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Classical verification of quantum measurement for the computational basis and the XY -plane basis
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Recent advances in quantum technologies raise the urgent need of verifying the correct functionality of a
quantum device. Certifying the correctness of a quantum device in a fully classical manner is an important
research branch. In this paper, we present a measurement protocol that allows a classical verifier to interact with
an efficient quantum prover to verify the computational basis or the XY -plane basis measurement on a quantum
state. With the help of two adaptive hardcore bit properties of a noisy trapdoor claw-free family, the security of
measurement protocol is proved, which is under quantum hardness of the learning with error. The security char-
acterizes the distance between the output distribution of measurement protocol and the distribution obtained by
measuring certain quantum states in the designated basis, with or without the presence of honest behavior of the
prover. Moreover, exploiting the measurement protocol, we present two device-noise-independent verification
protocols of graph states and a classical verification protocol of delegated quantum computing whose soundness
is 0.5757.
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I. INTRODUCTION

Verification of quantum computing, as a type of secure
quantum computing, is an interactive protocol that allows a
verifier to check the prover’s output on quantum computing
tasks in a way that preserves some security properties, even
in the face of adversarial behavior by the prover. It is re-
lated to complexity theory. Depending on the differences of
power of verification protocols, there exists many well-known
complexity classes [non-deterministic polynomial time (NP),
interactive proofs (IP), multiprover interactive proofs (MIP)]
and theorems (the PCP theorem and IP=PSPACE) [1]. In
addition, verification of computing has been widely studied
in many cryptographic problems, such as zero knowledge [2].
With the emergence of quantum computers, a new problem of
whether one can verify the outcome of quantum computations
needs to be answered.

Quantum computers can efficiently solve important prob-
lems that are currently out of reach for classical computers,
such as boson sampling [3] and integer factorization [4].
Compared with classical algorithms, quantum algorithms
can realize dramatic reductions in run time for some prob-
lems [5,6]. A rapid development of quantum computing may
promise highly useful tools that can be applied to fundamental
research and commercial businesses. These prospects come
with challenging requirements for certifying the quantum de-
vices correct functioning. The certification can be regarded
as a protocol that returns accept if the device is functioning
correctly and reject if the device runs wrong.

There are numerous methods [7,8] toward addressing the
problem of certification. For example, in order to verify that
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a device has produced the correct quantum state, the meth-
ods of state tomography [9], direct quantum-state certification
[10], direct-fidelity estimation [11], and self-testing [12] have
been proposed. As for the verification of quantum processes,
i.e., maps on quantum states, the method of direct quantum-
process certification [13], randomized benchmarking [14],
and cross-entropy benchmarking [15] have been proposed.
Here, the verifier is allowed to perform measurements. An-
other example is verifiable delegated quantum computation
[16–22]. In this situation, a client with only the ability to do
classical computing and prepare or measure single qubits can
delegate computation tasks to a server who has the ability
to do universal quantum computation while simultaneously
verifying the correctness of the outcome.

In the setting of secure quantum computing, the goal is
to allow a client to access remotely quantum computing ca-
pabilities of a server in a way that preserves some security
properties, even in face of adversarial behavior by the server.
The common properties of secure quantum computing con-
tain correctness (the client can obtain correct outcome if the
server behaves honestly), blindness (the server learns nothing
about the input, algorithm, and output), and verifiability (the
client can check the validity of outcome against any malicious
server). The verification of quantum computing consists of
correctness and verifiability. According to the configuration
of the client (verifier) and server (prover), earlier feasible ver-
ification protocols can be divided into two types. The first type
of methods [16,18] have considered the case where a verifier
with limited quantum power interacts with a quantum prover.
The second type of methods [19,20] have considered the case
where a fully classical verifier interacts with multiple non-
communicating provers that share entanglement. However,
the case where a classical verifier interacts with a quantum
prover to verify quantum computing is not considered.
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Recently, a breakthrough result of Mahadev [23] has solved
an open problem of verifying quantum computation by a
fully classical computer. Specifically, she has constructed a
measurement protocol such that a classical verifier can verify
that a quantum prover behaves as a trusted Pauli X or Z basis
measurement device. Applying the measurement protocol to a
verification protocol for the class of quantumly tractable prob-
lems (BQP), Mahadev has proposed an interactive protocol
between an efficient classical (BPP) verifier and an efficient
quantum (BQP) prover such that the verifier can verify the
result of the BQP computation. Soundness of Mahadev’s
protocol originates from a widely recognized computational
assumption that the learning with errors (LWE) problem is
hard for any efficient quantum algorithm. Inspired by Ma-
hadev’s protocol, several classical verification of quantum
computation (CVQC) protocols with preferable properties and
functionality have been proposed. Alagic et al. have utilized
parallel repetition to construct a CVQC protocol with a negli-
gible soundness [24]. Gheorghiu et al. have proposed a blind
CVQC protocol [25]. Chung et al. have applied Mahadev’s
protocol to quantum sampling [26]. Zhang has given a CVQC
protocol with linear time complexity [27].

Our contributions can be summarized as follows.
(1) We propose a classical verification of multibasis mea-

surement protocol, where a classical verifier interacts with a
BQP prover to force the prover to behave as the verifier’s
trusted Pauli Z basis or Pauli basis X,Y, (X + Y )/

√
2, (X −

Y )/
√

2 (XY -plane basis) measurement device. Without the
use of trapdoor injective family, the feasibility of our measure-
ment protocol is based on noisy trapdoor claw-free functions
that are existent under LWE assumption.

(2) A comprehensive analysis is presented to prove the
completeness and soundness of our measurement protocol.
The completeness indicates that, if the prover follows the
measurement protocol honestly, the output distribution in
measurement round is close to the distribution obtained by
measuring the target state in the designated basis. The sound-
ness indicates if a dishonest prover always passes the check
of the verifier, then there exists a quantum state ρ, which is
independent of the verifier’s measurement basis h, such that
the output distribution of the measurement protocol is compu-
tationally indistinguishable from the distribution obtained by
measuring ρ according to h.

(3) We apply our measurement protocol to the verifi-
cation of graph states [28] and propose two device-noise-
independent verification protocols of graph states. Compared
with existing protocols, the newly proposed protocols are
robust to the noise of quantum device and have removed
the requirement for multiple noncommunicating provers that
share entanglement.

(4) We use our measurement protocol to obtain a CVQC
protocol with a lower constant soundness. The soundness that
indicates the maximum probability of accepting wrong results
has been reduced from 0.75 to 0.5757.

The remainder of this paper is organized as follows. In
Sec. II, we give some basic notations and definition of noisy
trapdoor claw-free functions. In Sec. III, we use the above
cryptographic primitive to construct a measurement protocol
for verifying the computational basis or the XY -plane basis
measurement. In addition, we prove the completeness and

soundness of our measurement protocol. In Sec. IV, we show
how to apply our measure protocol to verification of graph
states and verifiable delegated quantum computing. We then
conclude, in Sec. V, with some discussions and open prob-
lems.

