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The Wigner function of the compass state (a superposition of four coherent states) develops phase-space
structures of dimension much less than the Planck scale h̄, which are crucial in determining the sensitivity of
these states to phase-space displacements. In the present work we introduce compasslike states that may have
connection to the contemporary experiments, which are obtained by either adding photons to or subtracting
photons from the superposition of two squeezed-vacuum states. We show that when a significant quantity of
photons is added (or subtracted), the Wigner functions of these states are shown to have phase-space structures
of an area that is substantially smaller than the Planck scale. In addition, these states exhibit sensitivity to
displacements that is much higher than the standard quantum limit. Finally, we show that both the size of the
sub-Planck structures and the sensitivity of our states are strongly influenced by the average photon number, with
the photon-addition case having a higher average photon number leading to the smaller sub-Planck structures
and, consequently, being more sensitive to displacement than the photon-subtraction case. Our states offer
unprecedented resolution to the external perturbations, making them suitable for quantum sensing applications.
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I. INTRODUCTION

Quantum-mechanical states can be visualized in the phase
space via the Wigner quasiprobability distribution [1–5]. The
term “Gaussian state” refers to a state having the Gaussian
Wigner function [6,7]. The coherent state [8] is an example
of a Gaussian state. The Wigner function of the coherent state
exhibits the Planck limit [9,10] in the phase space, which is
also known as the standard quantum limit (SQL) or shot-noise
limit. The Wigner function of certain non-Gaussian states may
attain negative values [11–14], indicating that these states
are nonclassical. The quantum superposition is the source of
intriguing nonclassical properties of quantum states, such as
quantum coherence [11,15], squeezing [16,17], and entangle-
ment [18–20]. Nonclassical quantum states play a significant
role in quantum-information processing [21], tests of funda-
mental of physics [22–24], and applications in sensing and
metrology [25,26].

Nonclassical states are not always non-Gaussian; however,
nonclassical states can be Gaussian in some cases. For exam-
ple, a squeezed-vacuum state (SVS) is a common nonclassical
state, but it possesses a Gaussian Wigner function [12,13]. The
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Wigner function of the superposition of SVS is non-Gaussian
and may have negative amplitudes [27,28]. Squeezed quantum
states play an important role in performing enhanced quantum
metrology [16,29]. Squeezed light has been utilized experi-
mentally to carry out improved measurements [30,31].

The superpositions of two coherent states with opposite
phases (cat states) also possess non-Gaussian Wigner func-
tions [32–35]. Moreover, the superposition of four coherent
states, which is known as the “compass state” [36], exhibits
nonclassical features in the Wigner function with dimensions
far smaller than the SQL. The quantum states with sub-Planck
structures are found to be very sensitive to environmental
decoherence [37] and have achieved prominent theoretical
attentions in quantum metrology [37–41]. The connection
between sub-Planck structures and teleportation fidelity has
been established [42]. Sub-Fourier sensitivity is a classi-
cal analog of the sub-Planck structures [43]. Compasslike
states have been thoroughly investigated in several situations
[44–59]. Both theoretical [60–65] and experimental studies
[66–69] have been undertaken to achieve the controlled gen-
eration of such states.

In recent years, there has been a lot of focus on sub-
tracting photons from or adding photons to the quantum
states [70–82]. A non-Gaussian state can also be gener-
ated by adding or subtracting photons from a Gaussian
state. For example, when photons are added to or sub-
tracted from the Gaussian SVS, one may obtain two
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non-Gaussian squeezed states that have nonpositive Wigner
functions [75–78,80,82,83]: photon-added squeezed-vacuum
states (PASVS) [72] and photon-subtracted squeezed-vacuum
states (PSSVS) [78]. Both PASVS and PSSVS have attracted
theoretical interest in quantum metrology [84–86].

The first theoretical investigation into the photon-addition
operation is accomplished by adding photons to the coherent
states [87]. Later, the photon-addition operation was suc-
cessfully adopted in experiments by using a nondegenerate
parametric amplifier with a weak coupling [88]. The PSSVS
is currently the most successfully experimentally observed
non-Gaussian SVS in quantum optics [89,90].

Schrödinger cat states with higher amplitude can be used
as qubits in quantum computing or as resources for quan-
tum error-correcting coding [91,92]. Conventional methods
are unable to produce Schrödinger-cat-like states with the
necessary amplitudes [93–95]. Numerous theoretical [96–99]
and experimental [100–102] research involving addition or
subtractions of photons from the states have been carried out
to achieve larger-amplitude, catlike states and even multicom-
ponent cat states [103].

In the present work we introduce a few non-Gaussian SVSs
that may also hold the properties of the compass state. In par-
ticular, we show that the Wigner function of the superpositions
of two PASVSs (or PSSVSs) exhibit phase-space structures
of an area, which varies inversely with the number of photons
added (or subtracted). When a large amount of the photons
are added to or subtracted from our states, the support area
of these structures is substantially smaller than that found for
coherent states. Similar sub-Planck structures are also found
in the phase space of the mixed states related to the PASVSs
and PSSVSs. We demonstrate that the average photon num-
ber in the states significantly influences the size of these
sub-Planck structures, with the photon-addition case having
higher average photon number, leading to smaller sub-Planck
structures in the phase space than the photon-subtraction
case.

To investigate the potential applications of these non-
Gaussian states in quantum metrology, we analyze the overlap
between these states and their slightly shifted analogs [104].
The degree to which the state is sensitive against perturba-
tions in the phase space can be determined from this overlap.
The sensitivity associated with coherent states cannot be
improved by increasing the number of photons. Techniques
using probes prepared in such states have the sensitivity at
the SQL [105,106]. Here, we show that the sensitivity of our
states is much higher than the SQL when the quantity of added
(or subtracted) photons is relatively high. Furthermore, our
superpositions exhibit this enhanced sensitivity in all phase-
space directions, whereas the mixtures only do so for specific
displacements. The varying average photon number in the
states also contributed to the variation in the sensitivities be-
tween the photon-addition and -subtraction cases; it is shown
that the photon-addition cases have higher sensitivity than the
subtracted ones.

