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Nuclear polarizability effects in 3He+ hyperfine splitting

Vojtěch Patkóš ,1 Vladimir A. Yerokhin ,2 and Krzysztof Pachucki 3

1Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
2Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

3Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

(Received 23 March 2023; accepted 27 April 2023; published 9 May 2023)

The nuclear polarizability effects in the hyperfine splitting of light atomic systems are not well known. The
only system for which they were previously calculated is the hydrogen atom, where these effects were shown to
contribute about 5% of the total nuclear correction. One generally expects the polarizability effects to become
more pronounced for composite nuclei. In the present paper we determine the nuclear polarizability correction to
the hyperfine splitting in He+ by comparing the effective Zemach radius deduced from experimental hyperfine
splitting with the Zemach radius obtained from electron scattering. We obtain a surprising result that the nuclear
polarizability of the helion yields just 3% of the total nuclear correction, which is smaller than for the proton.
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I. INTRODUCTION

The hyperfine structure (HFS) in atoms and ions is deter-
mined not only by the value of the nuclear magnetic moment
but also by the distribution of the charge and the magnetic mo-
ment over the nucleus and by the nuclear vector polarizability.
These effects cannot be calculated accurately at present and
are the main source of uncertainty in theoretical predictions.

The nuclear effects in HFS are typically divided into two
parts: elastic and inelastic ones. The elastic effects are ex-
pressed in terms of charge and magnetic form factors, whereas
the dominant inelastic effect is nuclear polarizability. It is well
known that the dominant nuclear effect is of the elastic kind
and is proportional to the so-called Zemach radius [1], which
is the convolution of electric and magnetic form factors.

Little is known about the nuclear polarizability in HFS,
mainly due to the complexity of its theoretical description.
The effect is most pronounced for the muonic deuterium (μD)
HFS, where it is supposed to be as large as the elastic nuclear
contribution. The theoretical predictions for the μD HFS [2]
are in conflict with the experimental results [3].

For electronic atoms the nuclear polarizability effects are
much smaller than for muonic atoms but are not negligible.
Even for hydrogen the inelastic effects were shown to be
significant and yield about 5% of the elastic contribution [4].
For other atomic systems the inelastic HFS contributions are
merely unknown. Low [5] has derived a simple formula for
the leading nuclear-structure contribution, treating the nucleus
as a composite system of protons and neutrons and avoiding
the use of elastic nuclear form factors. Friar [6] estimated the
inelastic contribution to HFS in deuterium beyond the Low
formula and concluded that it is not significant. Khriplovich
et al. [7,8] claimed to derive the leading logarithmic part
of the inelastic contribution, but later it was demonstrated
by one of us [9] that this contribution vanishes in a more
complete treatment. In that work a formula for the inelastic
contribution to atomic HFS was derived, but its complexity
prevented any practical applications so far. So, the inelastic

contribution to HFS in light atomic systems is merely un-
known at present.

In the absence of theoretical calculations of the nuclear
polarizability correction, in the present paper we perform its
determination from experimental HFS splitting. We rely on
the fact that all HFS corrections originating from the relativis-
tic and quantum electrodynamics (QED) effects for the point
nucleus can be calculated up to very high accuracy and that
the elastic form factors of the nucleus can be extracted from
analyzing the electron scattering data.

We introduce the effective Zemach radius r̃Z which in-
cludes the inelastic nuclear contribution and can be accurately
determined from high-precision experimental results for the
HFS splitting. On the other hand, the standard elastic Zemach
radius rZ was determined from the electron-scattering data by
Sick [10]. The difference r̃Z − rZ gives us the result for the
nuclear polarizability correction.

The significance of the effective Zemach radius is that it
can be used to obtain highly accurate theoretical predictions
for the HFS of the neutral helium, which will be a subject of
our forthcoming investigations.