II. PRELIMINARIES

A. Notations

For any finite set X , let x
U←− X denote a uniformly random

element drawn from X . For any density function f on domain
X , let supp( f ) = {x ∈ X | f (x) > 0} denote the support of f
and let x ← f denote a sample from the distribution corre-
sponding to density function f . The total variation distance
between density functions f1 and f2 is

DTV ( f1, f2) = 1

2

∑
x∈X

| f1(x) − f2(x)|. (1)

The Minkowski distance between density functions f1 and f2

is

DLp ( f1, f2) =
(∑

x∈X

| f1(x) − f2(x)|p

)1/p

, (2)

where p is a positive integer, and the Minkowski distance be-
comes the Euclidean distance when p = 2. The trace distance
between quantum states ρ1 and ρ2 is defined to be

Dtr (ρ1, ρ2) = 1
2 Tr(

√
(ρ1 − ρ2)2). (3)

The rotation operator Rz(θ ) is equal to cos θ
2 I − i sin θ

2 Z . A
function μ(λ) : N → R+ is negligible if, for every polyno-
mial p(λ), limλ→∞ p(λ)μ(λ) = 0 holds. We say the density
function f1 is computationally indistinguishable from the den-
sity function f2 if for any BQP attackers A there exists a
negligible function μ such that

| Pr
x← f1

[A(x) = 0] − Pr
x← f2

[A(x) = 0]| � μ. (4)

We say the density matrix ρ1 is computationally indistinguish-
able from the distribution ρ2 if for any efficiently computable
CPTP maps S there exists a negligible function μ such that

|Tr(|0〉〈0| ⊗ I )S(ρ1 − ρ2)| � μ. (5)

B. Noisy trapdoor claw-free functions

Here, we introduce the notion of noisy trapdoor claw-free
functions (NTCFs) [23,25,29]. We summarize the algorithms
used in the NTCF family as follows.

Definition 1 (Decoding algorithms [30]). The decoding
algorithms of the NTCF family F = { fk,b}k,b are given by the
following.

(1) A function generation algorithm GENF is used to gen-
erate a key k ∈ KF and a trapdoor tk .

(2) For an input consisting of a trapdoor tk , a bit b ∈ {0, 1},
and an image y ∈ Y , if the condition y ∈ supp[ fk,b(x)] holds,
the output of the algorithm INVF is x.

(3) For an input consisting of a key k ∈ KF , a bit b ∈
{0, 1}, a preimage x ∈ X , and an image y ∈ Y , the output of
the algorithm CHKF is 1 if y ∈ supp[ fk,b(x)] and 0 otherwise.

(4) For an input consisting of a key k ∈ KF and a bit b ∈
{0, 1}, the output of the algorithm SAMPF is a state that is
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negligibly close to

1√|X |
∑

x∈X ,y∈Y

√
[ fk,b(x)](y)|x〉|y〉. (6)

We present two important adaptive hardcore bit properties
that will be used to prove the soundness of measurement
protocol.

Definition 2 (Adaptive hardcore bit [30,31]). For conven-
ience, let X = {0, 1}w, where w is the polynomially bounded
function of security parameter λ and a multiple of 3.

(1) There is an efficiently computable injection J : X →
Zw/3

8 , such that J can be inverted efficiently on its range.
For any quantum polynomial-time procedure A, there exists
a negligible function μ(·) such that

| Pr
(k,tk )←GENF (1λ )

[A(k) ∈ Hk]

− Pr
(k,tk )←GENF (1λ )

[A(k) ∈ Hk]| � μ(λ), (7)

where

Hk = {
(b, xb, d, d[J (x0) ⊕ J (x1)])|

b ∈ {0, 1}, fk,0(x0) = fk,1(x1), d
U←− Zw/3

8

}
, (8)

Hk = {(b, xb, d, s ⊕ 4)|(b, xb, d, s) ∈ Hk }. (9)

(2) For all k ∈ KF and d̂ ∈ {0, 1}w, let

H ′
k,d̂

= {d̂ (x0 ⊕ x1)| fk,0(x0) = fk,1(x1) }. (10)

For a fixed string d̂ ∈ {0, 1}w and any quantum polynomial-
time procedure A, there exists a negligible function μ(·) such
that ∣∣ Pr

(k,tk )←GENF (1λ )
[A(k) ∈ H ′

k,d̂
] − 1

2

∣∣ � μ(λ). (11)

Note that the addition and inner product are taken modulo 8
in the first adaptive hardcore bit property and taken modulo 2
in the second adaptive hardcore bit property. Mahadev [23,30]
has proved that, under the hardness assumption of solving
LWE, there exists a function family FLWE satisfying the sec-
ond adaptive hardcore bit property, i.e., Eq. (7). Gheorghiu
et al. [25,31] have proved that FLWE also satisfies the first
adaptive hardcore bit property, i.e., Eq. (11).

The learning with errors (LWE) assumption indicates that
the distribution (A, As + e) are computationally indistin-
guishable from the distribution (A, u), where the matrix A
is uniformly random in Zn×m

q , the row vector s is uniformly
random in Zn

q, the noise vector e is uniformly random in
Zm

q , and the vector u is uniformly random in Zm
q . Here,

the noise e computationally hides s. With the help of LWE
assumption, the noisy trapdoor claw-free function pair can
be constructed as follows. According to an LWE sample
(A, As + e), the NTCF pair is defined by f0(x) = Ax + e0

and f1(x) = Ax + e0 + As + e, where e0 is a random vector.
Note that f1(x) = A(x + s) + e0 + e. If we set e to be 0, then
f1(x) = f0(x + s). Sampling e0 from a Gaussian much wider
than e can guarantee that the distribution f1(x) is statistically
close to the distribution f0(x + s). Assume one knows both x0

and x1. Since it holds that x1 = x0 − s, the secret s is leaked,

a contradiction with the LWE assumption. The adaptive hard-
core bit properties of the NTCF family are a stronger form of
the claw-free property, which can be guaranteed by the LWE
assumption in a similar way.

III. MEASUREMENT PROTOCOL

In this section, we use the noisy trapdoor claw-free func-
tions F in Sec. II to design our measurement protocol. The
measurement protocol can realize the verification of the mea-
surement corresponding to a basis choice h ∈ {0, 1, . . . , 4}n

on an n-qubit state ρ. Here, hi = 0 means that the prover is re-
quired to measure the ith qubit of ρ in the computational basis
and hi = j, j ∈ {1, . . . , 4}, means that the prover is required to
measure the ith qubit of ρ in the rotation basis {|+φ j 〉, |−φ j 〉},
where φ j = ( j − 1)π/4 and |±φ j 〉 = (|0〉 ± eiφ j |1〉)/

√
2. Our

measurement protocol is given by Protocol 1. For a state
|ψ〉 = α0|0〉|ψ0〉 + α1|1〉|ψ1〉, the effect of SAMPF on the
first qubit of |ψ〉 will lead to a state that is negligibly
close to

1√|X |
∑

b ∈ {0, 1}
x ∈ X , y ∈ Y

αb

√
[ fk,b(x)](y)|b〉|x〉|ψb〉|y〉. (12)

We call the first qubit the committed qubit, the register that
contains x the preimage register, and the string y the commit-
ment string. The effect of SAMPF on the other qubits of |ψ〉
is similar.