The structure of our paper is as follows. In Sec. II we
review the concept of the sub-Planck structures associated to
the compass state. In Sec. III we review the Wigner functions
of PASVS and PSSVS. In Sec. IV we introduce our states and
analyze their phase space by using the Wigner function, where

we also discuss the sensitivity of our states against the phase-
space perturbations. In Sec. V we provide our conclusion.

II. THEORY OF SUB-PLANCK STRUCTURES

This section provides the background of the sub-Planck
structures and is organized as follows. Section II A introduces
the basic concepts that will be used in this article. In Sec. II B
we review the sub-Planck structures that build in the phase
space of the compass state. Section II C explains the sensitiv-
ity to phase-space displacements associated to this compass
state.

A. Basic concepts

The position operator x̂ and the momentum operator p̂
acts on an infinite-dimensional Hilbert space, forming the so-
called Heisenberg-Weyl (HW) algebra hw(1) [107–109] for
a single degree of freedom. For convenience, we use the unit
convention h̄ = c = 1 in this paper. The quantum uncertainty
principle [9,10] arising from commutator relations [x̂, p̂] = i
limits the size of a phase-space structure [10], for example,
represented by the Wigner function [1] for hw(1) algebra and,
more generally, by Moyal symbols [110] for other symmetries
[108]. For convenience, we use the vector

ζ := (x, p)� (1)

to represent the position-momentum pair in the following.
A Schrödinger coherent state is a nonspreading wave

packet of the quantum harmonic oscillator [8] and is an eigen-
state of the annihilation operator: â |α〉 = α |α〉 with α ∈ C.
The coherent states are obtained by displacing the vacuum
state |0〉, i.e.,

|α〉 = D̂(α) |0〉 , (2)

where

D̂(α) := exp(αâ† − α∗â) (3)

is the displacement operator [109].
The overlap between two coherent states |α〉 and |β〉 is

[111]

|〈α | β〉|2 = e−|α|2−|β|2+2β∗α = e−|α−β|2 , (4)

which implies that two different coherent states are not or-
thogonal.

The Wigner function for a generic quantum state ρ̂ is
written as an expectation value of the parity kernel [4,6],

Wρ̂ (ζ) := tr[ρ̂�̂(α)], (5)

with

�̂(α) := 2D̂(α)�̂D̂†(α), �̂ := (−1)â†â (6)

being the displaced parity operator.
The Wigner function for a coherent state is a strictly posi-

tive function and appeared as a Gaussian of the form [5] (we
omit the normalization of states and their Wigner functions
throughout the paper)

G(ζ; ±x0,±p0) = e−(x∓x0 )2−(p∓p0 )2
, (7)
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FIG. 1. Wigner distribution of the compass state with (a) x0 = 4, (b) x0 = 8, and (c) x0 = 12. Insets represent the central interference
pattern of each case.

where (x0, p0) is the location of the coherent state in phase
space. The product of uncertainties of position and mo-
mentum for a coherent state has a lower limit �x�p = 1/2

[5,9,10,111], which is also known as the Planck action in the
phase space.

It is a common belief that phase-space structures with areas
smaller than the Planck scale either do not exist or have no
observational consequences for physical quantum states. In
fact, this is true for all Gaussian states (coherent, squeezed,
thermal, etc.) [6,7] and even for other non-Gaussian states
like cat states [32,33] that exhibit rapid oscillations in one
direction of phase space but an infinite Gaussian profile in the
orthogonal direction [57]. However, this notion was refuted
by Zurek [36], who demonstrated that the Wigner function
of compass states develops phase-space structures with di-
mensions far smaller than the Planck scale, arguing that these
structures play a vital role in determining the sensitivity of
these states against perturbations.

B. Zurek compass state

The Zurek compass state [36] is obtained from the super-
position of the following four coherent states:

|ψ〉 := |x0/
√

2〉 + |−x0/
√

2〉 + |ix0/
√

2〉 + |−ix0/
√

2〉 , (8)

with x0 ∈ R. Figure 1 depicts the Wigner function for this
compass state for the cases of x0 = 4, 8, and 12. Note that
we normalize the Wigner functions throughout by using their
maximum amplitudes, |Wρ̂ (0)|. The Wigner function of the
compass state (8) can be represented as follows:

W|ψ〉(ζ) = W◦(ζ) + W�(ζ) + W�(ζ), (9)

where the first term,

W◦(ζ) := G(ζ; x0, 0) + G(ζ; −x0, 0) + G(ζ; 0, x0)

+ G(ζ; 0,−x0), (10)

represents the Wigner function of four coherent states that
appear in the phase space as Gaussian lobes. The second term
in Eq. (9) is

W�(ζ) := 1

2

∑
i1,i2=±1

I (i1x, i2 p) (11)

with

I (ζ) := G(ζ; x0/2, x0/2) cos

[
x0

(
x + p − x0

2

)]
, (12)

reflecting the Gaussian-modulated oscillations that appear far
away from the phase-space origin.

The central pattern resembles a chessboard as shown in the
insets of Fig. 1 and is generated by

W�(ζ) := 1
2 G(ζ; 0, 0)[cos(2x0x) + cos(2x0 p)]. (13)

This pattern consists of tiles with alternate signs (a central
chessboardlike pattern). The extension of each tile can be
roughly estimated by calculating zeros of Eq. (13), and it is
found that it is proportional to x−1

0 in all directions of phase
space. Numerically, we use the half width at half maximum
(HWHM) of the central phase-space tile to represent the ex-
tension. In Fig. 2 we show the log-log plot of the extension of
the central tile along the x and p directions. It is demonstrated
that for x0 
 1, the extension of the central tile is constrained
in all phase-space directions and can be simultaneously much
smaller than the corresponding extensions of a coherent state.
Note that the mixture of two cat states also contains the same
sub-Planck structures that are found in the compass state [57].