II. HFS IN HYDROGENIC ATOMS

The leading hyperfine splitting of an 1S state is delivered
by the so-called Fermi energy EF , which is given by

EF = 8

3
(Zα)4 μ3

m M
(1 + k), (1)

where Z and M are the nuclear charge number and the mass,
respectively, μ is the reduced mass of the atom, and k is the
nuclear magnetic moment anomaly k = (g − 2)/2, with the
natural nuclear g factor defined as

�μ = Z e

2 M
g �I . (2)

Here, �μ and �I are the magnetic moment and the spin of the
nucleus, respectively. The natural g factor is related to the
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standard nuclear gI factor by

g = gI
M

Z mp
. (3)

gI can be obtained from the recent measurement of the
shielded gI in 3He+ in Ref. [11] and the most accurate cal-
culation of the shielding factor in Ref. [12], namely

gI = −4.255 250 699 9(34), (4)

and therefore

g = −6.368 307 500 5(51). (5)

The complete hyperfine splitting is conveniently repre-
sented as

Ehfs = EF (1 + δ), (6)

where δ represents the correction to the Fermi energy due to
relativistic, QED, and nuclear effects. Within the approach
of the nonrelativistic QED (NRQED), δ is represented as an
expansion in terms of the fine-structure constant α,

δ = κ + δ(2) + δ(3) + δ(4) + δ(1)
nuc + δ(1)

rec + δ(2)
nuc + δ(2)

rec , (7)

where κ is the magnetic moment anomaly of the free electron,
κ = α/(2π ) + O(α2), and δ(i), δ(i)

nuc, and δ(i)
rec are the QED,

nuclear, and recoil corrections of order αi, respectively.
The QED corrections of order α2, α3, and α4 are given by

δ(2) = 3

2
(Z α)2 + α(Z α)

(
ln(2) − 5

2

)
, (8)

δ(3) = α(Z α)2

π

[
−8

3
ln(Z α)

(
ln(Z α) − ln(4) + 281

480

)

+17.122 338 751 3 − 8

15
ln(2) + 34

225

]

+ α2(Z α)

π
0.770 99(2), (9)

δ(4) = 17

8
(Z α)4 + α(Z α)3

[(
547

48
− 5 ln(2)

)
ln(Z α)

−4.493 23(3) + 13

24
ln 2 + 539

288

]

− α2(Z α)2

π2

[
4

3
ln2(Z α) + 1.278 ln(Z α) + 10.0(2.5)

]

± α3(Z α)

π2
. (10)

Most of the results summarized by Eqs. (8)–(10) can be found
in Refs. [13,14]. We mention that the α(Z α)2 part of δ(3)

contains the improved numerical value for the constant term
from the Appendix, and the α(Z α)3 part of δ(4) includes
higher orders in Z α for Z = 2 from Ref. [15]. The last term
in δ(4) represents the estimate of the unknown three-loop QED
correction.

δ(1)
nuc is the leading O(Z α) nuclear structure correction.

It is a sum of the elastic contribution proportional to the
Zemach radius rZ and the nuclear polarizability contribution.
The Zemach radius is defined as

rZ =
∫

d3r1

∫
d3r2 ρE (�r1) ρM (�r2)|�r1 − �r2|, (11)

TABLE I. Contributions to HFS in the 3He+ ion and determina-
tion of r̃Z . The nuclear charge radius rC = 1.973(14) fm [10].

Term Value ×EF (kHz)

1 1 −8 656 527.892(7)

κ 0.001 159 65 −10 038.6

δ(2) 0.000 127 07 −1100.0

δ(3) −0.000 019 49 168.7

δ(4) −0.000 000 75 6.5

δ(1)
rec −0.000 012 17(60) 105.4(5.3)

δ(2+)
nuc −0.000 002 89(3) 25.0

δ(2)
rec −0.000 001 16(18) 10.1(1.6)

Theory without δ(1)
nuc 1.001 250 26(63) −8 667 350.8(5.5)

Experiment [11] 1.001 053 77 −8 665 649.865 77(26)

δ(1)
nuc −0.000 196 49(63) 1701.0(5.5)

r̃Z This work 2.600(8) fm

rZ [11] 2.608(24) fm

rZ [10] expt. 2.528(16) fm

rZ [16] nucl. theor. 2.539(3)(19) fm

r̃Z − rZ (expt.) = 0.072(18) fm

where ρE and ρM are the Fourier transforms of the electric and
magnetic form factors of the nucleus normalized to unity.

