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Pre–Born-Oppenheimer Dirac-Coulomb-Breit computations for two-body systems
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The 16-component, no-pair Dirac–Coulomb–Breit equation, derived from the Bethe–Salpeter equation, is
solved in a variational procedure using Gaussian-type basis functions for the example of positronium, muonium,
hydrogen atom, and muonic hydrogen. The α fine-structure-constant dependence of the variational energies,
through fitting a function of αn and αn ln α terms, shows excellent agreement with the relevant energy expressions
of the (perturbative) nonrelativistic QED framework and thereby establishes a solid reference for the develop-
ment of a computational relativistic QED approach.
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I. INTRODUCTION

The positronium, Ps = {e−, e+}, muonium, Mu =
{e−, μ+}, hydrogen atom, H = {e−, p+}, and muonic-
hydrogen, μH = {μ−, p+}, are the simplest yet some of
the most extensively studied bound-state systems. Their
simplicity allows for the high-precision evaluation of energy
corrections arising from special relativity and interactions
from the matter and photon fields [1,2]. The high-precision
spectroscopy experiments [3–10], together with the theoreti-
cal results (see Refs. [2,11] and references therein), provide
a stringent test for the validity of quantum electrodynamics
(QED) in the low-energy range and probe physics beyond the
Standard Model [12–16]. Ps is a candidate for precision
free-fall experiments to test QED and gravity [17],
H and μH are the stars of the famous proton-size puzzle
[18–20], while Mu has attracted interest in relation with the
muon’s anomalous magnetic moment [10,21].

For bound-state systems, it is relevant to have a wave
equation that can be solved to obtain a good zeroth-order de-
scription. So far the nonrelativistic Schrödinger equation has
been used as reference, which has an analytic solution for two-
body systems. Then relativistic and QED corrections have
been derived corresponding to increasing orders of the α

fine-structure constant. We call these corrections, for short,
nonrelativistic QED (nrQED) corrections. A recent review
[11] provides an excellent overview of the extensive literature
of higher-order nrQED corrections to positronium energies.
Corrections up to α6 order (in natural units, α4Eh in hartree
atomic units) are considered complete, and ongoing work is
about α7-order corrections. Some of the calculations have
been carried out not only for equal but arbitrary spin-1/2
fermion masses.

In the present work we do not aim to reproduce the for-
mally derived nrQED expressions but initiate an alternative
approach to the two-particle relativistic QED problem based
on a zeroth-order wave equation in which special relativity
is already accounted for. The theoretical framework for this
(computational) relativistic QED program is provided by the
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Bethe–Salpeter equation [22], derived from field theory [23],
and its Salpeter–Sucher exact equal-time form [24,25], which
provides us a no-pair, two-particle relativistic wave equation,

(H + H�)� = E�, (1)

which has the form of a Schrödinger-like wave equation,
for which high-precision numerical solution techniques can
be adapted. The � wave function in Eq. (1) depends
only on the (spatial) Cartesian coordinates of the particles,
H is the positive-energy projected two-electron Hamil-
tonian with instantaneous (Coulomb or Coulomb–Breit)
interaction (I),

H = h1 + h2 + �++I�++, (2)

hi = cαi pi + βimic2 + U1[4] (i = 1, 2) is the one-particle
Dirac Hamiltonian in which U can account for an exter-
nal static Coulomb field (if there is any), and �++ projects
to the positive-energy (electronic) subspace of the h1 + h2

noninteracting two-fermion problem. For short, we call H
the no-pair Dirac–Coulomb (DC) or Dirac–Coulomb–Breit
(DCB) Hamiltonian.

Pair corrections, retardation, and radiative corrections are
included in the H� term, Eq. (1) [25–27]. Contribution of H�

to atomic and molecular energies (QED) can be expected to
be small, and hence, it can be treated as perturbation to the
no-pair Hamiltonian.

This framework offers a perturbative approach based on
a relativistic reference, alternative to earlier work using a
nonrelativistic reference state. Evaluation of the already-
formulated perturbative correction with H� is left for future
developments, which appears to be possible along the lines
reviewed in Ref. [28]. Although analytic evaluation of the
energy and its corrections is not possible in this framework,
the numerical results can be converged to high precision,
which is demonstrated in the present work.

II. METHODOLOGICAL AND
COMPUTATIONAL DETAILS

To compute no-pair, two-particle bound states, let us
start with defining overall, center-of-mass, Rμ = (T, R), and
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relative, rμ = (t, r), covariant space-time coordinates as

Rμ = m1

m1 + m2
rμ

1 + m2

m1 + m2
rμ

2 (3)

and

rμ = rμ
1 − rμ

2 . (4)

Then, following Salpeter and Bethe [22], the wave function of
an isolated system can be factorized as

φ(r1, r2) = e−iPνRν

	(rμ), (5)

with the total four-momentum, Pν = (E , P). By choosing the
zero-total-momentum frame, P = 0, we obtain

φ(r1, r2) = e−iET 	(rμ), (6)

where E is the total energy of the system. It is important to
note that 	(rμ), which describes the internal motion, depends
on rμ = (t, r), i.e., not only on the r relative coordinates, but
also on the t relative time of the particles. Fourier transfor-
mation with respect to this relative time variable yields the

relative-energy dependent wave function

	̃(ε, r) =
∫ ∞

−∞

dt

(2π )1/2
e−iεt	(t, r). (7)

In the exact equal-time formalism of Salpeter [24] and Sucher
[25], the equal-time (t = 0) wave function appears, which
depends only on the spatial coordinates,

�(r) =
∫ ∞

−∞
dε 	̃(ε, r), (8)

and the relative-energy dependence of the problem is ac-
counted for in H� in Eq. (1) [25].