The sub-Planck structures also emerge in the Wigner func-
tions of non-Gaussian states with the SU(1,1) [56] and SU(2)
symmetries [57]. In particular, it has been found that the
Wigner function of the superposition of four SU(1,1) (or
SU(2)) coherent states also have sub-Planck structures similar
to the compass state when represented on the Poincaré disk
[56] (or the sphere [57]). The two-mode bosonic realization of
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FIG. 2. Extension of the central phase-space structure vs x0 of
the compass state along the x and p directions.

the SU(1,1) implies that the sub-Planck structures in the phase
space of the SU(1,1) compass state can be associated to the
number of photons added to one of the modes of the two-mode
squeezed number states [56], and they arise at greater num-
bers of these added photons. The existence of the sub-Planck
structures in the Wigner function of the SU(2) compass state
can similarly be linked to the angular momentum; the higher
value of the angular momentum causes sub-Planck structures
in the phase space [57]. In the subsequent sections, we will
demonstrate how adding or subtracting photons from superpo-
sitions related to the one-mode Gaussian SVS can also cause
the emergence of sub-Planck structures in the phase space of
those states.

C. Sensitivity of compass state

The sensitivity of the compass state to displacements is de-
termined by calculating the overlap between it and its slightly
displaced version [104]. The overlap between a state ρ̂ and its
displaced version D̂(δα)ρ̂D̂†(δα) is

Oρ̂ (δα) := tr{ρ̂D̂(δα)ρ̂D̂†(δα)} = ∣∣〈ψ |D̂(δα)|ψ〉∣∣2
, (14)

where δα ∈ C is an arbitrary displacement. Note that the last
equality of above expression holds when the state is pure, ρ̂ =
|ψ〉〈ψ |. The smaller the displacement δα needs to be in order
to bring the overlap to zero, the more sensitive the state is
claimed to be against displacements [40]. This overlap results
in

O|α〉(δα) = e−|δα|2 , (15)

for a coherent state |α〉, indicating that the smallest noticeable
displacement that vanishes this overlap is above the Planck
scale, |δα| > 1. It is interesting to note that the sensitivity to
displacements in coherent states is independent of the quantity
of quanta contained in the state, n̄ = 〈â†â〉 = |α|2. Therefore
increasing n̄ will not improve the sensitivity and is solely
limited by the shot noise introduced by vacuum fluctuations
[105,106].

We now discuss the sensitivity of the compass state (8) to
phase-space displacements. Assuming x0 
 1 and |δα| � 1,
the overlap (14) for this compass state results in

O|ψ〉(δα) = 1
4 e− 1

2 |δα|2 [cos (x0δx) + cos (x0δp)]2, (16)

with

δα = δx + iδp, δx, δp ∈ R. (17)

It can be concluded that O|ψ〉(δα) becomes zero when either
of the conditions is satisfied:

δx ± δp = 2m + 1

x0
π, m ∈ Z. (18)

As illustrated in Fig. 3 for O|ψ〉(δα) of cases when x0 is
increased from 4 to 12, the overlap vanishes for the displace-
ments |δα| ∼ x−1

0 and the arbitrary directions in the phase
space. As a result, it can be inferred that this sensitivity is
proportional to x−1

0 and that n̄ = x2
0/2 ties it to the number

of excitations n̄. Therefore, in comparison to coherent states,
a compass state with n̄ excitations has shown

√
n̄-enhanced

sensitivity to displacements of any arbitrary directions in
the phase space. Weak force measurements have been per-
formed with Heisenberg-limited sensitivity using compass
states [39,40]. In contrast, cat states have shown the sen-
sitivity to displacements along the specific direction in the
phase space [57]. It has been found that cat-state mixtures
only exhibit this enhanced sensitivity for displacements along
particular phase-space directions [56,57]. Hence, cat-state
mixtures with sub-Planck structures in the Wigner function
do not have the potential for metrology of compass states,
for which the additional quantum coherence of the cat-state
superposition provided by the second term in Eq. (9) plays a
crucial role.

The SU(1,1) and SU(2) compass states have shown the
same sensitivity to displacements as their HW counterparts
[56,57]. The sensitivity of the SU(1,1) compass state can be
connected with the amount of the number of photons added
to one of the modes of the two-mode squeezed number state,
and this sensitivity improves as the quantity of added photons
increases [56]. Similarly, the sensitivity of the SU(2) com-
pass state improves as the angular momentum goes higher
[57]. This addition of the photons increases the average pho-
ton number in the states, and it can be understood in a way
similar to that for compass states of the harmonic oscilla-
tor, i.e., injecting more photons in the states improves its
sensitivity.

III. NON-GAUSSIAN SVS

The non-Gaussian Wigner functions of the PASVS and
PSSVS illustrate the non-Gaussian nature of these states
[75–78,80,82]. In this section we first provide a brief re-
view of two non-Gaussian SVS, the PASVS and the PSSVS,
in Secs. III A and III B, respectively. These two states are
heavily used in our construction of non-Gaussian states that
manifest the sub-Planck structures in Sec. IV. The Wigner
functions of both PASVS and PSSVS are discussed in relation
to the amount of photons added or subtracted in the following
sections.

A. PASVS

First, we review the Wigner function of the PASVS. The
creation operator â† is repeatedly applied to SVS Ŝ(±r) |0〉 to
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FIG. 3. Overlap of the compass state with its δα-displaced part with δα = (δx + iδp)/
√

2: (a) x0 = 4, (b) x0 = 8, and (c) x0 = 12.

obtain a single-mode PASVS [72]:

|ψ±
PA〉 := â†nŜ(±r) |0〉 with n ∈ N. (19)

The subscript “PA” is the shorthand for “PASVS,” and we
introduce “±” in the squeezing operator Ŝ(±r) with the defi-
nition [112]

Ŝ(±r) := exp

[
± r

2
(â†2 − â2)

]
, (20)

which allows us to preserve part of the expressions introduced
in this section for later uses in Sec. IV.