In this paper we introduce the effective Zemach radius r̃Z

that includes both the elastic and the inelastic contributions of
order α. It is related to δ(1)

nuc, by definition, as

δ(1)
nuc = −2 Z α μ r̃Z . (12)

The difference r̃Z − rZ can then be interpreted as the inelastic
nuclear-polarizability contribution. In the present paper, we
determine δ(1)

nuc and therefore r̃Z by taking the difference of the
experimental HFS value and the theoretical prediction without
δ(1)

nuc.
The higher-order nuclear-structure corrections and the

recoil corrections are much smaller than δ(1)
nuc. They will be cal-

culated assuming that the distributions of the nuclear charge
and the magnetic moment are the same, ρE (r) = ρM (r) ≡
ρ(r). Here, we will use the exponential and the Gaussian
models for ρ(r) (see Tables I and II). The parameters of
the models will be fixed by matching the Zemach radius to
the experimental value from Ref. [10]. In order to estimate the
model dependence of our results, we take twice the difference
of values obtained with the exponential and the Gaussian
models.

The α2 nuclear-structure correction is given by the sum of
the relativistic and the radiative corrections,

δ(2)
nuc = δ

(2)
nuc,rel + δ

(2)
nuc,rad. (13)

The relativistic correction is given by [2]

δ
(2)
nuc,rel = 4

3
(m rC Z α)2

[
−1 + γ + ln(2 m rCC Z α) + r2

M

4 r2
C

]
,

(14)

where rM is the root-mean-square magnetic radius and
rCC/rC = 5.274 565 for the exponential charge distribution.

052802-2



NUCLEAR POLARIZABILITY EFFECTS IN 3HE+ … PHYSICAL REVIEW A 107, 052802 (2023)

TABLE II. Various results for the exponential and Gaussian
models of the nuclear charge and magnetization distributions. Fe is
the charge distribution function, VC (r) = −Zα/r Fe(r), whereas Fm

is the magnetic moment distribution function, Hμ = |e|/4π α · μ ×
r/r3 Fm(r).

Exponential Gaussian

ρ(q2) λ4

(λ2+q2 )2 e−aq2/2

ρ(r) λ3

8π
e−λ r 1

(2πa)3/2 e−r2/(2a)

rC 2
√

3/λ

√
3a

rZ 35/(8 λ) 4
√

a/π

Fe(r) 1 − e−λr (1 + λr/2) erf
(

r√
2a

)
Fm(r) 1 − e−λr (1 + λr + (λr)2

/2) erf
(

r√
2a

) −
√

2 r√
πa e−r2/(2a)

The numerical contribution of this correction is quite small,
δ

(2)
nuc,rel = −5.4 × 10−8 for He+. Surprisingly, the next order

in Z α correction yields a numerically larger contribution,
because it is approximately proportional to m rZ , instead of
(m rC )2. For this reason we replace δ

(2)
nuc,rel by δ

(2+)
nuc,rel, which is

evaluated numerically in this work for Z = 2. The resulting
contribution is

δ
(2+)
nuc,rel = −49.1(5) × 10−8. (15)

The above value is obtained with the exponential model; its
uncertainty represents the expected model dependence and is
obtained as twice the difference from the results obtained with
the Gaussian model.

The radiative finite nuclear size correction is given within
the exponential distribution model by [17]

δ
(2)
nuc,rad = −2 Z α μ rZ

α

π

(
−5

4
+ 2

3
ln

λ2

m2
− 634

315

)
, (16)

where the first term comes from the electron self-energy and
next two from the vacuum polarization. Its numerical contri-
bution for He+ is

δ
(2)
nuc,rad = − 240.1(2.4) × 10−8, (17)

assuming a similar 1% uncertainty as for δ
(2+)
nuc,rel.