Protocol 1 (Multibasis measurement protocol).
(1) Verifier→Prover. For 1 � i � n, the verifier runs algo-

rithm GENF to produce a pair of a function key ki ∈ KF and
its trapdoor tki . The verifier sends the function descriptions
k′ = (k1, . . . , kn) to the prover.

(2) Prover→Verifier. The prover initializes registers and
runs algorithm SAMPF to prepare a state in uniform superpo-
sition. The prover then measures the registers containing the
commitment string and sends the outcome y′ = (y1, . . . , yn)
to the verifier.

(3) Prover→Verifier. Start a computational basis measure-
ment round. For all i satisfying hi = 0, the prover measures
committed qubit i and preimage register i in the computational
basis, and sends a bit b′

i and a string x′
i to the verifier.

(4) Verifier (Output). If CHKF (ki, b′
i, x′

i, yi ) = 1, the ver-
ifier stores mi = b′

i as the computational basis measurement
result of the ith qubit. Otherwise, the verifier stores a random
bit as the measurement result and rejects.

(5) Verifier→Prover. The verifier chooses to run a test
round with probability β and run a rotation basis measurement
round with probability 1 − β, where 0 < β < 1. The verifier
then sends the round choice to the prover.

(6) Prover→Verifier. For the test round, for all i satisfying
hi �= 0, the prover measures committed qubit i and preimage
register i in the computational basis, and sends a bit b′′

i and a
string x′′

i to the verifier.
(7) Verifier. If CHKF (ki, b′′

i , x′′
i , yi ) = 0, the verifier

rejects.
(8) Verifier. For the rotation basis measurement round, for

all i satisfying hi �= 0, the verifier computes the two inverses
x0,yi and x1,yi of yi by the algorithm INVF . If either of the
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FIG. 1. Example of Protocol 1. The classical verifier interacts
with a quantum prover by classical messages to verify a four-qubit
state ρ is measured in the designated basis.

inverses does not exist, the verifier stores a random bit as the
measurement result and rejects.

(9) Prover→Verifier. The prover performs the map J on the
preimage register i, measures it in the Fourier (over Z8) basis,
and then sends a string di to the verifier.

(10) Verifier→Prover. The verifier then chooses at random
a bit ci ∈ {0, 1} and keeps it secret to the prover. The verifier
sends a bit γi to the prover, where

γi = θi + πdi
[
J
(
x0,yi

) ⊕ J
(
x1,yi

)]
/4 + ciπ. (13)

(11) Prover→Verifier. The prover measures committed
qubit i and preimage register i in the basis {|+γi〉, |−γi〉} and
sends a bit b′′

i to the verifier.
(12) Verifier (Output). The verifier stores mi = b′′

i ⊕ ci as
the {|+θi〉, |−θi〉} basis measurement result of the ith qubit.

FIG. 2. Schematic representation of our measurement protocol.
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Our measurement protocol for a basis choice h =
(1, 0, 2, 3) is shown in Fig. 1, where the verifier sends classi-
cal messages k′, γi to the prover and the prover sends classical
messages y′, b′

i, x′
i, b′′

i , x′′
i , di to the verifier. In Fig. 2 we give

the formal description of our measurement protocol. We now
give some notation for convenience of describing the proper-
ties of the measurement protocol. If Protocol 1 has executed
the computational basis measurement round and the rotation
basis measurement round, then it is called type-I measure-
ment protocol. If Protocol 1 has executed the computational
basis measurement round and the test round, then it is called
type-II measurement protocol. fV ,h represents the probability
density function over keys produced by the algorithm GENF .
A prover is perfect if the prover is always accepted in the
type-II measurement protocol. fρ,h represents the probability
density function over results obtained by measuring the state ρ

in the basis corresponding to h. fP ,h represents the probability
density function over measurement results m ∈ {0, 1}n from
the type-I measurement protocol with respect to the prover
P . f ′

P ,h represents the probability density function over mea-
surement results from the type-I measurement protocol that is
accepted by the verifier. σP ,h = ∑

m fP ,h(m)|m〉〈m| represents
the density matrix with respect to the density function fP ,h.

A. Completeness of measurement protocol

The completeness of Protocol 1 is given by Theorem 1.
Theorem 1. For all n qubits states ρ and for all basis

choices h ∈ {0, 1, 2, 3, 4}n, an honest prover P in Protocol
1 will be accepted by the verifier with probability negligibly
close to 1. Moreover, there exists a negligible function μ such
that

DTV ( fP ,h, fρ,h) � μ. (14)

Proof. Consider the case that the prover is honest. The
initial state is

|ψ〉 =
∑

b∈{0,1}
αb|b〉|ψb〉. (15)

Take the correctness of the measurement on the first qubit
of |ψ〉 as an example. Upon receipt of a key k, the prover
performs the SAMPF procedure in superposition and mea-
sures the outcome y. The result state is within negligible trace
distance of the state ∑

b∈{0,1}
αb|b〉|xb,y〉|ψb〉, (16)

where xb,y = INVF (tk, b, y).
If the prover performs the computational basis measure-

ments of committed qubit and preimage register and returns
(b, xb,y), it acts as a standard basis measurement of the first
qubit of |ψ〉. This means that the verifier will obtain correct
standard basis measurement outcome in step (4) of measure-
ment protocol for h1 = 0.

If the prover implements the map J on the preimage reg-
ister and then measures it in the Fourier (over Z8) basis, the
postmeasurement state (see Refs. [25,31]) is

(RZ{πd[J (x0,y) ⊕ J (x1,y)]/4} ⊗ I )|ψ〉. (17)

This means that the verifier will get the correct {|+θ 〉, |−θ 〉}
basis measurement outcome in step (12) of the measurement
protocol for h1 �= 0.

If the negligible deviation caused by the SAMPF proce-
dure is ignored, the verifier will accept the honest prover P
in all rounds of the measurement protocol. In addition, the
density function fP ,h is the same as the density function fρ,h.
Taking account of the above deviation, which is denoted by a
negligible function μ, the completeness is derived. �

B. Prover’s behavior

We now model the behavior of an arbitrary prover in Pro-
tocol 1, and discuss the relation between the prover’s behavior
and an underlying quantum state.

According to the principle [23,30] that a prover P in a
round that begins with the verifier’s message and ends with
the prover’s message behaves exactly the same as a prover that
applies one unitary operator and then performs an ideal mea-
surement, the behavior of an arbitrary prover P in Protocol 1
can be described as follows.

(1) The prover P applies one unitary operator UZ to his
initial state ρ0. P then measures the commitment string regis-
ters, followed by the measurements of the computational basis
measurement round.

(2) For a type-I measurement protocol, (a) the prover P
successively applies one unitary operator UF and the Fourier
basis measurements to his entire state and (b) the prover P
successively applies one unitary operator UR and the rotation
basis measurements on his entire state.

