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We present the generalized state-dependent entropic uncertainty relations in a multiple measurements setting
and the optimal lower bound is obtained by considering different measurement sequences. We then apply
this uncertainty relation to witness entanglement and give the experimentally accessible lower bounds on
both bipartite and tripartite entanglements. This method of detecting entanglement is applied to a physical
system of two particles on a one-dimensional lattice and Greenberger-Horne-Zeilinger (GHZ)-Werner state.
It is shown that, for measurements that are not in mutually unbiased bases, this generalized entropic uncertainty
relation is superior to the previous state-independent one in entanglement detection. Furthermore, we conduct
a demonstration of multipartite entanglement detection of GHZ states up to ten qubits on the QUAFU cloud
quantum computation platform. Our results might play important roles in detecting multipartite entanglement
experimentally.
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I. INTRODUCTION

The uncertainty principle sets limits on the precise pre-
diction of the outcomes of two incompatible measurements,
which is originally formulated by variance [1,2]. It is known
that entropy is also an uncertainty quantifier, and the entropic
uncertainty relation has been constructed in the past decades
[3–5]. However, Berta et al. found that the uncertainty can be
decreased if the measured system is entangled with a quantum
memory. Then they proposed a quantum-memory-assisted en-
tropic uncertainty relation [6]. After that, significant progress
was made to generalize this entropic uncertainty relation to
multiple measurements [7–16].

The lower bounds of these uncertainty relations are known
as state independent because the complementary factors come
from the overlaps between the eigenstates of measurement
operators, which are only connected with measurements. The
characteristic of this kind of uncertainty relation is that they
are tight for measurements with mutually unbiased bases
(MUBs) [17,18]. If the bases of selected measurements are
non-MUBs, the inequality is far from tightness. Recently,
Bergh and Gärttner proposed a fully state-dependent en-
tropic uncertainty relation, which gave a tighter lower bound
for some measurements with non-MUBs [19,20]. However,
the generalized state-dependent entropic uncertainty relation
for multiple measurements needs to be explored. It remains
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interesting whether the generalized uncertainty relation for
multiple measurements with non-MUBs is still tighter than
the previous one.

The quantum-memory-assisted entropic uncertainty rela-
tion has many applications in quantum information, one of
which is to witness entanglement [6,19–25]. The detection of
entanglement in experiments is important in quantum infor-
mation processing tasks [26–28]. However, the estimation of
entanglement measures requires complete knowledge of the
quantum state, which is hard to implement in experiments,
especially for high-dimensional states and multipartite states
[29]. Thus, lower bounds are usually presented to evaluate en-
tanglement [30–35]. The quantum-memory-assisted entropic
uncertainty relation provides an experimentally accessible
lower bound on the bipartite entanglement [19,20]. It only
needs several measurements and does not rely on the tomog-
raphy of the quantum state. Therefore, one may ask whether
the similar method of obtaining lower bounds on multipartite
entanglement can be realized by using the entropic uncertainty
relation.

Over the past few years, cloud quantum computation has
been available online for various applications, such as tests of
fundamental physics [36–42]. Recently, a newly implemented
superconducting cloud quantum computation platform was
launched online, which is named as SCQ [43]. It was then
updated at the QUAFU cloud quantum computation platform
[44]. They successfully generated a ten-qubit Greenberger-
Horne-Zeilinger (GHZ) state and verified its fidelity [42].
It is convenient to conduct a demonstration of multipartite
entanglement detection on this cloud platform.

2469-9926/2023/107(5)/052617(9) 052617-1 ©2023 American Physical Society

https://orcid.org/0009-0008-6979-1652
https://orcid.org/0000-0003-1130-4280
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.052617&domain=pdf&date_stamp=2023-05-30
https://doi.org/10.1103/PhysRevA.107.052617


REN, SHI, CHEN, AND FAN PHYSICAL REVIEW A 107, 052617 (2023)

In this paper, we will prove a generalized state-dependent
entropic uncertainty relation for multiple measurements with
a pair of referenced measurements. We find that the lower
bound of the uncertainty relation depends on the order of
measurements, which can be made tighter by taking over all
measurement orders. As an application, we apply it to mul-
tipartite entanglement detection. On the one hand, this new
uncertainty relation provides a lower bound on bipartite entan-
glement, which is shown in a physical model of two particles
governed by the Hubbard Hamiltonian. On the other hand, we
give a lower bound on tripartite entanglement by using this
new uncertainty relation and the example of the GHZ-Werner
state is investigated in detail. Finally, we detect multipartite
entanglement of GHZ states from three to ten qubits through
the QUAFU cloud quantum computation platform.