δ(1)
rec is the leading-order (in α) nuclear recoil correction,

given by [18]

δ(1)
rec = −Zα

π

m

M

3

8

{
g

[
γ − 7

4
+ ln(m rM2 )

]

−4

[
γ + 9

4
+ ln(m rEM )

]
− 12

g

[
γ − 17

12
+ ln(m rE2 )

]}
,

(18)

where γ ≈ 0.577 216 is Euler’s gamma constant,

ln rEM =
∫

d3r1

∫
d3r2 ρE (�r1)ρM (�r2) ln |�r1 − �r2|, (19)

and ln rM2 and ln rE2 defined analogously. Within the expo-
nential model,

ln m rEM = ln m rE2 = ln m rM2 = − ln
λ

m
− γ + 23

12
, (20)

the numerical contribution for He+ is

δ(1)
rec = −1217(60) × 10−8, (21)

where we ascribed a 5% uncertainty due to an approximate
exponential parametrization of the helion form factors.

The higher-order recoil correction is the sum of the rela-
tivistic and the radiative-recoil contributions,

δ(2)
rec = δ

(2)
rec,rel + δ

(2)
rec,rad. (22)

The relativistic recoil correction was derived in Ref. [19]. It
has a finite point-nucleus limit and is given by

δ
(2)
rec,rel = (Z α)2 μ2

m M

{
−

[
1 + 7 k + 7

1 + k

]
ln(Z α)

4

−
[

9 + 11 k + 23

1 + k

]
ln 2

4

+ 1

36

[
−20 + 31 k + 150

1 + k

]}
. (23)

The numerical contribution for He+ is δ
(2)
rec,rel = −116.3 ×

10−8.
The radiative recoil effect to HFS is in general unknown.

Karshenboim [17] presented only a rough estimation for this
correction in hydrogen. Instead of using this estimate, we
assume the logarithmic enhancement for this correction and
estimate the uncertainty due to its omission as

δ
(2)
rec,rad = ±δ(1)

rec
α

π
ln

λ

m
= ±18.4 × 10−8. (24)

There are further higher-order corrections, such as the
muonic and hadronic vacuum polarization, weak interactions,
etc. These corrections are smaller than the uncertainty of
δ(1)

rec and thus neglected (see the Supplemental Material of
Ref. [11]).

III. RESULTS AND DISCUSSION

In Table I we collect all theoretical contributions to the
ground-state hyperfine splitting of the 3He+ ion. It is inter-
esting to note that the recoil correction δ(1)

rec yields about 6%
of the total nuclear contribution, despite the smallness of the
electron-nucleus mass ratio.

The difference of the theoretical prediction without δ(1)
nuc

and the experimental value from Ref. [11] determines δ(1)
nuc

and therefore the effective Zemach radius r̃Z . The difference
of the effective Zemach radius and the elastic Zemach radius
obtained in Ref. [10] from the electron-scattering data yields
r̃Z − rZ = 0.072(18) fm. We interpret this difference as the
contribution of the nuclear polarizability.

It is very remarkable that the numerical contribution of
the nuclear polarizability is quite small, just about 3% of the
elastic nuclear correction. This is smaller than for hydrogen,
where the inelastic HFS contribution is about 5% [4]. We
find this smallness very intriguing for the following reason.
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The helion, being a composite nucleus, is a relatively weakly
bound system as compared to the proton. This can be illus-
trated by comparing the proton mean excitation energy of 400
MeV with the helion proton-separation energy of 5 MeV. The
nuclear polarizability is expected to be roughly proportional
to the inverse of these energies. Indeed, for the Lamb shift
the corresponding energy shifts are −0.109(12) kHz [4] and
−55(5.5) kHz [20], for hydrogen and 3He+, respectively.
However, for the HFS the expected relation between hydrogen
and He+ fails spectacularly. At present we do not have any
explanation for why the inelastic HFS nuclear contribution for
a helion is smaller than for the proton. It should be noted that
the authors of Ref. [11] claimed to evaluate the nuclear polar-
izability correction and obtained a very small result (vanishing
within their uncertainty), so within their uncertainty r̃Z = rZ .