(3) For a type-II measurement protocol, the prover P ap-
plies one unitary operator UT to his entire state, followed by
the measurements of the test round.

Note that the measurements before and after the unitary
UT are of the same type; this implies that UT commutes with
the measurements of the computational basis measurement
round. In addition, the positions that the Fourier basis mea-
surements act on are separated from the positions that the
rotation basis measurements act on. It can be inferred that the
unitary UR commutes with the Fourier basis measurements.
Let U1 = UT UZ ,U2 = URUFU †

T U †
J , where UJ is one unitary

operator corresponding to map J . The behavior of the prover
P is equivalent to the following.

(1) The prover P applies one unitary operator U1 to his
initial state ρ0. P then measures the commitment string regis-
ters, followed by the measurements of the computational basis
measurement round.

(2) For a type-I measurement protocol, the prover P suc-
cessively applies the unitary operator UJ and one unitary
operator U2 on his entire state. P successively performs the
Fourier basis measurements and the rotation basis measure-
ments.

(3) For a type-II measurement protocol, the prover P per-
forms the measurements of the test round.

Consider a particular prover P who applies an additional
operator U3 to n committed qubits before the measurements of
the partial committed qubits in the rotation basis measurement
round. Moreover, P can pass the computational basis mea-
surement round and the test round perfectly. The attacks U2

and U3 commute with the computational basis measurement
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on n committed qubits. We say the above prover P is normal.
The following theorem then holds.

Theorem 2. For all normal provers P and all h ∈
{0, 1, 2, 3, 4}n, there is an n-qubit state ρ such that the density
function fP ,h is equivalent to the density function fρ,h, where
the construction of state ρ is described below.

(1) Execute step (1) of the behavior of the prover P .
(2) Perform the map J on n preimage registers.
(3) Apply the unitary operators U2 to the entire state.
(4) Measure n preimage registers in the Fourier basis to get

outcomes d1, . . . , dn.
(5) Apply the unitary U3 to n committed qubits.
(6) For 1 � i � n, apply the unitary RZ{−πdi[J (x0,yi ) ⊕

J (x1,yi )]/4} to the ith committed qubit.
(7) Trace out all qubits except n committed qubits.
Proof. As for hi = 0, measuring the ith qubit of ρ in the

computational basis can be transferred to measuring in the
computational basis the ith committed qubit after the step (1)
due to the fact that the operations of steps (2)–(7) commute
with the computational basis measurement on n committed
qubits. Therefore, the density function of the ith bit of fρ,h is
equal to the density function of the ith bit of fP ,h.

As for hi �= 0, the density function of the ith bit
of fP ,h is obtained from measuring the ith commit-
ted qubit in the {|+θ ′

i
〉, |−θ ′

i
〉} basis, where θ ′

i = θi +
πdi[J (x0,yi ) ⊕ J (x1,yi )]/4. It is equivalent to applying one uni-
tary operator RZ{−πdi[J (x0,yi ) ⊕ J (x1,yi )]/4}, followed by the
{|+θi〉, |−θi〉} basis measurement. This just reflects the density
function of the ith bit of fρ,h. �

C. General to X -trivial attack for rotation
basis measurement round

In the following we will prove that for an arbitrary perfect
prover P in Protocol 1, there exists a normal prover P ′ such
that fP ,h is computationally indistinguishable from fP ′,h.

We use (U1,U2,U3) to describe a prover P . It means
that P applies the unitary U1 before measuring the commit-
ment string registers, the unitary U2 before the Fourier basis
measurements, and the unitary U3 before the rotation basis
measurements. With this at hand, we can state our result that
is similar to Refs. [23,30].

Theorem 3. For 1 � i � n, let E = {Ej} j and Ei =
{Ex, j}x∈{0,1}, j be CPTP maps expressed as the Kraus decom-
position:

Ej = I ⊗ E00
j + X ⊗ E10

j + Z ⊗ E01
j + XZ ⊗ E11

j , (18)

Ex, j = I ⊗ Ex0
j + Z ⊗ Ex1

j , (19)

where the Pauli operators I, X, Z, XZ are applied on the ith
committed qubit. Let a perfect prover P be characterized
by (U1, E, I ). There exists a perfect prover Pi characterized
by (U1, Ei,U3) such that fP ,h is computationally indistin-
guishable from fPi,h, where U3 is one unitary operator that
commutes with computational basis measurement on n com-
mitted qubits.

Proof. For simplicity, we just prove the case for i = 1. It is
easy to confirm the remaining cases.

We first consider the computational indistinguishability for
h1 �= 0. Recall the behavior of the prover P . Let state |Φy〉 be

written as

|0〉|J (x0,y)〉|ψ0,y〉|y〉 + |1〉|J (x1,y )〉|ψ1,y〉|y〉, (20)

where y ∈ ⋃
b∈{0,1},x∈χ supp[ fk,b(x)], xb,y = INVF (tk, b, y),

and |ψb,y〉 represents the remaining qubits. Note that the per-
fect prover P can pass the check of the computational basis
measurement round and the test round. After the measure-
ments of computational basis measurement round and the
application of the map J , the state shared between the prover
and verifier is ∑

y

|Φy〉〈Φy|. (21)

The CPTP map E = {Ej} j followed by the Fourier
(over Z8) basis measurement (the CPTP map writ-
ten as {|d〉〈d|UP}d ) of the first preimage register, the
{|+γ 〉, |−γ 〉} basis measurements (the CPTP map written as
{|b〉〈b|HRZ (−γ )}b) of the first committed qubit, and the ver-
ifier’s decoding (the Pauli operator X c acting on the first
committed qubit) will result in the state ρ1 that can be written
as ∑

b, c, d, j
y ∈ Δc,d

[|b〉〈b|X cHRZ (−γ ) ⊗ |d〉〈d|UP ⊗ I]Ej |Φy〉

×〈Φy|E†
j [|b〉〈b|X cHRZ (−γ ) ⊗ |d〉〈d|UP ⊗ I]†

, (22)

where

Δc,d =
{

y ∈
⋃
b,x

supp[ fk,b(x)]|

{γ − θ − πd[J (x0,y) ⊕ J (x1,y )]/4}/π = c

}
.