II. GENERALIZED STATE-DEPENDENT ENTROPIC
UNCERTAINTY RELATIONS

FOR MULTIPLE MEASUREMENTS

The quantum-memory-assisted entropic uncertainty rela-
tion was first proposed by Berta et al. [6], which can be
written as

S(Q|B) + S(R|B) � log2
1

c
+ S(A|B), (1)

where c = maxi j |〈qi|r j〉|2 with {|qi〉} and {|r j〉} being eigen-
vectors of Q and R, S(A|B) is the conditional von Neumann
entropy of state ρAB, S(Q|B) is the conditional entropy of the
postmeasurement state ρQB = ∑

i(|qi〉〈qi| ⊗ I )ρAB(|qi〉〈qi| ⊗
I ), and likewise for S(R|B). If there exist N projective mea-
surements {Mm}N

m=1 applied on A, the entropic uncertainty
relation for multiple measurements is extended to be [7]

N∑
m=1

S(Mm|B) � − log2(b) + (N − 1)S(A|B), (2)

where

b = max
iN

⎧⎨
⎩

∑
i2···iN−1

max
i1

(∣∣〈u1
i1

∣∣u2
i2

〉∣∣2) N−1∏
m=2

∣∣〈um
im

∣∣um+1
im+1

〉∣∣2

⎫⎬
⎭, (3)

with |um
im〉 being the imth eigenstate of Mm.

Recently, Bergh and Gärttner proposed a fully state-
dependent entropic uncertainty relation [19,20], but the gener-
alization for multiple measurements needs to be studied. In the
following, we will derive the generalized state-dependent en-
tropic uncertainty relation for multiple measurements, which
avoids maximization of the measurement bases’ overlaps.
Now we consider a set of measurements {Mi}N

i=1 made on
subsystem A and label |Mi

mi
〉 as the mith measurement base

of Mi. Denoting measurement X on A and Y on B as a
pair of referenced measurements with respective orthonormal
bases {|Xx〉} and {|Yy〉}, the postmeasurement state can be
written as

ρXY =
∑

xy

�xyρAB�xy, (4)

with �xy = |Xx〉〈Xx| ⊗ |Yy〉〈Yy|. Before the proof of uncer-
tainty relation, we provide a lemma first.

Lemma 1. Given a pair of referenced measurements (i.e.,
X on A and Y on B), let M1, M2, . . . , MN be N projective
measurements made on A, and the following relation holds:

N∑
i=1

S(Mi|B) + H (X |Y ) − NS(A|B) − S(ρAB)

� S

⎛
⎝ρAB

∥∥∥∥∥∥
∑
mN y

βN
mN y�mN y

⎞
⎠, (5)

where H (X |Y ) = H (XY ) − H (Y ) is the classical conditional
entropy with H (·) being the Shannon entropy, the
parameter βN

mN y = ∑
xm1...mN−1

cxm1 cm1m2 . . . cmN−1 mN
px|y with

cxm1 = |〈Xx|M1
m1

〉|2 and cmimi+1 = |〈Mi
mi

|Mi+1
mi+1

〉|2, and
�mN y = |MN

mN
〉〈MN

mN
| ⊗ |Yy〉〈Yy|.

This lemma can be proved via an iterative approach [7,45]
by applying a set of operations {�i(ρ) = ∑

mi
(|Mi

mi
〉〈Mi

mi
| ⊗

I )ρ(|Mi
mi

〉〈Mi
mi

| ⊗ I )} on ρXY , and the proof is shown in
Appendix A.