Using Eq. (5), the Wigner function of PASVS is easily
found to be [75,76,80,82]

W|ψ±
PA〉(ζ) = exp (χ±)[± sinh(2r)]n

π4n

n∑
l=0

(n!)2[∓2 coth(r)]l

l![(n − l )!]2

× |Hn−l [−i
√

±2 coth(r)ᾱ±]|2, (21)

where Hm represents the Hermite polynomial, and

χ± := ± sinh(2r)(α∗2 + α2) − 2|α|2 cosh(2r), (22)

with

ᾱ± := α cosh(r) ∓ α∗ sinh(r). (23)

The non-Gaussian shape of the Wigner function W|ψ+
PA〉(ζ),

which is shown in Fig. 4 for the cases when n is chosen as
10, 15, and 20, indicates that PASVS is a non-Gaussian state.
We can clearly see the interference pattern that emerges in the
form of an oscillating pattern in the p direction in the phase
space. As the number of photons n rises, this pattern gets more
pronounced (the frequency of the oscillations is increased).
Moreover, the existence of these negative peaks in the Wigner
function shows that the PASVS is a nonclassical state as well.
Another indication of the nonclassicality of this state is the
squeezing effect in one of the quadratures, which is visible
in the plots. Note that the PASVS is the Gaussian SVS when
n = 0.

B. PSSVS

We now review the Wigner function of the PSSVS. The
PSSVS [77,78] is obtained by repeatedly applying the annihi-
lation operator â to the SVS, as

|ψ±
PS〉 := ânŜ(±r) |0〉 , (24)

where the subscript “PS” is the shorthand for “PSSVS.” The
Wigner function of this state is also in a non-Gaussian form
and is written as

W|ψ±
PS〉(ζ) = exp (χ±)[± sinh(2r)]n

π4n

n∑
l=0

(n!)2[∓2 tanh(r)]l

l![(n − l )!]2

× |Hn−l [−i
√

±2 tanh(r)ᾱ±]|2. (25)

We plot the Wigner function W|ψ+
PS〉(ζ) in Fig. 5, with r being

0.5 and n being 10, 15, and 20. This Wigner function exhibits
the interference pattern around the origin of the phase space
and oscillates along the p direction in the phase space. As
n grows, the frequency of this oscillating pattern increases.
The simplest case n = 0 of the PSSVS corresponds to the
Gaussian SVS. Another indicator of the nonclassical nature
of this state is the squeezing effect in one of the quadratures,
which is indicative of the nonclassicality of state.

In summary, for nonzero values of n, the Wigner function
of PASVS and PSSVS maintains non-Gaussianity. It is inter-
esting to note that both PASVS and PSSVS exhibit similar
phase-space features as catlike states. The addition or subtrac-
tion of photons from the Gaussian SVS has been employed
both theoretically [96–99] and experimentally [100,101] to
produce catlike states. Both PASVS and PSSVS have been
found very useful for the quantum metrology [84–86]. When
photons are added to or subtracted from the Gaussian SVS, the
average photon number of the resulting state grows [85,86]. It
has been shown that for the same number of photons applied
on the Gaussian SVS, the subsequent PASVS has a higher
average photon number than the PSSVS [85,86]. This means
that the PASVS has a better potential for metrology than the
PSSVS [85].

IV. SUPERPOSITION OF NON-GAUSSIAN SVS

In this section we introduce the quantum states associated
to non-Gaussian SVSs and present their phase-space analysis
by using the Wigner function [1–5].

The superpositions involving the Gaussian SVSs have
been analyzed previously [27,28]. Theoretically, a nonlinear
harmonic oscillator can be used to create some specified su-
perpositions of two SVSs. The superposition of two Gaussian
SVSs with opposite phases is given by

|ψSSV〉 := c1Ŝ(r) |0〉 + c2Ŝ(−r) |0〉 , (26)
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FIG. 4. Wigner distribution of the PASVS with (a) n = 10, (b) n = 15, and (c) n = 20. In all cases r = 0.5. Insets represent the central
interference pattern of each case.

with “SSV” in the subscript for the “superposition of SVSs”
and the probability amplitudes c1 and c2 fulfilling |c1|2 +
|c2|2 = 1. The Wigner function corresponding to this state
exhibits non-Gaussian and nonclassical properties [27,28].

Now we introduce the superposition related to non-
Gaussian SVSs. The addition of n photons to the superposed
state (26) leads to the superposition of two photon-added
squeezed-vacuum states (SPASVS), that is,

|ψSPA〉 := â†n |ψSSV〉 = c1 |ψ+
PA〉 + c2 |ψ−

PA〉 , (27)

with the subscript “SPA” a shorthand for “SPASVS.” Sim-
ilarly, the subtraction of n photons from the superposition
(26) results in the superposition of two photon-subtracted

squeezed-vacuum states (SPSVS) of the following form:

|ψSPS〉 := ân |ψSSV〉 = c1 |ψ+
PS〉 + c2 |ψ−

PS〉 , (28)

where the subscript “SPS” is the short form of “SPSSVS.”
Here, we concentrate on the sub-Planck structures in the
Wigner function of these states and their sensitivity to dis-
placements.

This section is structured as follows. In Sec. IV A we
discuss Wigner functions corresponding to |ψSPA〉 and |ψSPS〉.
Here, we describe how the addition and subtraction of pho-
tons lead to the sub-Planck structures in the phase space. In
Sec. IV B we discuss the sensitivity to displacements associ-
ated with these two superpositions.
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FIG. 5. Wigner distribution of the PSSVS with (a) n = 10, (b) n = 15, and (c) n = 20. In all cases r = 0.5. Insets represent the central
interference pattern of each case.
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FIG. 6. Wigner distribution of the pure SPASVS with (a) n = 10, (b) n = 15, and (c) n = 20. In all cases r = 0.5 and c1 = 1/
√

2. Insets
represent the central interference pattern of each case.

A. Photon addition versus photon subtraction

The Wigner function of the SPASVS (27) can be obtained
by using Eq. (5) as (see Appendix A for detailed derivations)