(23)

In other words, the state corresponding to a prover
P characterized by (U1, E, I ) is ρ1. Let Fb,c,d, j =
[|b〉〈b|X cHRZ (−γ ) ⊗ |d〉〈d|UP ⊗ I]Ej . We can rewrite

ρ1 =
∑

b, c, d, j
y ∈ Δc,d

Fb,c,d, j |Φy〉〈Φy|F †
b,c,d, j . (24)

From the Z Pauli Twirl Lemma [23,30], the following two
CPTP maps are equal:{

1√
2

(Zr ⊗ I )Ej (Z
r ⊗ I )

}
r, j

= {(X x ⊗ I )Ex, j}x, j . (25)

Consider that above CPTP maps are followed by the Fourier
basis measurement of the first preimage register and the rota-
tion basis measurement of the first committed qubit. Using the
facts that RZ (−γ )X = XRZ (γ ) and the Pauli Z operator has
no effect on the computational basis measurement, we have{

1√
2

[|b〉〈b|HRZ (−γ ) ⊗ |d〉〈d|UP ⊗ I]

× (Zr ⊗ I )Ej (Z
r ⊗ I )

}
b,d,r, j

= {[|b〉〈b|HRZ (−γ )RZ{[(−1)x+1 + 1]γ }
⊗ |d〉〈d|UP ⊗ I]Ex, j}b,d,x, j . (26)
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The operator RZ{[(−1)x+1 + 1]γ } acting on the first commit-
ted qubit has uniquely defined the unitary U3 that the theorem
requires. The state corresponding to a prover P1 characterized
by (U1, E1,U3) is∑

b, c, d, x, j
y ∈ Δc,d

(F ′
b,c,d,x, j )|Φy〉〈Φy|(F ′

b,c,d,x, j )
†, (27)

where F ′
b,c,d,x, j is defined as

(|b〉〈b|X cHRZ (−γ )RZ{[(−1)x+1+1]+γ }
⊗ |d〉〈d|UP ⊗ I )Ex, j . (28)

In order to prove that fP ,h is computationally indistinguish-
able from fP1,h, it suffices to show that the state ρ1 is
computationally indistinguishable from the state ρ2.

Let

Ξr =
∑

b, c, d, j
y ∈ Δc,d

Fb,c⊕r,d, j ρ̃yF †
b,c⊕r,d, j, (29)

Ξ ′
r =

∑
y

(Zr ⊗ I )|Φy〉〈Φy|(Zr ⊗ I ), (30)

where ρ̃y is the diagonal term of |Φy〉〈Φy|, i.e.,

ρ̃y =
∑

b

[|b〉|J (xb,y)〉|ψb,y〉|y〉][|b〉|J (xb,y)〉|ψb,y〉|y〉]†. (31)

Similar to Refs. [23,30], the problem can be reduced to
proving that Ξ0 is computationally indistinguishable from Ξ1

and that Ξ ′
0 is computationally indistinguishable from Ξ ′

1.
Assume Ξ0 is computationally distinguishable from Ξ1.

There exists efficiently computable CPTP maps S such that
for all negligible function μ,

|Tr(|0〉〈0| ⊗ I )S (Ξ0 − Ξ1)| > μ. (32)

We now construct a quantum attacker A that breaks the hard-
core bit property of F .

(1) A follows step (1) of the behavior of the prover P .
(2) A measures the first committed qubit and first preimage

register in the computational basis, storing the measurement
outcomes (b, xb,y ).

(3) A follows step (2) of the behavior of the prover P ,
storing the Fourier basis measurement outcome d .

(4) A chooses a bit c′ ∈ {0, 1} uniformly at random and
performs the Pauli operator X c′

to the first committed qubit.
(5) A applies the CPTP map S , followed by the compu-

tational basis measurement of the first committed qubit. A
stores the measurement outcome s.

(6) A outputs {b, xb,y, d, 4[γ − θ − (c′ ⊕ s)π ]/π}.
Similar to Refs. [23,30], it is easy to check that A breaks

the first hardcore bit property of F , i.e., Eq. (7).
Assume Ξ ′

0 is computationally distinguishable from Ξ ′
1. It

means that there exists an attacker A′ who can distinguish
whether or not a Pauli Z operator acts on the first commit-
ted qubit of |Φy〉〈Φy|. We now construct the behavior of the
quantum attacker A′ as follows.

(1) A′ follows step (1) of the behavior of the prover P .
(2) A′ applies the operator Zd̂ acting on the first preimage

register, where d̂ is an arbitrary selected bit string.

(3) A′ applies UJ to the first preimage register.
The final state of the attacker A′ is∑

y

(Zd̂ (x0,y⊕x1,y ) ⊗ I )|Φy〉〈Φy|(Zd̂ (x0,y⊕x1,y ) ⊗ I ). (33)

According to Refs. [23,30], it shows that A′ can determine
the bit d̂ (x0,y ⊕ x1,y). It is a contradiction with the second
hardcore bit property of F , i.e., Eq. (11).

Consider the computational indistinguishability for h1 = 0.
Since the density function of the first bit of fP ,h depends on
the computational basis measurement of the first committed
qubit before the application of the CPTP map E , the attacks
applied in the rotation basis measurement round have no effect
on the density function. �

Theorem 3 shows that replacing the attacks of the rotation
basis measurement round with the attacks acting X trivially on
the ith committed qubit will not change the density function
over measurement outcomes. Generalizing it to the case of all
n committed qubits leads to the following result.

Corollary 1. For 1 � i � n, let E = {Ej} j and E ′ =
{Ex, j}x∈{0,1}n, j be CPTP maps expressed as the Kraus decom-
position:

Ej =
∑

x,z∈{0,1}n

(
n⊗

i=1
X x(i)Zz(i)

)
⊗ E xz

j , (34)

Ex, j =
∑

z∈{0,1}n

(
n⊗

i=1
Zz(i)

)
⊗ E xz

j , (35)

where x(i) (or z(i)) is the ith value of the vector x (or z),
respectively, and the n-qubit Pauli operators are applied on
n committed qubits. Let a perfect prover P be characterized
by (U1, E, I ). There exists a perfect prover P ′ characterized
by (U1, E ′,U3) such that fP ,h is computationally indistin-
guishable from fP ′,h, where U3 is one unitary operator that
commutes with a computational basis measurement on n com-
mitted qubits.

D. Soundness of measurement protocol

The soundness of Protocol 1 is given by Theorem 4.
Theorem 4. For an arbitrary prover P and any basis choice

h = {0, 1, 2, 3, 4}n in Protocol 1, let Λh
1 be the probability that

the verifier rejects P in the type-I measurement protocol and
let Λh

2 be the probability that the verifier rejects P in the type-
II measurement protocol. There exists a perfect prover P̃ such
that DTV ( f ′

P ,h, fP̃ ,h) belongs to the interval

[∣∣Λh
1 +

√
1 − Λh

2 − 1
∣∣,Λh

1 +
√

Λh
2

]
(36)

and DL2 ( f ′
P ,h, fP̃ ,h) belongs to the interval[

1√
2n−2

∣∣Λh
1 +

√
1 − Λh

2 − 1
∣∣, 2

(
Λh

1 +
√

Λh
2

)]
. (37)

In addition, there exists a state ρ such that fP̃ ,h is computa-
tionally indistinguishable from fρ,h.