Theorem 1. Given a pair of referenced measurements (i.e.,
X on A and Y on B), let M1, M2, . . . , MN be N projective
measurements made on A and the state-dependent entropic
uncertainty relation for multiple measurements reads

N∑
i=1

S(Mi|B) + H (X |Y ) � NS(A|B) + q1, (6)

where q1 = −∑
mN y pmN y log2 βN

mN y which is called the com-

plementary factor, the parameter βN
mN y is the same as lemma

1, and pmN y = 〈MN
mN

|〈Yy|ρAB|MN
mN

〉|Yy〉.
Proof. The relation (6) stems from lemma 1 due to the

following relation:

S

⎛
⎝ρAB

∥∥∥∥∥∥
∑
mN y

βN
mN y�mN y

⎞
⎠

= Tr(ρAB log2 ρAB) − Tr

⎛
⎝ρAB log2

∑
mN y

βN
mN y�mN y

⎞
⎠

= −S(ρAB) −
∑
mN y

pmN y log2 βN
mN y. (7)

We complete the proof of the theorem by substituting Eq. (7)
into Eq. (5). �

The uncertainty relation (6) is derived from the iteration
based on the conditional entropy of ρXY . If we consider
the N projective measurements first and apply the operation
�xy(ρ) = ∑

xy �xyρ�xy at last, then the complementary fac-
tor will be modified in another way.

Corollary 1. Let M1, M2, . . . , MN be N projective measure-
ments on A. Let X be the referenced measurement on A and Y
the referenced measurement on B, then

N∑
i=1

S(Mi|B) + H (X |Y ) � NS(A|B) + q2, (8)

where q2 = −∑
xy pxy log2 γ N

xy with the parameter

γ N
xy = ∑

m1...mN
(
∏N−1

i=1 cmimi+1 )cxmN
pm1|y.
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Proof. By iteration with �i at first, an inequality similar to
lemma 1 was obtained in Ref. [7]

−NS(A|B) +
N∑

i=1

S(Mi|B) � S(ρAB ‖ σ ), (9)

where σ = ∑
m1...mN

∏N−1
i=1 cmimi+1 |MN

mN
〉〈MN

mN
| ⊗ 〈M1

m1
|ρAB|

M1
m1

〉. Then we apply the operation �xy on the right-hand side
of Eq. (9) and obtain

S(ρAB ‖ σ )

� S[�xy(ρAB) ‖ �xy(σ )]

= S

⎛
⎝ρXY

∥∥∥∥∥∥
∑

xy

∑
m1...mN

N−1∏
i=1

cmimi+1 cxmN
pm1y�xy

⎞
⎠

= −H (ρXY ) −
∑

xy

pxy log2

∑
m1...mN

N−1∏
i=1

cmimi+1 cxmN
pm1y

= −H (X |Y ) −
∑

xy

pxy log2 γ N
xy, (10)

where γ N
xy = ∑

m1...mN

∏N−1
i=1 cmimi+1 cxmN

pm1|y with pm1|y =
pm1y/py. Therefore, we complete the proof. �

It is shown that different measurement orders lead to dif-
ferent complementary factors, which is similar to the results
in Ref. [8]. Thus we can obtain the following result by taking
the optimal measurement sequence.

Theorem 2. Given the referenced measurement X with a
set of measurements {M1, M2, . . . , MN } made on A and a
referenced measurement Y made on B, let us rearrange the
N + 1 measurements on A in an order ε. Denoting Ei as the
ith measurement in the ε order with {|Ei

εi
〉〈Ei

εi
|} being its

projectors, the optimal entropic uncertainty relation gives

N∑
i=1

S(Mi|B) + H (X |Y ) � NS(A|B) + max
ε

qε, (11)

where qε = −∑
εN+1 y pεN+1 y log2

∑
ε1...εN

pε1|y
∏N

i=1 cεiεi+1 is
the complementary factor in measurement order ε and the
maximization runs over all measurement orders ε.

Proof. Given the order of N + 1 measurements
{X, M1, M2, . . . , MN } made on A, it is easy to obtain an
uncertainty relation similar to Theorem 1. Changing the
order of measurements, one can obtain (N + 1)! uncertainty
relations with different complementary factors. The optimal
lower bound is obtained by taking over all measurement
orders ε. �

III. MULTIPARTITE ENTANGLEMENT DETECTION

A. Detecting bipartite entanglement

The entanglement of formation is a useful measure to quan-
tify bipartite entanglement [46,47], which is defined as

E f (ρAB) = min
{pi,|ψi〉}

∑
i

piS(TrB[|ψi〉〈ψi|]), (12)

where the minimum is taken over all ensembles {pi, |ψi〉}
satisfying ρAB = ∑

i pi|ψi〉〈ψi|. It’s difficult to calculate for

general mixed states. However, it has been known that coher-
ent information −S(A|B) is the lower bound on entanglement
of formation [30], which can be used to witness entanglement.
From Eq. (11) in Theorem 2, we obtain that

