwhile to undertake also
in, e.g., two exploratory directions. One is the perturbative
gold-standard, the boundary-corrected second Born method,
which could help clarify the multiple structures in differential
cross sections. The other is a variational-type unification of
the leading perturbative methods and the basis-set expansion
methods to smoothly cover all impact energies with the still
readily manageable computational demands.
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