Proof. Without loss of generality, assume the prover P is
characterized by (U1,U2, I ). We will prove that the prover
P̃ characterized by (I,U2, I ) satisfies the requirement of the
theorem.
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Let ρ ′ (ρ ′′) be the state of the system corresponding to P
(P̃ ) at the beginning of measurements of the computational
basis measurement round. Let |ϕ0,k′ 〉 be the state that can
pass the check of the computational basis measurement round
and the test round for function key k′ and let |ϕ1,k′ 〉 be the
orthogonal state of |ϕ0,k′ 〉. Then ρ ′ can be written as∑

k′
fV ,h(k′)

(√
1 − Λh

2|ϕ0,k′ 〉 +
√

Λh
2|ϕ1,k′ 〉)

× (√
1 − Λh

2〈ϕ0,k′ | +
√

Λh
2〈ϕ1,k′ |). (38)

Note that P̃ behaves honestly before the rotation basis mea-
surement round. It implies that P̃ can pass the computational
basis measurement round and the test round with probability
negligibly close to 1, i.e., P̃ is perfect. So, it follows that ρ ′′ is
negligibly close to∑

k′
fV ,h(k′)|ϕ0,k′ 〉〈ϕ0,k′ |. (39)

Thus we have

Dtr (ρ ′, ρ ′′) �
√

1 − F (ρ ′, ρ ′′) =
√

Λh
2, (40)

Dtr (ρ ′, ρ ′′) � 1 −
√

F (ρ ′, ρ ′′) = 1 −
√

1 − Λh
2, (41)

where F (ρ ′, ρ ′′) is the fidelity between ρ ′ and ρ ′′. Refer to
Refs. [23,30]; Eq. (40) implies

DTV ( f ′
P ,h, fP̃ ,h) � Λh

1 +
√

Λh
2. (42)

Let the CPTP map O be composed of the measurement of
the computational basis measurement round and the imple-
ment of the rotation basis measurement round; we then get

Dtr (σP ,h, σP̃ ,h) = Dtr
(
Oρ ′,Oρ ′′)

� 1 −
√

F (Oρ ′,Oρ ′′)

� 1 −
√

F (ρ ′, ρ ′′) = 1 −
√

1 − Λh
2. (43)

Using a triangle inequality, we obtain

DTV ( f ′
P ,h, fP̃ ,h)

� |DTV ( f ′
P ,h, fP ,h) − DTV ( fP ,h, fP̃ ,h)|

= ∣∣Λh
1 − Dtr (σP ,h, σP̃ ,h)

∣∣
�

∣∣Λh
1 +

√
1 − Λh

2 − 1
∣∣. (44)

The Euclidean distance between density functions fP ,h and
fP̃ ,h satisfies

DL2 ( f ′
P ,h, fP̃ ,h) � DL1 ( f ′

P ,h, fP̃ ,h)

= 2 DTV ( f ′
P ,h, fP̃ ,h) = 2

(
Λh

1 +
√

Λh
2

)
, (45)

DL2 ( f ′
P ,h, fP̃ ,h) � 1√

2n
DL1 ( f ′

P ,h, fP̃ ,h)

� 1√
2n−2

|Λh
1 +

√
1 − Λh

2 − 1|, (46)

where the first inequality of Eq. (46) is based on the fact
that the mean square root mean is greater than or equal to

the arithmetic mean and the fact that the domain of density
functions scales as 2n.

By Corollary 1, there exists a normal prover P ′ such that
fP̃ ,h is computationally indistinguishable from fP ′,h. Utilizing
Theorem 2, there exists a state ρ such that fP ′,h is equivalent
to fρ,h. We therefore conclude that fP̃ ,h is computationally
indistinguishable from fρ,h. �

IV. APPLICATIONS OF MEASUREMENT PROTOCOL

This section presents the applications of measurement pro-
tocol to verification of graph states and verifiable delegated
quantum computing.

A. Verification of graph states on honest-but-noisy devices

In this subsection, we will propose two protocols that aim
at verifying a graph state with a device-noise-independent
method. Graph states are widely used as resource states for
measurement-based quantum computation (MBQC) [32,33].
The verification of graph states is important for verifying
quantum computation. The available techniques [18,34] to
certify the correctness of a graph state generated by an
untrusted device usually rely on performing sequential single-
qubit measurements of Pauli operators on the prepared states.
However, it requires that the measurement device is ideal.
The imperfections of a nonmalicious device could make the
protocol invalid. Here, using our measurement protocol to
substitute for the Pauli basis measurements, we can remove
this unpractical requirement. The imperfect universal quan-
tum device owned by an individual is called prover and this
individual is called verifier. Our first noise-robustness verifica-
tion protocol consists of the verification protocol of the graph
states from Ref. [18] and our measurement protocol, which
runs as follows.

Protocol 2 (Device-noise-independent verification of graph
state |G〉 with Pauli X and Z basis measurements)

(1) The verifier asks the prover to prepare 2k + 1 copies
of an n-qubit graph state |G〉. Honest prover will prepare
|G〉2k+1. However, an honest-but-noisy prover will generate
an arbitrary state.

(2) The verifier uniformly and randomly chooses 2k copies
for the stabilizer tests. The remaining copy is the target state
ρtgt . The Pauli X basis measurements and Pauli Z basis mea-
surements required for the stabilizer tests partially defines a
basis choice h. All undefined hi are set to be 0.

(3) The verifier and the prover participate in the measure-
ment protocol.

(4) Repeat steps (1)–(3) N times. The number of type-I
(type-II) measurement protocols is denoted by N1 (N2). The
number of type-I (type-II) measurement protocols rejected by
the verifier is denoted by N ′

1 (N ′
2).

(5) The verifier chooses one of the type-I measurement
protocols that is accepted. The verifier then assesses each
stabilizer test according to the measurement results of this
type-I measurement protocol. If all stabilizer tests are passed,
the verifier accepts the prover.

The soundness and completeness of Protocol 2 are shown
in Theorem 5. The soundness means that when the verifier
accepts the prover, there is a high probability for the state
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prepared by the prover to be close to graph state |G〉. The
completeness means that when the prover is honest, there is
a high probability that the verifier accepts a correct result.

Theorem 5. If the verifier accepts the honest-but-noisy
prover in Protocol 2, the target state ρtgt satisfies, with proba-
bility at least 1 − N ′

1/N1 − √
N ′

2/N2 − α,

〈G|ρtgt|G〉 � 1 − 1

α(2k + 1)
, (47)

where α is any constant satisfying α > [1/(2k + 1)]. If the
prover is ideal, the verifier accepts the prover with probability
negligibly close to 1.

Proof. Let p( f ) be the probability that the n bit string
sampled from the probability density function f passes all
stabilizer tests in step (5) of Protocol 2. Then the probability
that the verifier accepts the prover in step (5) is p( f ′

P ,h). From
Theorem 4, we can guarantee that

p( f ′
P ,h) � Λh

1 +
√

Λh
2 + p( fP̃ ,h)

� Λh
1 +

√
Λh

2 + μh + p( fρ,h), (48)

where μh is a negligible function. By Theorem 1 of Ref. [18],
if Tr(�⊥ρtgt ) > 1/[α(2k + 1)], then p( fρ,h) < α, i.e.,

p( f ′
P ,h) � Λh

1 +
√

Λh
2 + μh + α. (49)

Here, �⊥ is the n-qubit projector I⊗n − |G〉〈G|. This implies
that if the verifier accepts the prover in step (5), we have

Pr

(
〈G|ρtgt|G〉 � 1 − 1

α(2k + 1)

)

� 1 − Λh
1 −

√
Λh

2 − μh − α. (50)

To recall Protocol 2, when the number N of repetitions is
large enough, it follows that Λh

1 = N ′
1/N1 and Λh

2 = N ′
2/N2.