−S(A|B) � 1

N

[
qm −

N∑
i=1

S(Mi|B) − H (X |Y )

]
. (13)

Here the parameter qm refers to the maximal complemen-
tary factor by taking over all measurement sequences. To
make the terms on the right-hand side measurable experi-
mentally, one needs to apply the data-processing inequality,
i.e., H (Mi|M ′

i ) � S(Mi|B) in which {M ′
i }N

i=1 is a set of pro-
jective measurements made on B. The lower bound can be
obtained experimentally by estimating the complementary
factor qm and classical conditional entropy [namely, H (X |Y )
and H (Mi|M ′

i )], which only needs the probability distribution
of measurements. Thus, the entropic uncertainty relation pro-
vides a lower bound on coherent information, which can be
used to detect entanglement directly.

Next we consider an example of two distinguishable parti-
cles on a one-dimensional lattice to estimate the entanglement
between two particles. The Hamiltonian is written as

H = −J
∑

p∈{A,B}

L−1∑
i=1

(â†
p,iâp,i+1 + H.c.) + U

L∑
i=1

n̂A,in̂B,i, (14)

where L lattice sites, J hopping strength, U interaction
strength, â†

p,i(âp,i ) the creation (annihilation) operator for par-

ticle p and lattice site i, and n̂p,i = â†
p,iâp,i. The Hilbert space

of one particle is spanned by the “site basis” {|i〉}L
i=1, which

constitute the bases of a natural measurement in this sys-
tem. The second measurement can be picked as the “tilted
basis” measurement, which is realized by letting the system
evolve for a period of time and then measuring the parti-
cle’s position. The evolution is unitary, which is described as
R(t ) = exp[itH (J = 1,U = 0)]. We choose the third mea-
surement to be the “tilted basis” measurement with fixed
evolution time t f = 0.38L. The preparation of the ground state
and the realization of the above measurements were demon-
strated in experiments [48–50].

We consider the bipartite entanglement between particles
A and B in the ground state of the system with J = 1 and U =
−100. The lower bound of the entanglement of formation can
be evaluated by coherent information, which can be detected
by Eq. (13). As shown in Fig. 1, the blue solid line and
red solid point line correspond to cases of L = 2 and L = 4
respectively, by using entropic uncertainty relation (11) with
three measurements involving site basis {|i〉}, and the tilted ba-
sis with evolutions R(t ) and R(t f ). Compared with the results
that use Eq. (2) to estimate entanglement (blue dot-dashed
line for L = 2 and red dashed line for L = 4), our generalized
entropic uncertainty relation is more efficient in detecting
entanglement. The blue dotted line is plotted as the detectable
entanglement by means of Eq. (11) with the first two mea-
surements in the case of L = 2, which is consistent with
the results in Refs. [19,20]. Although the increasing number
of measurements may reduce the efficiency of entanglement
detection, this new uncertainty relation does better for some
measurements with non-MUBs. For example, in the case of
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FIG. 1. The lower bound on entanglement of formation ELB
f of

the ground state for the system with J = 1 and U = −100. The blue
solid line corresponds to detectable entanglement by using Eq. (11)
with three measurements for L = 2 while the red solid point line cor-
responds to the case for L = 4. Detectable entanglement are plotted
by using Eq. (2) with three measurements for L = 2 (blue dot-dashed
line) and for L = 4 (red dashed line), respectively. The blue dotted
line is the case of L = 2 by using Eq. (11) with two measurements.

L = 2, focusing on the interval of abscissa [0,0.2] and [0.6,1],
at which the measurements are not in MUBs, the detectable
entanglement with three measurements (blue solid line) is
higher than that with two measurements (blue dotted line).