To obtain the Hamiltonian for the relative motion, the
chain rule for the coordinate transformation, Eqs. (3) and
(4), is used, and it is also considered that contribution from
terms containing ∇R vanishes due to the Eq. (5) choice of
the ansatz for an isolated system and our choice of a P = 0
zero-momentum-frame description, Eq. (6). Hence the spatial
momentum operators in this framework can be replaced ac-
cording to

p1 = −i∇1 → p = −i∇ and p2 = −i∇2 → −p = i∇, (9)

where ∇(= ∇r) collects the partial derivatives with respect to the r relative displacement vector components. This simple
replacement “rule” can be used to construct expressions for the relative motion from the two-particle expressions [29–32].
As a result, the no-pair Dirac–Coulomb–Breit Hamiltonian for the relative motion is obtained as

H (1, 2) = �++

⎛
⎜⎜⎜⎜⎜⎝

V 1[4] −cσ[4]
2 · p cσ[4]

1 · p B[4]

−cσ[4]
2 · p V 1[4] − 2m2c21[4] B[4] cσ[4]

1 · p

cσ[4]
1 · p B[4] V 1[4] − 2m1c21[4] −cσ[4]

2 · p

B[4] cσ[4]
1 · p −cσ[4]

2 · p V 1[4] − 2m12c21[4]

⎞
⎟⎟⎟⎟⎟⎠

�++, (10)

with m12 = m1 + m2, p = −i( ∂
∂rx

, ∂
∂ry

, ∂
∂rz

), σ[4]
1 =

(σx ⊗ 1[2], σy ⊗ 1[2], σz ⊗ 1[2]), and σ[4]
2 = (1[2] ⊗ σx, 1[2] ⊗

σy, 1[2] ⊗ σz ), where σx, σy, and σz are the 2 × 2 Pauli
matrices. We note that the operator in Eq. (10) contains a
−2mic2 shift (i = 1, 2) to match the nonrelativistic energy
scale. Furthermore, the Coulomb interaction,

V = q1q2

r
, (11)

is along the diagonal, whereas the Breit interaction,

B[4] = −q1q2

[
1

r
σ[4]

1 · σ[4]
2 − 1

2

{(
σ[4]

1 · ∇)(
σ[4]

2 · ∇)
r
}]

,

(12)

can be found on the antidiagonal of the Hamiltonian.
The �++ positive-energy projector in Eq. (10) corresponds

to the positive-energy (“electronic”) states of the “bare,”
noninteracting Hamiltonian, i.e., Eq. (10), without �++ and
without the V 1[4] and B[4] interaction blocks. Although the
�++ free-particle projector in momentum space has an an-
alytic form [33], we constructed it numerically in coordinate
space by computing the eigenstates of the bare, noninteracting
Hamiltonian over the space spanned by the basis functions
used for the interacting computation. The positive-energy
states were identified with the simple energy-cutting approach

(which can be checked by the complex scaling procedure)
[30].

The no-pair Dirac–Coulomb and Dirac–Coulomb–Breit
Hamiltonians are bounded from below (the positive-energy
block, which is considered in this work, is decoupled from
the rest); hence the H� = E� wave equation can be solved
using the variational procedure.

For a single particle, the (four-component) wave function
is conveniently partitioned to large (l, first two) and small (s,
last two) components. A good basis representation must fulfill
a simple symmetry relation, which is necessary to provide
a correct matrix representation (Mx) for the Mx(p)Mx(p) =
Mx(p2) identity [34]. The simplest implementation of this
relation is provided by the (restricted) kinetic balance (KB)
condition [35,36],

ϕs = σ[2] · p
2mc

ϕl, (13)

for the basis function of the ϕs small and ϕl large components.
Two(many)-particle relativistic quantities can be constructed
with the block-wise (also called Tracy–Singh) direct product
[29–32,37–40], which allows us to retain the large-small block
structure, used already to write Eq. (10). The corresponding
two-particle function, with highlighting the large (l) and small
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TABLE I. Convergence of the no-pair Dirac–Coulomb(–Breit) energies, in Eh, computed in this work. The spatial basis, Eq. (27), used
in the relativistic computation was parameterized by (numerical) minimization of the nonrelativistic energy, Enr. The numerical value for the
analytic (∞), nonrelativistic energy is shown for reference.