Bringing this into Eq. (50) obtains the soundness of Protocol
2.

Now we consider the case that the prover is ideal. By
Theorem 1, we can guarantee that

p( f ′
P ,h) � −μ′

h + p( f|G〉〈G|,h), (51)

where μ′
h is a negligible function. The completeness of the

verification protocol of Ref. [18] shows that p( f|G〉〈G|,h) =
1. Taking this into Eq. (51) gets the completeness of
Protocol 2. �

Here, we give another device-noise-independent verifica-
tion protocol for graph states to show the advantages of our
measurement protocol, which can be used to verify the Pauli
X , Y , and Z basis measurements. Protocol 3 consists of the
verification protocol of the graph states from Ref. [10] and
our measurement protocol.

Protocol 3 (Device-noise-independent verification of graph
state |G〉 with Pauli X , Y , and Z basis measurements)

(1) The verifier asks the prover to prepare Ñ = (2n − 1)k +
1 copies of an n-qubit graph state |G〉.

(2) The verifier uniformly and randomly chooses one copy
for the target state ρtgt. The remaining (2n − 1)k copies are
divided into 2n − 1 groups such that which copy is assigned to
the ith group is uniformly random. Let {gi}n

i=1 be n stabilizers

of the n-qubit graph state |G〉. Let the set {τ1, τ2, . . . , τ2n−1}
of nontrivial stabilizer operators of |G〉 be written by the set
{∏n

i=1 gwi
i } w=w1w2···wn , where w ∈ {0, 1}n, w �= 0. The verifier

asks the prover to perform the measurement for τi on every
copy in the ith group, which defines a basis choice h.

(3) The verifier and the prover participate in the measure-
ment protocol.

(4) Repeat steps (1)–(3) N times. Similar to Protocol 2, the
numbers N1, N2, N ′

1, and N ′
2 are counted.

(5) The verifier chooses one of the type-I measurement
protocols that is accepted. Let oi j ∈ {+1,−1} be the measure-
ment outcome corresponding to the jth copy in the ith group
for 1 � i � 2n − 1, 1 � j � k. If all oi j are equal to 1, the
verifier accepts the prover.

The soundness and completeness of Protocol 3 are shown
in Theorem 6.

Theorem 6. Let Ñ = �2ε−1 ln δ−1�, where ε is a parameter
related to the infidelity and δ is a parameter related to the
significance level. If the verifier accepts the honest-but-noisy
prover in Protocol 3, the target state ρtgt satisfies, with proba-
bility at least 1 − N ′

1/N1 − √
N ′

2/N2 − δ,

〈G|ρtgt|G〉 � 1 − ε. (52)

If the prover is ideal, the verifier accepts the prover with
probability negligibly close to 1.

Proof. According to Ref. [10], in step (1) of Protocol 3 the
requirement of Ñ = �2ε−1 ln δ−1� copies can lead to the tar-
get state ρtgt satisfying 〈G|ρtgt|G〉 � 1 − ε with probability at
least 1 − δ. It means that if Tr(�⊥ρtgt ) > ε, then p( fρ,h) < δ.
Similar to the proof of Theorem 5, the soundness and com-
pleteness can be obtained. �

We now compare the resource overhead of our verification
protocols for graph states with the existing protocols. To ver-
ify the graph state |G〉 within infidelity ε and significance level
δ, the number of required copies of |G〉 in Ref. [18] is at least
�ε−1δ−1�. Our method needs at least N�ε−1(δ − N ′

1/N1 −√
N ′

2/N2)−1� copies of |G〉, where N, N1/N ′
1, N2/N ′

2 are con-
stant. The additional overhead originates from the facts that
our Protocol 2 needs the higher significance level to achieve
the same fidelity and the measurement protocol is performed
N times. However, the extra overhead results in a desirable
property, i.e., the robustness for device noise. Similarly, the
protocol of Ref. [10] can achieve infidelity ε and significance
level δ with at least �2ε−1 ln δ−1� copies of |G〉. Our Protocol
3 takes at least N�2ε−1 ln(δ − N ′

1/N1 − √
N ′

2/N2)−1� copies
of |G〉.

B. Verifiable delegated quantum computing

Verifiable delegated quantum computing [19] is a kind of
cloud quantum computing, where the client can ensure the
integrity of the computations. Applying a Pauli X/Z basis
measurement protocol to a post hoc verification protocol [35],
Mahadev proposed the first verification protocol [23,30] that
allows a classical verifier to delegate computations to a single
prover. The soundness of Mahadev’s protocol is 0.75. We
will show that replacing the Pauli X/Z basis measurement
protocol with our Protocol 1 results in a CVQC protocol with
soundness of 0.5757. Our protocol works as follows.
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Protocol 4 (Improved classical verification of quantum
computation).

(1) The verifier and the prover receive an instance of x.
The aim of the protocol is to verify that x ∈ L for a language
L ∈ BQP. The Hamiltonian corresponding to x can be writ-
ten as H = ∑

i aiSi, where ai is a real number and Si is a
tensor product consisting of Pauli X and Z operators and the
identity I .

(2) The verifier asks the prover to prepare r copies of
the ground state of Hamiltonian H ′ = ∑

i pi
I+sgn(ai )Si

2 , where
pi = |ai|∑

i |ai| .
(3) The verifier samples r terms (S′

1, . . . , S′
r ) of the set {Si}i

according to probability distribution {pi}i.
(4) In order to measure the r selected XZ terms on the

r copies prepared by the prover, the verifier and the prover
participate in the measurement protocol, where the parameter
β is set to be 0.28. The verifier accepts or rejects according
to the measurement protocol. If the executive measurement
protocol belongs to type I, the verifier proceeds to the next
step. Otherwise, the whole protocol is aborted.

(5) The verifier initializes one counter Ĉ = 0. For each
XZ-term S′

i , which represents S j , if the verifier obtains the
outcome −sgn(a j ) of the measurement, the verifier sets Ĉ =
Ĉ + 1. The verifier accepts if Ĉ � r/2.

The soundness and completeness of Protocol 4 are shown
in Theorem 7. The completeness means the lower bound of
the probability that the verifier accepts the honest prover for
the case of x ∈ L. The soundness means the upper bound of
the probability that the verifier accepts the prover, who may
be malicious, for the case of x /∈ L.

Theorem 7. Protocol 4 is a quantum-prover interactive ar-
gument for the class BQP with completeness negligibly close
to 1 and soundness negligibly close to 0.5757.

Proof. Let p( f ) be the probability that n bit string sampled
from the probability density function f passes the check in
step (5) of Protocol 4 and let νh be the probability that the basis
h is chosen. Similar to Eq. (180) of Ref. [30], the probability
that the verifier accepts the prover in Protocol 4 is

∑
h

vh
[
β
(
1 − Λh

2

) + (1 − β )
(
1 − Λh

1

)
p( f ′

P ,h)
]
, (53)

where the first item is the probability that the verifier runs a
type-II measurement protocol and accepts the prover in step
(4) of Protocol 4 and the second item is the probability that
the verifier runs a type-I measurement protocol and accepts
the prover in step (4) and step (5) of Protocol 4.