W|SPA〉(ζ) = 2 Re [I�(ζ)] + W�(ζ), (29)

and is shown in Fig. 6 for the cases when n = 10, 15, and 20.
The first term in (29),

I�(ζ) := c∗
1c2 exp (ξ )[−i tanh(2r)]n

π4n cosh(r)
√

1 + tanh2(r)

n∑
l=0

(n!)2[−2i coth(r)]l

[(n − l )!]2

× Hn−l [iα−]Hn−l [−α∗
+], (30)

provides the interference pattern that appears far away from
the phase-space origin, where

 :=
√

tanh(2r)

sinh(r)
, (31)

and

ξ := − tanh(2r)(α2 − α2∗) − 2|α|2sech(2r), (32)

with

α± := α∗ sinh(r) ± α cosh(r) (33)

being the hyperbolic-rotated α.
For our purposes we concentrate on the second term in

Eq. (29), which contributes to the chessboardlike pattern that
is visible at the phase-space origin for n 
 1. This central in-
terference pattern is equal to the sum of the individual Wigner
functions of PASVSs as

W�(ζ) := |c1|2W|ψ+
PA〉(ζ) + |c2|2W|ψ−

PA〉(ζ). (34)

The extension of an individual tile in the chessboardlike pat-
tern is constrained concurrently along the x and p direction
by the proper choice of weights in Eq. (34). This is illustrated
in Fig. 7, where we show log-log plot of the extension of the
central phase-space tile along the x and p directions versus

n for few c1 and c2 selections. The interference pattern (34)
is much similar to the interference (21) of PASVS and its π/2

rotated form in the cases depicted in Figs. 10(a) and 10(c), re-
spectively. It is abundantly obvious from these two examples
that changing n results in a decrease in the extension of the
central phase-space structure along the one-specific direction.
On the other hand, the scenario shown in Fig. 10(b) represents
the case where increasing n causes the central phase-space
tile to be constrained in all phase-space dimensions, which
indicates that the sub-Planck structures discovered for the
compass state [36] are also present in SPASVS.

The same sub-Planck structures are also contained by the
following incoherent mixture of two PASVSs:

ρ̂PA := |c1|2 |ψ+
PA〉〈ψ+

PA| + |c2|2 |ψ−
PA〉〈ψ−

PA| , (35)

and its Wigner function, which is the same as the one given in
Eq. (34), is shown in Fig. 8.

Similarly, for the SPSSVS (28), the Wigner function is
also written into two terms (see Appendix A for detailed
derivations):

W|SPS〉(ζ) = 2 Re [I�(ζ)] + W�(ζ), (36)

which is plotted in Fig. 9. With

ω :=
√

tanh(2r)

cosh(r)
, (37)

the term that contains

I�(ζ) := c∗
1c2 exp (ξ )[i tanh(2r)]n

π4n cosh(r)
√

1 + tanh2(r)

n∑
l=0

(n!)2[2i tanh(r)]l

[(n − l )!]2

× Hn−l [−ωα−]Hn−l [−iωα∗
+], (38)

causing the interference pattern that manifests as oscillating
peaks far from the phase-space origin. Again, we concentrate
on the second term of Eq. (36), which results in the chess-
boardlike pattern at the phase-space origin. This term is the
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FIG. 7. Extension of the central phase-space structure vs the photon number n of the SPASVS state with n chosen from 5 to 50 for (a)
c1 = 1/10, (b) c1 = 1/
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√
11/10.
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FIG. 8. Wigner distribution of the mixed-state SPASVS with (a) n = 10, (b) n = 15, and (c) n = 20. In all cases r = 0.5 and c1 = 1/
√

2.
Insets represent the central interference pattern of each case.

(a)

-12 -8 -4 0 4 8 12
x

-12
-8
-4
0
4
8

12

p

-1.6 -0.8 0 0.8 1.6

-1.6

-0.8

0

0.8

1.6

-1

-0.5

0

0.5

1
W

(b)

-12 -8 -4 0 4 8 12
x

-12
-8
-4
0
4
8

12

p

-1.6 -0.8 0 0.8 1.6

-1.6

-0.8

0

0.8

1.6

-1

-0.5

0

0.5

1
W

(c)

-12 -8 -4 0 4 8 12
x

-12
-8
-4
0
4
8

12

p

-1.6 -0.8 0 0.8 1.6

-1.6

-0.8

0

0.8

1.6

-1

-0.5

0

0.5

1
W

FIG. 9. Wigner distribution of the pure SPSSVS with (a) n = 10, (b) n = 15, and (c) n = 20. In all cases r = 0.5 and c1 = 1/
√

2. Insets
represent the central interference pattern of each case.
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FIG. 10. Extension of the central phase-space structure vs the photon number n of the SPSSVS state with n chosen from 5 to 50 for (a)
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sum of the Wigner functions (25) of PSSVSs, that is,

W�(ζ) := |c1|2W|ψ+
PS〉(ζ) + |c2|2W|ψ−

PS〉(ζ). (39)

This pattern manifests sub-Planck oscillations around the ori-
gin of the phase space by the proper choices of c1 and c2.
This is illustrated in Fig. 10, where we show log-log plot
of the extension of the central phase-space tile. The case
depicted in Fig. 10(b) is the situation in which the SPSSVS
have sub-Planck structures in phase space, whereas the cases
shown in Figs. 10(a) and 10(c) represent the central phase-
space pattern (39) resembling that of the sole PSSVSs. It is
interesting to note that for a given r and n, the central tile in
the chessboardlike pattern is larger than that of the SPASVS.

Additionally, we demonstrate that the following incoherent
mixture of two PSSVSs likewise has the same sub-Planck
structures:

ρ̂PS := |c1|2 |ψ+
PS〉〈ψ+

PS| + |c2|2 |ψ−
PS〉〈ψ−

PS| . (40)

Similar to the case of the mixture of PASVSs (35), the Wigner
function of ρ̂PS shown in Fig. 11 is identical to Eq. (39).