Nb Enr EDC EDC〈B〉 EDCB2 EDCB

Ps (m2/m1 = 1):
10 −0.249 999 665 988 4 −0.249 997 227 989 −0.250 016 969 603 −0.250 016 992 755 −0.250 016 992 809
20 −0.249 999 999 919 4 −0.249 997 552 650 −0.250 017 362 124 −0.250 017 403 806 −0.250 017 404 023
30 −0.249 999 999 996 8 −0.249 997 552 766 −0.250 017 362 426 −0.250 017 404 153 −0.250 017 404 371
40 −0.249 999 999 999 6 −0.249 997 552 778 −0.250 017 362 470 −0.250 017 404 205 −0.250 017 404 425
50 −0.249 999 999 999 9 −0.249 997 552 780 −0.250 017 362 477 −0.250 017 404 214 −0.250 017 404 433
∞ −0.250 000 000 000 0

Mu (m2/m1 = 206.7682830):

10 −0.497 592 269 419 4 −0.497 598 739 220 −0.497 599 489 904 −0.497 599 489 917 −0.497 599 489 918
20 −0.497 593 472 285 4 −0.497 600 024 240 −0.497 600 780 916 −0.497 600 780 959 −0.497 600 780 959
30 −0.497 593 472 874 8 −0.497 600 025 977 −0.497 600 782 839 −0.497 600 782 891 −0.497 600 782 891
40 −0.497 593 472 910 8 −0.497 600 026 241 −0.497 600 783 176 −0.497 600 783 235 −0.497 600 783 235
50 −0.497 593 472 915 7 −0.497 600 026 282 −0.497 600 783 233 −0.497 600 783 295 −0.497 600 783 295
∞ −0.497 593 472 917 1

H (m2/m1 = 1836.15267343):

10 −0.499 727 019 644 9 −0.499 733 723 658 −0.499 733 809 460 −0.499 733 809 460 −0.499 733 809 460
20 −0.499 727 839 067 5 −0.499 734 617 695 −0.499 734 704 007 −0.499 734 704 008 −0.499 734 704 008
30 −0.499 727 839 669 3 −0.499 734 619 508 −0.499 734 705 842 −0.499 734 705 843 −0.499 734 705 843
40 −0.499 727 839 706 0 −0.499 734 619 795 −0.499 734 706 138 −0.499 734 706 139 −0.499 734 706 140
50 −0.499 727 839 710 9 −0.499 734 619 840 −0.499 734 706 186 −0.499 734 706 187 −0.499 734 706 187
∞ −0.499 727 839 712 4

μH (m2/m1 = 8.88024337):

10 −92.920 263 579 73 −92.920 730 693 26 −92.923 396 814 39 −92.923 397 816 36 −92.923 397 817 07
20 −92.920 416 825 53 −92.920 890 799 40 −92.923 572 907 75 −92.923 575 558 50 −92.923 575 566 96
30 −92.920 417 297 88 −92.920 891 278 83 −92.923 573 403 13 −92.923 576 058 44 −92.923 576 066 97
40 −92.920 417 310 07 −92.920 891 312 69 −92.923 573 493 64 −92.923 576 164 19 −92.923 576 173 06
50 −92.920 417 311 03 −92.920 891 313 65 −92.923 573 494 58 −92.923 576 165 15 −92.923 576 174 01
∞ −92.920 417 311 31

(s) component blocks, is

ϕ =

⎛
⎜⎜⎝

ϕll

ϕls

ϕsl

ϕss

⎞
⎟⎟⎠. (14)

For a variational procedure, we used the simplest two-particle
generalization of the one-particle kinetic balance, Eq. (13),
and implemented it in the sense of a transformation or metric
[29–32,35]:

HKB = X †HX,

X = diag

(
1[4],−

(
σ[4]

2 · p
)

2m2c
,

(
σ[4]

1 · p
)

2m1c
,−

(
σ[4]

1 · p
)(

σ[4]
2 · p

)
4m1m2c2

)
.

(15)

We also note that the X balance matrix used in this work
can be “obtained” from the balance used for the Born–
Oppenheimer systems [29–32] through the p1 → p and
p2 → −p replacement, Eq. (9). The fundamental “guiding
principle” for our construction of the two-particle balance
has been solely to have a correct matrix representation
of the Mx(p)Mx(p) = Mx(p2) identity, since the positive-
energy projected Hamiltonian is bounded from below. The

transformed DCB Hamiltonian is

HKB = X †H (1, 2)X

=

⎛
⎜⎜⎜⎜⎜⎝

D[4]
1

p2

2m2
1[4] p2

2m1
1[4] B[4]

1
p2

2m2
1[4] D[4]

2 B[4]
2

p4

8c2m1m2
2
1[4]

p2

2m1
1[4] B[4]

3 D[4]
3

p4

8c2m2
1m2

1[4]

B[4]
4

p4

8c2m1m2
2
1[4] p4

8c2m2
1m2

1[4] D[4]
4

⎞
⎟⎟⎟⎟⎟⎠

,

(16)

with the diagonal blocks

D[4]
1 = V 1[4] (17)

D[4]
2 = (σ2 · p)V 1[4](σ2 · p)

4m2
2c2

− p2

2m2
1[4] (18)

D[4]
3 = (σ1 · p)V 1[4](σ1 · p)

4m2
1c2

− p2

2m1
1[4] (19)

D[4]
4 = (σ1 · p)(σ2 · p)V 1[4](σ1 · p)(σ2 · p)

16m2
1m2

2c4
− m12 p4

8m2
1m2

2c2
1[4] ,

(20)
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TABLE II. Comparison of variational no-pair results and nrQED corrections. The F (α) = ε0 + α2ε2 + α3ε3 + α4 ln(α)ε′
4 + α4ε4 function

was fitted to the no-pair energies to obtain the coefficients (var-fit). All values correspond to Hartree atomic units. (All coefficients are listed
in Table S6 [54].)