In order to obtain the soundness, we need to get the up-
per bound of p( f ′

P ,h). By the property of the total variation
distance and Theorem 4, we have

p( f ′
P ,h) − p( fP̃ ,h) � DTV ( f ′

P ,h, fP̃ ,h) � Λh
1 +

√
Λh

2. (54)

Thus we have to get the upper bound p( fP̃ ,h). Similarly, we
have

p( fP̃ ,h) − p( fρ,h) � DTV ( f ′
P ,h, fρ,h) � μ1, (55)
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FIG. 3. Soundness as a function of the parameter β.

where μ1 is a negligible function. According to the soundness
of post hoc verification protocol [35], it holds that∑

h

vh p( fρ,h) � μ2, (56)

where μ2 is a negligible function. By the above analysis, the
soundness is

μ′ +
∑

h

vh

[
β
(
1 − Λh

2

) + (1 − β )
(
1 − Λh

1

)(
Λh

1 +
√

Λh
2

)]
,

(57)
where μ′ is a negligible function. Calculating the optimal
soundness can be converted to solving the following optimiza-
tion problem, i.e.,

min
β∈(0,1)

max
Λh

1∈[0,1],Λh
2∈[0,1]

fopt
(
β,Λh

1,Λ
h
2

)
, (58)

where

fopt = β
(
1 − Λh

2

) + (1 − β )
(
1 − Λh

1

)(
Λh

1 +
√

Λh
2

)
. (59)

From the extreme value theory of quadratic function, the max-
imum value is obtained when Λh

1 = 1/2,Λh
2 = (1 − β )/(4β ).

The soundness corresponding to the parameter β is shown in
Fig. 3. According to the numerical result, the minimum value
0.5757 is derived when β = 0.28.

In order to obtain the completeness, we need to get the
minimal probability that the verifier accepts the honest prover
in Protocol 4. This means that we need to calculate the upper
bound of Λh

1 and Λh
2 as well as the lower bound of p( f ′

P ,h).
From Theorem 1, it follows that

Λh
1 � μ3, Λh

2 � μ4, (60)

where μ3 and μ4 are negligible functions. By the property of
the total variation distance and Theorem 1, we have

p( fρ,h) − p( f ′
P ,h) � DTV ( fρ,h, f ′

P ,h) � μ5, (61)

where μ5 is a negligible function. Thus we have to get the
lower bound p( fρ,h). According to the completeness of post
hoc verification protocol [35], it holds that∑

h

vh p( fρ,h) � 1 − μ6, (62)
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TABLE I. Performance of our measurement protocol compared with Mahadev’s protocol.

Measurement protocol Functions Measurement basis
Our protocol NTCFs X , Y , X+Y√

2
, X−Y√

2
, Z

Mahadev’s protocol NTCFs + Trapdoor injective family X , Z

where μ6 is a negligible function. By the above analysis, the
completeness is 1 − μ′′, where μ′′ is a negligible function. �

V. CONCLUSION

In this paper, our main result is a classical verification
protocol of multibasis measurement. Existing protocol [23]
has realized the goal that a classical verifier can interact with
a quantum prover to verify the result of computational basis
or Pauli X basis measurement. Our measurement protocol has
extended to the classical verification of computational basis
or XY -plane rotation basis measurement. We have analyzed
the completeness and soundness of our measurement protocol.
The soundness of our method is guaranteed by a slightly
stronger variant [31] of the adaptive hardcore bit property of
the noisy trapdoor claw-free family in Ref. [30]. Our scheme
is conditioned on the hardness of the LWE problem for quan-
tum computers, which is inherited from the use of NTCFs.
Compared with Ref. [30], our measurement protocol have
removed the requirement for the trapdoor injective family.
The differences between our measurement protocol and Ma-
hadev’s protocol have been summarized in Table I, including
constructed functions and realized measurement basis.

The local operations and classical communication (LOCC)
[36] is a certain type of transformation of states in quantum in-
formation theory. LOCC protocols are usually used to obtain a
maximally entangled state with respect to some entanglement
measure. The similarity between our measurement protocol
and LOCC protocols is that the communication between Alice
(verifier) and Bob (prover) is two-way classical. One of the
differences is that our protocol has considered the adversarial
scenario, i.e., the prover can be malicious and send wrong
classical messages to the verifier. As for LOCC protocols, the
scenario is nonadversarial, i.e., Bob is required to cooperate
with Alice. The other one is that the observers in LOCC
protocols require local operations, such as measurements and
unitary operations. It implies that both Alice and Bob need
quantum abilities. As for our measurement protocol, only the
prover needs universal quantum abilities.

Based on our measurement protocol, we have constructed
two device-noise-independent verification protocols for the
certification of graph states. Different from the traditional
methods [18,37], our schemes are independent of the as-
sumption that the device is ideal and there is no need for
multiple noncommunicating provers that share entanglement.

Another application of our measurement protocol is verifiable
delegated quantum computing. We have constructed a CVQC
protocol, where a better soundness is obtained by optimizing
the probability of choosing to run a test round or a rotation
basis measurement round.

Many efficient verification protocols for quantum states,
such as the verification of ground states of Hamiltonians
[38], must require Pauli X , Y , and Z basis measurements.
If we apply our measurement protocol to the verification
of these states, the classical verification of XY -plane rota-
tion basis measurement will yield considerable advantages.
In order to explore the classical verification of XZ-plane
basis or Y Z-plane basis measurement, let us recall that, in
our protocol 1, after the Fourier basis (over Z8) measure-
ment on the preimage register i, the state of ith committed
qubit is (RZ{πdi[J (x0,yi ) ⊕ J (x1,yi )]/4} ⊗ I )|ψ〉. Since the
first adaptive hardcore bit property of the NTCF family
ensures that di[J (x0,yi ) ⊕ J (x1,yi )] is computationally indistin-
guishable from {di[J (x0,yi ) ⊕ J (x1,yi )]} ⊕ 4, the prover cannot
derive the information of bit ci from the bit γi = θi +
πdi[J (x0,yi ) ⊕ J (x1,yi )]/4 + ciπ sent by the verifier. The se-
curity of our measurement protocol is exactly based on the
design of γi. If one can find one transform followed by
the computational basis measurement such that the post-
measurement state is (RY {πdi[J (x0,yi ) ⊕ J (x1,yi )]/4} ⊗ I )|ψ〉
or (RX {πdi[J (x0,yi ) ⊕ J (x1,yi )]/4} ⊗ I )|ψ〉, where RY (θ ) =
cos θ

2 I − i sin θ
2Y and RX (θ ) = cos θ

2 I − i sin θ
2 X , then our

measurement protocol can adjust to verifying the XZ-plane
basis or Y Z-plane basis measurement. In addition, it is
necessary to prove the computational indistinguishability of
distributions when the attacks of the Y Z-plane (XZ-plane)
rotation basis measurement round become Z trivial (X trivial).
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