In summary, the photon-addition or photon-subtraction
operations on the superpositions of the Gaussian SVS pro-
duce the sub-Planck structures in the phase space. The same
sub-Planck structures are also present in mixtures related to
PASVSs or PSSVSs. The main difference between our states
and the compass states [36] is that our states are built by
superposition of only two non-Gaussian SVSs rather than four
coherent-state superpositions. Interestingly, adding or even
subtracting photons from the superposition of the Gaussian
SVS actually increases the average photon number of the re-
sultant states, with the addition case having a greater average
photon number than the subtraction case [85]. The size of their
sub-Planck structures is likewise impacted by this variation
in the average photon quantity in the states. For instance,
given the same number of photons used, the SPASVS and its
related mixture have smaller sub-Planck structures than their
equivalents in the photon-subtracted case.

B. Sub-shot-noise sensitivity of our states

In this section we discuss the susceptibility of our pro-
posed states to phase-space displacement. Let us first consider
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FIG. 11. Wigner distribution of the mixed-state SPSSVS with (a) n = 10, (b) n = 15, and (c) n = 20. In all cases r = 0.5 and c1 = 1/
√

2.
Insets represent the central interference pattern of each case.

052614-9



AKHTAR, WU, PENG, LIU, AND XIANLONG PHYSICAL REVIEW A 107, 052614 (2023)

(a)

-1.6 -0.8 0 0.8 1.6
δx

-1.6

-0.8

0

0.8

1.6
δp

(b)

-1.6 -0.8 0 0.8 1.6
δx

-1.6

-0.8

0

0.8

1.6

δp

(c)

-1.6 -0.8 0 0.8 1.6
δx

-1.6

-0.8

0

0.8

1.6

δp

0

0.5

1
O

FIG. 12. Overlap of the pure SPASVS state with its δα-displaced part with δα = (δx + iδp)/
√

2: (a) n = 10, (b) n = 15, and (c) n = 20.
In all cases r = 0.5 and c1 = 1/

√
2.

SPASVS (27). The overlap (14) for this state under the ap-
proximation |δα| � 1 and n 
 1 leads to (see Appendix B
for the detailed derivations)

OSPA(δα)

= [|c1|2 〈ψ+
PA| D̂(δα) |ψ+

PA〉 + |c2|2 〈ψ−
PA| D̂(δα) |ψ−

PA〉]2.

(41)

Each term of this overlap is calculated as

〈ψ±
PA| D̂(δα) |ψ±

PA〉 = [∓ sinh(2r)]ne−|η±|2/2

4n

n∑
l=0

(n!)2

l![(n − l )!]2

× [∓2coth(r)]lHn−l [�±]Hn−l [�
∗
±],

(42)

where

�± = i

√
±coth(r)

2
η±, (43)

and

η± = δαcosh(r) ∓ δα∗sinh(r), (44)

with

δα := δx + iδp√
2

. (45)

In Fig. 12 we plot this overlap for n = 10, 15, and 20. For the
large n, a small displacement |δα| � 1 can turn the SPASVS
into a state orthogonal to its original state, and this orthogonal-
ity occurs in all phase-space directions. We have normalized
overlaps to their maximum amplitudes, Oρ̂ (0).

Let us now consider the mixture of PASVSs (19), for which
the overlap (14) is calculated as

Oρ̂PA (δα)

= ∣∣c2
1〈ψ+

PA

∣∣D̂(δα)
∣∣ψ+

PA〉∣∣2 + ∣∣c2
2〈ψ−

PA|D̂(δα)|ψ−
PA〉∣∣2

.

(46)

We plot this overlap with n = 10, 15, and 20 in Fig. 13. Again,
we see that the overlap Oρ̂PA (δα) disappears for the displace-
ment |δα| � 1, but unlike the SPASVS, this orthogonality
now takes place when δx = ±δp in the phase space.

Similarly, overlap (14) for SPSSVS is obtained as

OSPS(δα)

= [|c1|2 〈ψ+
PS| D̂(δα) |ψ+

PS〉 + |c2|2 〈ψ−
PS| D̂(δα) |ψ−

PS〉]2,

(47)

where

〈ψ±
PS| D̂(δα) |ψ±

PS〉 = [∓ sinh(2r)]ne−|η±|2/2

4n

n∑
l=0

(n!)2

l![(n − l )!]2

× [∓2tanh(r)]lHn−l [θ±]Hn−l [θ
∗
±],

(48)

with

θ± = i

√
± tanh(r)

2
η±. (49)

In Fig. 14 we plot this overlap with n equal to 10, 15, and
20. The SPSSVS overlap plot exhibits the same behavior as
the SPASVS: the overlap disappears in any direction in phase
space when |δα| � 1. The only distinction is that, for the
same n and r, the central pattern of the overlap of the SPSSVS
is larger than that of the SPASVS, showing that the SPSSVS
is less sensitive than the SPASVS.

Finally, we consider mixtures of PSSVSs (24). The overlap
(14) for this state leads to

Oρ̂PS (δα)

= ∣∣c2
1 〈ψ+

PS| D̂(δα) |ψ+
PS〉

∣∣2 + ∣∣c2
2 〈ψ−

PS| D̂(δα) |ψ−
PS〉

∣∣2
.

(50)

In Fig. 15, we plot the overlap Oρ̂PS (δα) using the same param-
eter values as that of the SPSSVS. We observe that the overlap
of the mixture of the PSSVSs looks similar to the mixture
of the PASVSs, with the distinction being that the mixture of
PSSVSs appears to be less sensitive for a given number of n
and r, which is manifested as the larger chessboardlike pattern
in the center of the phase space than that of the mixture of
PASVSs.

In summary, we have demonstrated that the sensitivity
associated to our proposed states depends on the quantity of
photons added (or subtracted), and it is considerably lower
than the sensitivity of the coherent state when there are ex-
cessive amounts of photons added (or subtracted). For both
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FIG. 13. Overlap of the mixed-state SPASVS with its δα-displaced part with δα = (δx + iδp)/
√

2: (a) n = 10, (b) n = 15, and (c) n = 20.
In all cases r = 0.5 and c1 = 1/

√
2.