DC DC〈B〉 DCB

ε2 ε3 ε′
4 ε2 ε3 ε2 ε3

Ps = {e−, e+}:
var-fit 0.046 875 −0.128 8 −0.063 4 −0.328 125 0.280 2 −0.328 125 0.189 9
nrQED a 0.046 875 −0.128 8 −0.062 5 −0.328 125 0.280 3 −0.328 125
αn(δεn)b −4.5 × 10−12 7.2 × 10−12 2.6 × 10−12 −2.3 × 10−11 5.5 × 10−11 2.3 × 10−11

Mu = {e−, μ+}:
var-fit −0.120 227 −0.419 3 −0.967 2 −0.134 526 −0.407 1 −0.134 526 −0.407 2
nrQED a −0.120 227 −0.419 3 −0.134 528 −0.134 528
αn(δεn) b −4.7 × 10−11 −1.2 × 10−11 −1.0 × 10−10 −1.1 × 10−10

H = {e−, p+}:
var-fit −0.124 455 −0.423 8 −0.983 7 −0.126 086 −0.422 4 −0.126 086 −0.422 4
nrQED a −0.124 456 −0.423 8 −0.126 087 −0.126 087
αn(δεn)b −6.1 × 10−11 −1.0 × 10−11 −6.8 × 10−11 −6.8 × 10−11

μH = {μ−, p+}:
var-fit −8.437 67 −67.886 −130.550 2 −59.154 212 −18.860 6 −59.154 120 −24.865 6
nrQED a −8.437 70 −67.899 −59.154 516 −59.154 516
αn(δεn)b −1.7 × 10−9 −5.4 × 10−9 −1.6 × 10−8 −2.1 × 10−8

aThe nrQED expressions and the corresponding literature references [25,27,41,55,58] are collected in the Supplemental Material [54].
bαn(δεn), in Eh, with the δεn = E (n) − εn difference of the nrQED value and the fitted coefficient. For the ε′

4 term, the deviation corresponds
α4lnα(δε′

4).

and the antidiagonal blocks including the Breit interaction,
Eq. (12),

B[4]
1 = −B[4](σ1 · p)(σ2 · p)

4c2m1m2
(21)

B[4]
2 = − (σ2 · p2)B[4](σ1 · p)

4c2m1m2
(22)

B[4]
3 = − (σ1 · p)B[4](σ2 · p)

4c2m1m2
(23)

B[4]
4 = − (σ2 · p)(σ1 · p)B[4]

4c2m1m2
. (24)

The identity in the X -KB metric is

IKB = X †X

= diag

(
1[4],

p2

4c2m2
2

1[4],
p2

4c2m2
1

1[4],
p4

16c4m2
1m2

2

1[4]

)
.

(25)

Then the 16-component wave function is written as a linear
combination of spinor functions,

�(r) =
Nb∑

i=1

16∑
χ=1

ciχ fi(r)dχ , (26)

where the dχ spinor basis vectors are 16-dimensional unit
vectors, (dχ )ρ = δχρ (χ, ρ = 1, . . . , 16). For the fi spatial
functions, we use spherically symmetric Gaussian functions
(Se, L = 0 orbital angular momentum and p = +1 even (e)
parity),

fi(r) = e−ζir2
, (27)

with ζi > 0 (to ensure square integrability). We optimized the
ζi Gaussian exponents (i = 1, . . . , Nb) by minimization of the
nonrelativistic 1Se ground-state energy to a pEh(= 10−12 Eh )
precision range using quadruple precision arithmetic. Con-
vergence of the nonrelativistic and relativistic energies with
respect to the basis size is shown in Table I. For selected
systems and basis sizes, we continued the optimization of the
ζi parameters by minimization of the no-pair DC(B) energy,
and the computation remained variationally stable, the energy
“converged from above.” (This variationally stable behavior
was absent during minimization of the relevant energy level
of the bare DC Hamiltonian.) We also note that there are
no triplet contributions to the ground state (1 1Se

0) (p. 419
of Ref. [41]), since even-parity 3Pe states do not exist for a
pseudo-one-particle system (in contrast to heliumlike systems
[42]).