B. Detecting tripartite entanglement

To detect tripartite entanglement, we choose the measure
of tripartite entanglement of formation that reads [51]

E (3)
F (ρ) = min

{pi,|ψi〉}

∑
i

pi
[
S
(
ρ i

A

) + S
(
ρ i

B

) + S
(
ρ i

C

)]
/3, (15)

where the minimum runs over all the pure state decompo-
sitions ρ = ∑

i pi|ψi〉〈ψi| and ρ i
X are the reduced states of

subsystem X in state |ψi〉. We choose 1/3 as the coefficient
in Eq. (15) for normalization. The tripartite entanglement of
formation is a multipartite entanglement measure that satis-
fies complete monogamy relation [51]. Consider ρABC = ∑

i
qi|φi〉〈φi| as the optimal pure state decomposition and then
we have

E (3)
F (ρ) = 1

3

(∑
i

qiS
(
ρ i

A

) +
∑

i

qiS
(
ρ i

B

) +
∑

i

qiS
(
ρ i

C

))

= 1

3

(
−

∑
i

qiS(Ai|BiCi ) −
∑

i

qiS(Bi|AiCi )

−
∑

i

qiS(Ci|AiBi )

)

� 1

3
[−S(A|BC) − S(B|AC) − S(C|AB)], (16)

where the second equality uses the relation S(Ai|BiCi ) =
−S(ρ i

A) for pure state |φi〉, and the last step is due to the
fact that conditional entropy is concave. The above inequality
combined with Eq. (13) gives the method to detect tripartite
entanglement.

Observation. For a tripartite quantum state ρABC , choosing
a sets of measurements {MA

i } with referenced measurement
X made on subsystem A, and {MB

i } with Y on B, and {MC
i }

with Z on C, the tripartite entanglement of formation can be
detected by

E (3)
F � 1

3N

[
qm −

N∑
i=1

H
(
MA

i

∣∣MB
i MC

i

) − H (X |Y Z )

+ q′
m −

N∑
i=1

H
(
MB

i

∣∣MA
i MC

i

) − H (Y |XZ )

+ q′′
m −

N∑
i=1

H
(
MC

i

∣∣MA
i MB

i

) − H (Z|XY )

]
, (17)

where H (·|·) is the classical conditional entropy, and
qm, q′

m, q′′
m are the optimal complementary factors of the cor-

responding uncertainty relations.
We consider the GHZ-Werner state to estimate the lower

bound of E (3)
F via relation (17). The three-qubit state is

defined as

ρp = p|GHZ〉〈GHZ| + (1 − p)
I
8
, (18)

where |GHZ〉 = (|000〉 + |111〉)/
√

2 is the GHZ state, I is
the identity matrix, and 0 � p � 1. Choosing σx and σz as
two measurements made on each qubit, the lower bounds
of tripartite entanglement using both Eqs. (2) and (11) are
shown in Fig. 2. The results are the same (i.e., the black solid
line and red triangles coincide), which indicates that when
p > 0.747614, tripartite entanglement can be detected in the
GHZ-Werner state. However, if we choose measurements σz

and σr = (σz + σx )/
√

2, which are not in mutually unbaised
bases, the entanglement detection efficiency is reduced. In
spite of this, the lower bound calculated by means of our
relation (11) (red solid point line) is better than the results with
the previous uncertainty relation (2) (black dotted line). That
is to say, for non-MUBs measurements, the state-dependent
uncertainty relation (11) is more effective to detect tripartite
entanglement due to the varying overlaps, which is consis-
tent with the results of bipartite entanglement detection [19].
This conclusion holds true for multiple measurements. As
shown in Fig. 2, the blue dashed and purple dot-dashed curves
correspond to the cases with respective set of measurements
{σx, σy, σz} and {σx, σz, σr} by using Eq. (11). The second is
better than the first, and even better than the case with two
measurements {σz, σr} (red solid point line).

Note that a scheme to quantify genuine tripartite entangle-
ment with entropic correlations has been recently proposed
[24], where the genuine multipartite entanglement measure
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FIG. 2. The lower bound of E (3)
F for GHZ-Werner state. The

black solid line and red triangles give the same lower bound by using
the uncertainty relations (2) and (11), respectively, with the same
set of measurements {σz, σx}. The black dotted line and red solid
point line are plotted by using the uncertainty relations (2) and (11),
respectively, with two measurements {σz, σr}. The blue dashed and
purple dot-dashed curves are obtained by Eq. (11) with a respective
set of measurements {σx, σy, σz} and {σx, σz, σr}.