SPASVS and SPSSVS, the enhanced sensitivity is unaffected
by the directions of phase-space displacements. However, for
the mixtures related to PASVSs or PSSVSs, this enhance-
ment only takes place in particular phase-space directions.
This implies that compared to mixed states, our superposition
states have more potential for quantum sensing applications.
Moreover, it has been found that the quantum states associ-
ated with photon-addition cases are more sensitive than their
counterparts of the photon-subtraction cases.

In comparison to the original compass state [36], our pro-
posed states perform similarly in terms of sensitivity to phase-
space displacements, but the sensitivities of our states are
impacted either by adding or subtracting photons from these
states. For example, in the compass state, the sensitivity to
displacements is proportional to the parameter x0 (separation
between coherent states), which is in fact connected to the
average photon number in the states; that is, increasing x0

leads to a higher average photon number in the states. In our
case, enhanced sensitivity is now connected with the number
of added or subtracted photons n in the states, as adding or
removing photons leads in a larger average photon number in
the resultant states.

Our states present an alternative to compass states that
have the same properties but may be prepared more feasibly.
It was demonstrated that the coherent-state superpositions
could be constructed deterministically using third-order Kerr
nonlinearity [33]. However, this technique necessitates Kerr
nonlinearities of such magnitude that it is not practicable

with currently available Kerr media. Furthermore, states of
this type are particularly susceptible to loss, and because ab-
sorption cannot be ignored in currently available Kerr media,
the capacity to extract coherent-state superpositions before
they decohere is severely constrained [113]. By adding or
subtracting photons from Gaussian SVSs, a comparably prac-
tical strategy for constructing coherent-state superpositions is
adopted [97–103].

V. SUMMARY AND OUTLOOK

We have shown that the Wigner function of the SPASVS
(or SPSSVS) contains the chessboardlike pattern around the
origin of the phase space. A similar chessboardlike pattern
also emerges by the mixtures related to PASVSs and PSSVSs.
The support area of the phase-space structures contained by
this chessboardlike pattern varies inversely with the photon
number added (or subtracted). When a sizable number of
photons are added (or subtracted), the support area of these
structures is noticeably smaller than that of the coherent
state.

The average photon numbers of our states, which are
increased either by photon-addition or photon-subtraction ac-
tions on the Gaussian SVS, have an impact on the size of
the sub-Planck structures in the phase space. The sub-Planck
structures associated with the SPASVS are smaller than those
of the SPSSVS for the same number of photons added or sub-
tracted. This is because the photon-addition operation always

(a)

-1.6 -0.8 0 0.8 1.6
δx

-1.6

-0.8

0

0.8

1.6

δ
p

(b)

-1.6 -0.8 0 0.8 1.6
δx

-1.6

-0.8

0

0.8

1.6

δ
p

(c)

-1.6 -0.8 0 0.8 1.6
δx

-1.6

-0.8

0

0.8

1.6

δp

0

0.5

1
O

FIG. 14. Overlap of the pure SPSSVS state with its δα-displaced part with δα = (δx + iδp)/
√

2: (a) n = 10, (b) n = 15, and (c) n = 20.
In all cases r = 0.5 and c1 = 1/

√
2.
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FIG. 15. Overlap of the mixed-state SPSSVS with its δα-displaced part with δα = (δx + iδp)/
√

2: (a) n = 10, (b) n = 15, and (c) n = 20.
In all cases r = 0.5 and c1 = 1/

√
2.

leads to the higher average photon number in the resultant
states. The association of the average photon number with
the sub-Planck structures in our states is much similar to that
of the compass states, i.e., a higher average photon number
in the compass state corresponds to the smaller sub-Planck
structures in the phase space.

We have demonstrated that the sensitivity of our proposed
states is noticeably higher than that of the coherent state when
a significant number of photons are added (or subtracted).
Both the SPASVS and SPSSVS exhibit the enhanced sen-
sitivity, which is independent of the phase-space directions,
indicating that they hold more promise for quantum metrol-
ogy. In addition, the difference in the sensitivities between
the photon-addition and -subtraction cases arose from the dif-
ferent average photon numbers in the states; photon-addition
cases are demonstrated to have greater sensitivity than the
subtracted cases.

It is incredibly exciting that sub-Planck structures can pos-
sibly build from photons being added to or subtracted from
states. As a result, it will be able to apply a variety of ways
to engineer compasslike states in association with contem-
porary experiments. Numerous theoretical and experimental
research utilizing photon-addition or -subtraction operations

from states have been developed to produce catlike states
[97–103]. Theoretical research to construct the catlike states
advocated in [97] is subsequently applied in actual exper-
iments [100,101]. Another subsequent theoretical approach
introduces the idea of photon subtraction from the Gaussian
SVS to produce the compasslike states [64]. These illustra-
tions unequivocally demonstrate that some of these techniques
can be modified to generate SPASVS and SPSSVS, which
are entirely new research avenues that can be adapted in the
future.
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APPENDIX A: WIGNER FUNCTIONS OF SPASVS AND SPSSVS

This section provides the main steps to drive the Wigner functions of SPASVS and SPSSVS.