In addition to variational no-pair DC and DCB com-
putations, we computed the first-order perturbative Breit
correction to the nth DC energy (with n = 1 in this work) by
[31,32]

EDC〈B〉,n = EDC,n + 〈�DC,n|X †BX�DC,n〉, (28)

where B is a 16-dimensional matrix with the B[4] blocks on its
antidiagonal. The second-order perturbative Breit correction
is computed as

EDCB2,n = EDC〈B〉,n +
∑
i �=n

|〈�DC,i|X †BX�DC,n〉|2
EDC,i − EDC,n

. (29)

The outlined algorithm has been implemented in the QUAN-
TEN computer program, which is used as a molecular physics
“platform” for pre-Born–Oppenheimer, nonadiabatic, upper-
and lower-bound, perturbative- and variational relativistic de-
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TABLE III. Large mass, m2 → ∞, limit of the α3Eh-order fitted
coefficient of the no-pair DC energy, Eq. (30). (m1 = 1 corresponds
to the electron mass.)

m2 ε3

Ps = {e−, e+} 1 −0.128 8

Mu = {e−, μ+} 206.7682830 −0.419 3

H = {e−, p+} 1836.15267343 −0.423 8

10H = {e−, 10p+} 18361.5267343 −0.424 3

−E (3)
C1

(1, m2) Eq. (31) ∞ −0.424 413...

velopments [29–32,42–52]. Throughout this work Hartree
atomic units are used, and the speed of light is c = α−1a0Eh/h̄
with α−1 = 137.035 999 084 [53].

III. RESULTS AND DISCUSSION

All computed no-pair energies are listed in Table I; their
change with the basis size can be used to assess their con-
vergence. Further minimization tests for the no-pair DC(B)
energy did not reveal major changes.

For direct comparison of the computed no-pair energies
with the current state-of-the-art nrQED values, we have
(numerically) determined the α dependence of the no-pair
energies. For this reason we repeated the no-pair computations
using the {α−1 ∈ α−1

0 ± n | n ∈ {−50, . . . , 51}} series of the
interaction constant, where α0 labels the value taken from
Ref. [53]. We then fitted the function

F (α) = ε0 + α2ε2 + α3ε3 + α4 ln(α)ε′
4 + α4ε4 (30)

to the series of the no-pair energies. Inclusion of higher-order,
e.g., α5 and α5 ln α, terms in Eq. (30) did not make any visible
difference at the current numerical precision. A small fitting
error was obtained, which had orders of magnitude smaller
root-mean-squared deviation than the estimated energy con-
vergence, Table I, and a smooth convergence of the fitted
coefficients was observed with respect to the basis set size
(see Supplemental Material [54], Tables S2–S5). To obtain
consistent results, it was essential to include also the α4 ln α

term in Eq. (30); a simple α polynomial was insufficient to
represent the high-precision no-pair energies (Table I). This
feature reveals a nonregular α dependence of the no-pair en-
ergy [33], which is different from the known regular behavior
of the unprojected DC(B) energy [55] (that is known to be
inconsistent with Feynman’s propagator [56,57]).

Table II shows the comparison of the α dependence of the
no-pair energies (fitted coefficients) and the nrQED correc-
tions that were readily available to us or we could obtain with
short calculation (see Supplemental Material [54]). Excellent
agreement is observed. The numerical deviation of the per-
turbative and fitted variational values is on the order of the
convergence error of the no-pair energies (Table I). The list
of all coefficients fitted according to Eq. (30) is provided in
Table S6. Tables S2–S5 can be used to assess the convergence

of these values with respect to the basis size (see Supplemental
Material [54]).

Regarding the large mass, m2 → ∞, limit and comparison
with the one-electron Dirac energy, it is necessary to consider
that the (bare) one-electron Dirac equation is with-pair (and
correct for one electron). At α3Eh order, the one-electron
Dirac limit is recovered from our no-pair computations by
appending the no-pair energy with the (one) pair correction.
For m2 → ∞, the one-pair Coulomb correction, Eq. (3.9) of
Ref. [55] is

E (3)
C1

(m1,∞) = lim
m2→∞ E (3)

C1
(m1, m2)

= lim
m2→∞

2μ3

3π

(
2

m2
1

− 1

m1m2
+ 2

m2
2

)
= 4m1

3π
.

(31)

In Table III we can (numerically) observe that the large m2

limit of the ε3 coefficient, obtained from fitting F (α) to the
no-pair energies, converges to −E (3)

C1
(1,∞) and hence cancels

with the pair corrections (the two-pair contribution, Eq. (S12),
vanishes) for m2 → ∞. Thereby, the one-particle Dirac limit
is recovered at order α3Eh. These properties emerge as simple
consequence of using a two-particle relativistic wave equa-
tion obtained from the full relativistic QED theory. It is also
worth noting that the Breit contribution vanishes as m2 → ∞
(Table S7).