(GMEM) based on entanglement of formation can be esti-
mated by the following inequality [24,52]:

EGME
f � −S(A|BC) − S(B|AC) − S(C|AB) − 2 log2(dmax),

(19)

where dmax is the maximal dimension of subsystems A, B, and
C. Therefore, if the bases of chosen measurements are non-
MUBs, the genuine tripartite entanglement can be detected
more effectively by applying this generalized uncertainty re-
lation in a similar way.

C. Generalization in multipartite systems

The procedure of entanglement detection can be extended
to a general multipartite systems ρA1...Am . The m-partite en-
tanglement measure based on entanglement of formation is
defined as [51] E (m)

F = min{pi,|ψi〉}
∑

i piE
(m)
F (|ψi〉) in which

E (m)
F (|ψi〉) = ∑

k S(ρ i
Ak

)/m, with ρ i
Ak

being reduced state of
k-th subsystem Ak for |ψi〉. The lower bound of general
m-partite entanglement is derived as follows:

E (m)
F � 1

m

m∑
k=1

−S
(
ρAk

∣∣ρÃk

)
, (20)

where ρÃk
is the reduced state after tracing out the subsystem

Ak . Here we also choose 1/m as the coefficient for normal-
ization. The right-hand side of the above inequality can be
estimated by entropic uncertainty relation in a similar way as
shown in Eq. (13). Therefore, multipartite entanglement can
be detected by means of this method as well.

FIG. 3. Quantum circuit of generating a ten-qubit GHZ state.

IV. ENTANGLEMENT DETECTION OF GHZ STATES ON
QUAFU CLOUD QUANTUM COMPUTATION PLATFORM

The present backend devices of the QUAFU cloud quan-
tum computation platform include one ten-qubit processor
(SCQ-P10), one 18-qubit processor (SCQ-P18) and one
50-qubit processor (SCQ-P50). In this demonstration, we take
the SCQ-P18 as the backend, which allows single-qubit gates
with fidelity >99% and two-qubit CZ gates with fidelity
95%–99.14%. The layout and list of device parameters are
shown in Appendix B. In this section, we will evaluate mul-
tipartite entanglement of GHZ states up to ten qubits. The
circuit of preparing the ten-qubit GHZ state is shown in Fig. 3,
and the circuits of generating GHZ states from three to nine
qubits are designed in a similar way, in which the Hadamard
gate acts on the (n//2)th qubit, followed by a series of CNOT

gates.
To detect multipartite entanglement E (m)

F , we perform two
kinds of measurements (namely, σz and σx), which is the
optimal strategy to detect entanglement of GHZ states via
the method of entropic uncertainty relations. The results are
obtained by averaging 5000 repeated single-shot measure-
ments. The lower bound of E (m)

F can be obtained by Eq. (20)
combined with Eq. (13), which only needs the probability
distribution of two measurements. The detectable entangle-
ment of n-qubit GHZ states described by the lower bound
of E (m)

F are calculated as 0.9980 ± 0.0030 (n = 3), 0.9899 ±
0.0148 (n = 4), 0.9875 ± 0.0144 (n = 5), 0.9868 ± 0.0112
(n = 6), 0.8771 ± 0.0386 (n = 7), 0.8699 ± 0.0305 (n = 8),
0.7347 ± 0.0443 (n = 9), and 0.7222 ± 0.0252 (n = 10),
which are illustrated in Fig. 4. The error bar corresponds
to the standard deviation obtained from eight repeated runs.
Furthermore, when n = 3, the genuine tripartite entangle-
ment can be evaluated by Eq. (19). The lower bound of
EGME

f reaches 0.9940 in the three-qubit GHZ state via this
method.

We compare the above results with GHZ fidelity. Here the
fidelity of GHZ states are defined as F = (P + C)/2, where
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FIG. 4. The lower bound on E (m)
F and fidelity of n-qubit GHZ states. From left to right, the qubits used are Q0 − Q2, Q0 − Q3, Q0 − Q4,

Q0 − Q5, Q0 − Q6, Q0 − Q7, Q0 − Q8, Q0 − Q9.

P comes from the summation of measurement probabilities
P00... 0 and P11... 1 and C can be obtained by measuring the
parity oscillations [42,53–56]. As shown in Fig. 4, the general
multipartite entanglement detected by the entropy uncertainty
relation does not differ much from the GHZ fidelity, but the
first is slightly higher than the second.