Summarizing and bearing in mind the discrepancy for μD
HFS [2] and for 6Li HFS [21], a comprehensive theory for the
inelastic (polarizability) correction to the atomic HFS with the
composite nucleus is still lacking.
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APPENDIX: ONE-LOOP α(Z α)2 SELF-ENERGY
CORRECTION TO HFS

In a previous work [22] devoted to the α(Z α)2 one-loop
self-energy contribution the hyperfine splitting bugs crept into
the formulas for intermediate contributions, while the final
result was correct. Here, we remove all these bugs and present
numerical integrals with a higher precision, which might be
relevant in future studies of HFS in light atomic systems.

Using the notation from a former work [22] and thus setting
for convenience Z = 1, the one-loop self-energy contribution
to HFS in a hydrogenlike system is represented in terms of the
dimensionless function F .

	E = EF
α

π
α2 F, (A1)

which is split into three parts,

F = FL + FM + FH . (A2)

The low-energy part,

FL = 781

18
+ 4 π2

3
− 166 ln(2)

3
− 2 ln(2)2

3
− 4 ln(α)

+ 8 ln(2) ln(α) − 8 ln(α)2

3
+ 2 ln(ε) − 4 ln(2) ln(ε)

+ 8 ln(α) ln(ε)

3
− 2 ln(ε)2

3
+ n1 + n2, (A3)

is expressed in terms of two integrals, Eqs. (26) and (27) of
Ref. [22],

n1 = −0.085 740 323 701 4, (A4)
n2 = 0.067 496 936 500 3, (A5)

which we present here with a much higher precision.

The middle-energy part,

FM = FM1 + FM2 + FM3 + FM4, (A6)

consists of four subparts,

FM1 = 1

2

[
1 − 1

2
ln

(
2 α

ρ

)]
, (A7)

FM2 = −8

3

[
1

2
− ln

(
2 α

ρ

)]
ln

(
m

μ

)
, (A8)

FM3 = 4 ln

(
m

μ

)
− 1

2
, (A9)

FM4 = ln

(
2 α

ρ

)
. (A10)

Their sum is

FM = 8

3
ln

(
m

μ

)
+ 3

4
ln

(
2 α

ρ

)
+ 8

3
ln

(
m

μ

)
ln

(
2 α

ρ

)
(A11)

= 20

9
− 8

3
ln(2 ε) + 107

36
ln

(
2 α

ρ

)
− 8

3
ln(2 ε) ln

(
2 α

ρ

)
.

(A12)

The high-energy part is

FH = −335

36
− 11 π2

18
+ 190 ln(2)

9
+ 2 ln(2)2

3
+ 2 ln(ε)

3

+ 20 ln(2) ln(ε)

3
+ 2 ln(ε)2

3
+ 107 ln(ρ)

36

− 8 ln(2) ln(ρ)

3
− 8 ln(ε) ln(ρ)

3
− 5 ζ (3)

4
. (A13)

The final result is a sum of three parts as given in Eq. (A2),

F = n1 + n2 + 1307

36
+ 13 π2

18
− 407 ln(2)

12
− 8 ln(2)2

3

− 37 ln(α)

36
+ 16 ln(2) ln(α)

3
− 8 ln(α)2

3
− 5 ζ (3)

4
,

(A14)

and the constant term is equal to 17.122 338 751 3 . . ..
In the calculation of individual parts, we sometimes used

the photon mass μ regularization and equivalently the photon
cutoff ε. The conversion formulas from ε to μ are the follow-
ing:

ln(ε) = ln
(μ

2

)
+ 5

6
, (A15)

ln2(ε) =
[

ln
(μ

2

)
+ 5

6

]2

+ 31

36
− π2

12
. (A16)
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