IV. SUMMARY AND CONCLUSION

In this work a computational relativistic quantum elec-
trodynamics approach was put forward based on the exact
equal-time Bethe–Salpeter equation. It is demonstrated that a
relativistic reference state can be converged to a sub-parts-per-
billion relative precision by variational solution of the no-pair
Dirac–Coulomb(–Breit) wave equation, including the dom-
inant, instantaneous part of the electromagnetic interaction.
The α fine-structure dependence of the computed energies are
in excellent agreement with the formal nonrelativistic QED
results corresponding to polynomial and logarithmic correc-
tions in α, up to α6 ln α order in natural units (α4 ln αEh),
and reveal a nonregular nature of the α expansion about the
nonrelativistic reference. Perturbative retardation, radiative,
and pair corrections to the no-pair relativistic states had been
formulated long ago [25–27], and their evaluation with the
high-precision relativistic reference states computed in this
work will be carried out in the future.

ACKNOWLEDGMENTS

Financial support of the European Research Council
through a Starting Grant (No. 851421) is gratefully acknowl-
edged. D.F. is grateful for a doctoral scholarship from the
ÚNKP-22-4 New National Excellence Program of the Min-
istry for Innovation and Technology from the source of
the National Research, Development, and Innovation Fund
(ÚNKP-22-4-I-ELTE-51).

[1] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Springer, Berlin, 1957).

[2] M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of light
hydrogenlike atoms, Phys. Rep. 342, 63 (2001).

052803-5

https://doi.org/10.1016/S0370-1573(00)00077-6


DÁVID FERENC AND EDIT MÁTYUS PHYSICAL REVIEW A 107, 052803 (2023)

[3] M. S. Fee, A. P. Mills, S. Chu, E. D. Shaw, K. Danzmann,
R. J. Chichester, and D. M. Zuckerman, Measurement of
the Positronium 13S1–23S1 Interval by Continuous-Wave Two-
Photon Excitation, Phys. Rev. Lett. 70, 1397 (1993).

[4] T. W. Hänsch, Nobel lecture: Passion for precision, Rev. Mod.
Phys. 78, 1297 (2006).

[5] F. Biraben, Spectroscopy of atomic hydrogen, Eur. Phys. J.
Spec. Top. 172, 109 (2009).

[6] A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R.
Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall,
D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T.
Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch,
Precision Measurement of the Hydrogen 1S–2S Frequency via
a 920-km Fiber Link, Phys. Rev. Lett. 110, 230801 (2013).

[7] A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M.
Yoshida, K. Tanaka, and A. Yamamoto, New precision mea-
surement of hyperfine splitting of positronium, Phys. Lett. B
734, 338 (2014).

[8] C. Frugiuele, J. Pérez-Ríos, and C. Peset, Current and future
perspectives of positronium and muonium spectroscopy as dark
sectors probe, Phys. Rev. D 100, 015010 (2019).

[9] L. Gurung, T. J. Babij, S. D. Hogan, and D. B. Cassidy, Pre-
cision Microwave Spectroscopy of the Positronium n = 2 Fine
Structure, Phys. Rev. Lett. 125, 073002 (2020).

[10] B. Ohayon, G. Janka, I. Cortinovis, Z. Burkley, L. de Sousa
Borges, E. Depero, A. Golovizin, X. Ni, Z. Salman, A. Suter, C.
Vigo, T. Prokscha, and P. Crivelli (Mu-MASS Collaboration),
Precision Measurement of the Lamb Shift in Muonium, Phys.
Rev. Lett. 128, 011802 (2022).

[11] G. Adkins, D. Cassidy, and J. Pérez-Ríos, Precision spec-
troscopy of positronium: Testing bound-state QED theory and
the search for physics beyond the Standard Model, Phys. Rep.
975, 1 (2022).

[12] A. Rubbia, Positronium as a probe for new physics beyond the
Standard Model, Int. J. Mod. Phys. A 19, 3961 (2004).

[13] S. G. Karshenboim, Precision study of positronium: Testing
bound state QED theory, Int. J. Mod. Phys. A 19, 3879
(2004).

[14] S. G. Karshenboim, Precision physics of simple atoms: QED
tests, nuclear structure and fundamental constants, Phys. Rep.
422, 1 (2005).

[15] S. N. Gninenko, N. V. Krasnikov, V. A. Matveev, and A.
Rubbia, Some aspects of positronium physics, Phys. Part.
Nuclei 37, 321 (2006).

[16] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
A. Derevianko, and C. W. Clark, Search for new physics with
atoms and molecules, Rev. Mod. Phys. 90, 025008 (2018).

[17] S. G. Karshenboim, Positronium, antihydrogen, light, and the
equivalence principle, J. Phys. B: At. Mol. Opt. Phys. 49,
144001 (2016).

[18] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K.
Khabarova, A. Grinin, T. Lamour, D. C. Yost, T. W.
Hänsch, N. Kolachevsky, and T. Udem, The Rydberg con-
stant and proton size from atomic hydrogen, Science 358, 79
(2017).

[19] H. Fleurbaey, S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F.
Biraben, F. Nez, M. Abgrall, and J. Guéna, New measurement
of the 1S − 3S Transition Frequency of Hydrogen: Contribu-
tion to the Proton Charge Radius Puzzle, Phys. Rev. Lett. 120,
183001 (2018).

[20] J.-P. Karr and D. Marchand, Progress on the proton-radius puz-
zle, Nature (London) 575, 61 (2019).