V. DISCUSSION AND CONCLUSION

In conclusion, we propose a generalized entropic uncer-
tainty relation for more than two measurements which is
state dependent due to a pair of referenced measurements
made on both system and quantum memory. In a multiple
measurements setting, the lower bound of the uncertainty
relation rely on the sequence of measurements and we give
the optimal lower bound by taking over all measurement
sequences. We highlight that the quantum-memory-assisted
entropic uncertainty relation can be used to detect multipartite
entanglement, which requires only the probability distribution
of several measurements. By illustrating the examples of the
ground state of the Hubbard model and GHZ-Werner state, we
show that for measurements with non-MUBs, this generalized
uncertainty relation can detect entanglement more efficiently
than the previous state-independent one. If the measurements
with MUBs are difficult to implement experimentally due
to the characteristics of systems or environmental noise, our
results are of importance to improve the efficiency of en-
tanglement detection. Finally, we use this method to verify
multipartite entanglement of GHZ states up to ten qubits
on the QUAFU cloud quantum computation platform and the
detectable entanglement evaluated by means of entropic un-
certainty relation only needs the probability distribution of
measurements σz and σx, which can be easily acquired in the
experiment.
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APPENDIX A: PROOF OF LEMMA 1

Lemma 1. Given a pair of referenced measurements (i.e.,
X on A and Y on B), let M1, M2, . . . , MN be N projective
measurements on A, and the following relation holds:

N∑
i=1

S(Mi|B) + H (X |Y ) − NS(A|B) − S(ρAB)

� S

⎛
⎝ρAB

∥∥∥∥∥∥
∑
mN y

βN
mN y�mN y

⎞
⎠, (A1)

where βN
mN y=

∑
xm1...mN−1

cxm1 cm1m2 . . . cmN−1 mN
px|y with cxm1=

|〈Xx|M1
m1

〉|2 and cmimi+1 = |〈Mi
mi

|Mi+1
mi+1

〉|2, and �mN y =
|MN

mN
〉〈MN

mN
| ⊗ |Yy〉〈Yy|.

Proof. This can be proved using an iterative approach
[7,45]. First, we prove the relation for N = 1. Let M1 be
the measurement on system A with projectors labeled by
{|M1

m1
〉〈M1

m1
|}. Then

H (X |Y ) − S(A|B)

= H (ρXY ) − H (Y ) − S(ρAB) + S(ρB)

= S(ρAB ‖ ρXY ) − H (Y ) + S(ρB)

� S[�1(ρAB) ‖ �1(ρXY )] − H (Y ) + S(ρB)

= S

⎛
⎝ρM1B

∥∥∥∥∥∥
∑
xym1

cxm1 pxy�m1y

⎞
⎠ − H (Y ) + S(ρB)

= −S(M1|B) −
∑
m1y

pm1y log2

(∑
x

cxm1 pxy

)
− H (Y ),

(A2)

where we denote H (·|·) as the classical conditional
entropy, the definition and contractive property of relative
entropy are used in the the second the third steps, the
measurement operation �1(ρ) = ∑

m1
(|M1

m1
〉〈M1

m1
| ⊗

I )ρ(|M1
m1

〉〈M1
m1

| ⊗ I ) are used in the fourth step with
cxm1 = |〈Xx|M1

m1
〉|2 and pxy = 〈Xx|〈Yy|ρAB|Xx〉|Yy〉, and
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in the last step pm1y = Tr(ρM1B�m1y) with �m1y = |M1
m1

〉
〈M1

m1
| ⊗ |Yy〉〈Yy|. Since pxy = px|y py, we have

log2(
∑

x cxm1 pxy) = log2(
∑

x cxm1 px|y) + log2 py. Then

−
∑
m1y

pm1y log2

(∑
x

cxm1 pxy

)

= −
∑
m1y

pm1y log2

(∑
x

cxm1 px|y

)
−

∑
m1y

pm1y log2(py)

= −Tr

⎡
⎣ρAB log2

⎛
⎝∑

xym1

cxm1 px|y�m1y

⎞
⎠

⎤
⎦

+ H (Y ) + S(ρAB) − S(ρAB)

= S

⎛
⎝ρAB

∥∥∥∥∥∥
∑
xym1

cxm1 px|y�m1y

⎞
⎠ + S(ρAB) + H (Y ). (A3)

Combining Eqs. (A2) and (A3) gives

S(M1|B) + H (X |Y ) − S(A|B) − S(ρAB)

� S

⎛
⎝ρAB

∥∥∥∥∥∥
∑
xym1

cxm1 px|y�m1y

⎞
⎠. (A4)

By using the contractive property of relative entropy with
operation �2(ρ) = ∑

m2
(|M2

m2
〉〈M2

m2
| ⊗ I )ρ(|M2

m2
〉〈M2

m2
| ⊗

I ), then

S

⎛
⎝ρAB

∥∥∥∥∥∥
∑
xym1

cxm1 px|y�m1y

⎞
⎠

� S

⎡
⎣�2(ρAB)

∥∥∥∥∥∥�2

⎛
⎝∑

xym1

cxm1 px|y�m1y

⎞
⎠

⎤
⎦

= −S(ρM2B) + S(ρB) − S(ρB) + S(ρAB) − S(ρAB)

−Tr

⎛
⎝ρM2B log2

∑
xym1m2

cxm1 cm1m2 px|y�m2y

⎞
⎠

= S

⎛
⎝ρAB

∥∥∥∥∥∥
∑

xym1m2

cxm1 cm1m2 px|y�m2y

⎞
⎠

−S(M2|B) + S(A|B), (A5)

in which �m2y = |M2
m2

〉〈M2
m2

| ⊗ |Yy〉〈Yy|. Thus,

2∑
i=1

S(Mi|B) + H (X |Y ) − 2S(A|B) − S(ρAB)

� S

⎛
⎝ρAB

∥∥∥∥∥∥
∑

xym1m2

cxm1 cm1m2 px|y�m2y

⎞
⎠. (A6)

By iteration with �i, we can get

N∑
i=1

S(Mi|B) + H (X |Y ) − NS(A|B) − S(ρAB)

� S

⎛
⎝ρAB

∥∥∥∥∥∥
∑

xym1...mN

cxm1 cm1m2 . . . cmN−1 mN
px|y�mN y

⎞
⎠.

Thus we complete the proof. �

APPENDIX B: DEVICE PARAMETERS ON QUAFU

CLOUD PLATFORM

In this work, we use SCQ-P18 device on the QUAFU cloud
platform for the demonstrations. The layout of the computing
device and its two-qubit gate error rates are shown in Fig. 5.
More detailed characteristics of the SCQ-P18 device can be
found in Table I.

FIG. 5. SCQ-P18 device layout and two-qubit CZ gate error
rates. (a) An 18-qubit device layout and connectivity on SCQ-P18.
It originally contained 20 qubits and the two qubits marked in
black are useless. (b) Error rates for all two-qubit CZ gates on the
device.
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TABLE I. List of device parameters. The qubit frequency, T1, T2, anharmonicity, readout frequency, and the fidelity of CZ gates are
presented.

Qubit index T1 (μs) T2 (μs) Qubit frequency (GHz) Anharmonicity (GHz) Readout frequency (GHz) Gate index CZ Fidelity

0 57.6 4.2 4.590 0.204 6.776 0 0.9850
1 27.9 3.7 5.020 0.192 6.759 1 0.9754
2 41.4 4.8 4.620 0.203 6.737 2 0.9910
3 40.1 2.3 4.977 0.198 6.713 3 0.9870
4 29.0 5.7 4.500 0.205 6.693 4 0.9774
5 36.9 2.1 4.943 0.194 6.676 5 0.9672
6 26.8 3.4 4.566 0.204 6.650 6 0.9750
7 19.8 2.4 5.091 0.200 6.633 7 0.9773
8 23.2 3.5 4.646 0.206 6.625 8 0.9757
9 27.3 1.3 5.038 0.200 6.648 9 0.9845
10 41.2 2.8 4.605 0.205 6.665 10 0.9674
11 28.1 1.5 4.993 0.198 6.693 11 0.9520
12 45.1 3.0 4.545 0.206 6.705 12 0.9862
13 29.8 1.6 4.869 0.198 6.725 13 0.9837
14 45.1 5.5 4.578 0.206 6.751 14 0.9623
15 37.3 3.1 5.048 0.196 6.771 15 0.9735
16 40.8 5.2 4.682 0.203 6.788 16 0.9818
17 41.4 3.1 5.125 0.197 6.807
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