[21] P. Crivelli, The Mu-MASS (muonium laser spectroscopy) ex-
periment, Hyperfine Int. 239, 49 (2018).

[22] E. E. Salpeter and H. A. Bethe, A relativistic equation for
bound-state problems, Phys. Rev. 84, 1232 (1951).

[23] M. Gell-Mann and F. Low, Bound states in quantum field the-
ory, Phys. Rev. 84, 350 (1951).

[24] E. E. Salpeter, Mass corrections to the fine structure of
hydrogen-like atoms, Phys. Rev. 87, 328 (1952).

[25] J. Sucher, Energy levels of the two-electron atom, to order α3

Rydberg (Columbia University) (1958).
[26] M. Douglas and N. M. Kroll, Quantum electrodynamical cor-

rections to the fine structure of helium, Ann. Phys. 82, 89
(1974).

[27] T. Zhang, Corrections to O(α7(lnα)mc2) fine-structure split-
tings and O(α6(lnα)mc2) energy levels in helium, Phys. Rev.
A 54, 1252 (1996).

[28] E. Mátyus, D. Ferenc, P. Jeszenszki, and A. Margócsy, The
Bethe–Salpeter QED wave equation for bound-state computa-
tions of atoms and molecules, ACS Phys. Chem. Au (2023).

[29] P. Jeszenszki, D. Ferenc, and E. Mátyus, All-order explicitly
correlated relativistic computations for atoms and molecules,
J. Chem. Phys. 154, 224110 (2021).

[30] P. Jeszenszki, D. Ferenc, and E. Mátyus, Variational Dirac–
Coulomb explicitly correlated computations for molecules,
J. Chem. Phys. 156, 084111 (2022).

[31] D. Ferenc, P. Jeszenszki, and E. Mátyus, On the Breit inter-
action in an explicitly correlated variational Dirac–Coulomb
framework, J. Chem. Phys. 156, 084110 (2022).

[32] D. Ferenc, P. Jeszenszki, and E. Mátyus, Variational vs.
perturbative relativistic energies for small and light atomic
and molecular systems, J. Chem. Phys. 157, 094113
(2022).

[33] G. Hardekopf and J. Sucher, Relativistic wave equations in
momentum space, Phys. Rev. A 30, 703 (1984).

[34] W. Schwarz and H. Wallmeier, Basis set expansions of relativis-
tic molecular wave equations, Mol. Phys. 46, 1045 (1982).

[35] W. Kutzelnigg, Basis set expansion of the Dirac operator with-
out variational collapse, Int. J. Quantum Chem. 25, 107 (1984).

[36] W. Liu, Ideas of relativistic quantum chemistry, Mol. Phys. 108,
1679 (2010).

[37] S. Tracy and P. Singh, A new matrix product and its applications
in matrix differentiation, Stat. Neerl. 26, 143 (1972).

[38] Z. Li, S. Shao, and W. Liu, Relativistic explicit correlation: Co-
alescence conditions and practical suggestions, J. Chem. Phys.
136, 144117 (2012).

[39] S. Shao, Z. Li, and W. Liu, Basic structures of relativistic
wave functions, in Handbook of Relativistic Quantum Chem-
istry, edited by W. Liu (Springer, Berlin, Heidelberg, 2017),
pp. 481–496.

[40] B. Simmen, E. Mátyus, and M. Reiher, Relativistic kinetic-
balance condition for explicitly correlated basis functions,
J. Phys. B: At. Mol. Opt. Phys. 48, 245004 (2015).

[41] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Relativisztikus Kvantumelmélet, (Hungarian translation by F.
Niedermayer and A. Patkós) (Tankönyvkiadó, Budapest, 1979),
Vol. 4.

[42] P. Jeszenszki and E. Mátyus, Relativistic two-electron atomic
and molecular energies using LS coupling and double groups:

052803-6

https://doi.org/10.1103/PhysRevLett.70.1397
https://doi.org/10.1103/RevModPhys.78.1297
https://doi.org/10.1140/epjst/e2009-01045-3
https://doi.org/10.1103/PhysRevLett.110.230801
https://doi.org/10.1016/j.physletb.2014.05.083
https://doi.org/10.1103/PhysRevD.100.015010
https://doi.org/10.1103/PhysRevLett.125.073002
https://doi.org/10.1103/PhysRevLett.128.011802
https://doi.org/10.1016/j.physrep.2022.05.002
https://doi.org/10.1142/S0217751X0402021X
https://doi.org/10.1142/S0217751X04020142
https://doi.org/10.1016/j.physrep.2005.08.008
https://doi.org/10.1134/S1063779606030038
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1088/0953-4075/49/14/144001
https://doi.org/10.1126/science.aah6677
https://doi.org/10.1103/PhysRevLett.120.183001
https://doi.org/10.1038/d41586-019-03364-z
https://doi.org/10.1007/s10751-018-1525-z
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1103/PhysRev.84.350
https://doi.org/10.1103/PhysRev.87.328
https://doi.org/10.1016/0003-4916(74)90333-9
https://doi.org/10.1103/PhysRevA.54.1252
https://doi.org/10.1021/acsphyschemau.2c00062
https://doi.org/10.1063/5.0051237
https://doi.org/10.1063/5.0075096
https://doi.org/10.1063/5.0075097
https://doi.org/10.1063/5.0105355
https://doi.org/10.1103/PhysRevA.30.703
https://doi.org/10.1080/00268978200101771
https://doi.org/10.1002/qua.560250112
https://doi.org/10.1080/00268971003781571
https://doi.org/10.1111/j.1467-9574.1972.tb00199.x
https://doi.org/10.1063/1.3702631
https://doi.org/10.1088/0953-4075/48/24/245004


PRE–BORN-OPPENHEIMER DIRAC-COULOMB-BREIT … PHYSICAL REVIEW A 107, 052803 (2023)

Role of the triplet contributions to singlet states, J. Chem. Phys.
158, 054104 (2023).

[43] E. Mátyus, Pre-Born–Oppenheimer molecular structure theory,
Mol. Phys. 117, 590 (2019).

[44] D. Ferenc and E. Mátyus, Computation of rovibronic reso-
nances of molecular hydrogen: EF 1�+

g inner-well rotational
states, Phys. Rev. A 100, 020501(R) (2019).

[45] D. Ferenc and E. Mátyus, Non-adiabatic mass correction for
excited states of molecular hydrogen: Improvement for the
outer-well HH̄ 1�+

g term values, J. Chem. Phys. 151, 094101
(2019).

[46] D. Ferenc, V. I. Korobov, and E. Mátyus, Nonadiabatic, Rela-
tivistic, and Leading-order QED Corrections for Rovibrational
Intervals of 4He+

2 (X 2�
+
u ), Phys. Rev. Lett. 125, 213001

(2020).
[47] D. Ferenc and E. Mátyus, Benchmark potential energy

curve for collinear H3, Chem. Phys. Lett. 801, 139734
(2022).

[48] R. T. Ireland, P. Jeszenszki, E. Mátyus, R. Martinazzo, M.
Ronto, and E. Pollak, Lower bounds for nonrelativistic atomic
energies, ACS Phys. Chem. 2, 23 (2022).

[49] M. Ronto, P. Jeszenszki, E. Mátyus, and E. Pollak, Lower
bounds on par with upper bounds for few-electron atomic en-
ergies, Phys. Rev. A 107, 012204 (2023).

[50] E. Mátyus and D. Ferenc, Vibronic mass computation for
the EF−GK−HH 1�+

g manifold of molecular hydrogen,
Mol. Phys. 120, e2074905 (2022).

[51] D. Ferenc and E. Mátyus, Evaluation of the Bethe logarithm:
From atom to chemical reaction, J. Phys. Chem. A 127, 627
(2023).

[52] P. Jeszenszki, R. T. Ireland, D. Ferenc, and E. Mátyus, On
the inclusion of cusp effects in expectation values with explic-
itly correlated Gaussians, Int. J. Quantum Chem. 122, e26819
(2022).

[53] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor,
CODATA recommended values of the fundamental physical
constants: 2018, Rev. Mod. Phys. 93, 025010 (2021).

[54] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.107.052803 for nrQED energy corrections,
the analytic matrix elements of operators relevant for the vari-
ational no-pair computations, convergence tables, the list of
coefficients fitted to the fine-structure-constant dependence of
the no-pair energies, and the basis function parameters (opti-
mized by minimization of the non-relativistic energy).

[55] T. Fulton and P. C. Martin, Two-body system in quantum elec-
trodynamics. Energy levels of positronium, Phys. Rev. 95, 811
(1954).

[56] R. P. Feynman, The theory of positrons, Phys. Rev. 76, 749
(1949).

[57] R. P. Feynman, Space-time approach to quantum electrodynam-
ics, Phys. Rev. 76, 769 (1949).

[58] I. B. Khriplovich, A. I. Milstein, and A. S. Yelkhovsky, Log-
arithmic corrections in the two-body QED problem, Phys. Scr.
T46, 252 (1993).

052803-7

https://doi.org/10.1063/5.0136360
https://doi.org/10.1080/00268976.2018.1530461
https://doi.org/10.1103/PhysRevA.100.020501
https://doi.org/10.1063/1.5109964
https://doi.org/10.1103/PhysRevLett.125.213001
https://doi.org/10.1016/j.cplett.2022.139734
https://doi.org/10.1021/acsphyschemau.1c00018
https://doi.org/10.1103/PhysRevA.107.012204
https://doi.org/10.1080/00268976.2022.2074905
https://doi.org/10.1021/acs.jpca.2c05790
https://doi.org/10.1002/qua.26819
https://doi.org/10.1103/RevModPhys.93.025010
http://link.aps.org/supplemental/10.1103/PhysRevA.107.052803
https://doi.org/10.1103/PhysRev.95.811
https://doi.org/10.1103/PhysRev.76.749
https://doi.org/10.1103/PhysRev.76.769
https://doi.org/10.1088/0031-8949/1993/T46/040