1. Derivations of the Wigner function of SPASVS

Let us first consider the Wigner function of SPASVS given by Eq. (29). The first term of this Wigner function is given by

I�(ζ) = 〈ψ+
PA | �̂(α) | ψ−

PA〉, (A1)

where the alternative form of the displaced parity operator �̂(α) is [80]

�̂(α) := 1

π2
e2|α|2

∫ ∞

−∞
d2βe−2α∗β+2αβ∗ |β〉〈−β|. (A2)

Equation (A1) can be rewritten as

I�(ζ) = (−1)ne2|α|2

π2 cosh(r)

∫ ∞

−∞
d2β|β|2n exp

[
− |β|2 − tanh(r)

2
(β2 + β∗2) − 2βα∗ + 2β∗α

]
. (A3)

We incorporate the factor |β|2n into a differential equation as

I�(ζ) = (−1)ne2|α|2

π2 cosh(r)

∂2n

∂sn∂t n

∫ ∞

−∞
d2β exp

[
− |β|2 − tanh(r)

2
(β2 − β∗2) − 2βα∗ + 2β∗α + sβ + tβ∗

]∣∣∣∣
s=t=0

. (A4)
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Consider the integral formula [114]∫ ∞

−∞
d2β exp [a|β|2 + bβ + cβ∗ + dβ2 + kβ∗2] = π√

a2 − 4dk
exp

[−abc + b2k + c2d

a2 − 4dk

]
, (A5)

whose convergent conditions are Re[a ± d ± k] < 0 and Re[(a2−4dk)/a±d±k] < 0. By using this integral Eq. (A4) leads to

I�(ζ) = (−1)neξ

π cosh(r)
√

1 + tanh2(r)

∂2n

∂sn∂t n
exp

[
tanh(2r)

4
s2 − tanh(2r)

4
t2 + (1 + tanh2(r))−1st − 2 cosh(r)sech(2r)α−s

− 2 cosh(r)sech(2r)α∗
+t

]∣∣∣∣
s=t=0

, (A6)

with

ξ := −(α2 − α∗2) tanh(2r) − 2|α|2sech(2r). (A7)

It is challenging to solve Eq. (A6) because it has eγ st terms. We employ the following sum series [76] to get rid of it:

exp(Cs + Dt + Est ) =
∞∑

l=0

El

l!

∂2l

∂Cl∂Dl
[exp (Cs + Dt )]. (A8)

Using this formula, Eq. (A6) modifies as

I�(ζ) = (−1)neξ

π cosh(r)
√

1 + tanh2(r)

∞∑
l=0

1

l! 22l

[1 + tanh2(r)]−l

cosh2l (r)sech2l (2r)

∂2l

∂α∗l+ αl−

∂2n

∂sn∂t n
exp

[
tanh(2r)

4
s2 − tanh(2r)

4
t2

− 2 cosh(r)sech(2r)(α−s + α∗
+t )

]∣∣∣∣
s=t=0

. (A9)

Notice the generating function of the Hermite polynomial

Hn(x) = ∂n

∂sn
exp(2xs − s2)|s=0 (A10)

and its recursive relation

dl

dxl
Hn(x) = 2l n!

(n − l )!
Hn−l (x). (A11)

The preceding equation can then be simplified in the form of Eq. (30) by applying the relationships (A10) and (A11).
Let us now calculate second term of the Wigner function (29). This term can be written as

W�(ζ) = 〈ψ+
PA | �̂(α) | ψ+

PA〉 + 〈ψ−
PA | �̂(α) | ψ−

PA〉, (A12)

where

〈ψ±
PA | �̂(α) | ψ±

PA〉 = (−1)n

π2
e2|α|2

cosh(r)
∂2n

∂sn∂t n

∫ ∞
−∞ d2β exp

[ − |β|2 ± 1
2 tanh(r)(β2 + β∗2) − 2βα∗ + 2β∗α + sβ + tβ∗]∣∣

s=t=0.

Using the integral (A5), we get

〈ψ±
PA | �̂(α) | ψ±

PA〉 = (−1)n

π
exp[± sinh(2r)(α∗2 + α2) − 4 cosh2(r)|α|2]

∂2n

∂sn∂t n
exp

[
± 1

4
sinh(2r)(s2 + t2)

+ 2 cosh(r)(ᾱ±s − ᾱ∗
±t ) + cosh2(r)st

]∣∣∣∣
s=t=0

. (A13)

Again, use of the sum series (A8) eliminates the factors eγ st , that is,

〈ψ±
PA | �̂(α) | ψ±

PA〉 =
∞∑

l=0

(−1)l

22l l!

∂2l

∂ᾱl±∂ᾱ∗l±

∂2n

∂sn∂t n
exp

[
± sinh(2r)

4
(s2 + t2) + 2 cosh r(ᾱ±s − ᾱ∗

±t )

]∣∣∣∣
s=t=0

. (A14)

Then, by using the relations (A10) and (A11), the expression (39) is obtained.

2. Derivations of the Wigner function of SPSSVS

This section presents the detailed derivation of the Eq. (36), for which the first term has the following form:

I�(ζ) =〈ψ+
PS | �̂(α) | ψ−

PS〉. (A15)
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This term is calculated as

I�(ζ) = 1

π2

e2|α|2

cosh(r)

∂2n

∂sn∂t n
exp

[
− tanh(r)

2
(t2 − s2)

] ∫ ∞

−∞
d2β exp

[
− |β|2 − (tanh(r)t + 2α∗)β − (tanh(r)s

− 2α)β∗ − tanh(r)

2
(β2 − β∗2)

]∣∣∣∣
s=t=0

. (A16)

Using the integral (A5), we obtain

I�(ζ) = eξ

π cosh(r)
√

1 + tanh2(r)

∂2n

∂sn∂t n
exp

[
tanh(2r)

4
s2 − tanh(2r)

4
t2 + 2sech(2r) sinh(r)(α∗

+s − α−t )

+ sech(2r) sinh2(r)st

]∣∣∣∣
s=t=0

. (A17)

Now, we eliminate eγ st terms by using Eq. (A8):

I�(ζ) = eξ

π cosh(r)
√

1 + tanh2(r)

∞∑
l=0

1

l!22lsechl (2r)

∂2l

∂α∗l+ ∂αl−

∂2

∂sn∂t n
exp

[
tanh(2r)

4
s2 − tanh(2r)

4
t2

+ 2sech(2r) sinh(r)(α∗
+s + α−t )

]∣∣∣∣
s=t=0

. (A18)

Then, by using the relations (A10) and (A11) we obtain expression (38).
Finally, we derive the second term of the Eq. (36). This term can be written as

W�(ζ) = 〈ψ+
PS | �̂(α) | ψ+

PS〉 + 〈ψ−
PS | �̂(α) | ψ−

PS〉, (A19)

where

〈ψ±
PS | �̂(α) | ψ±

PS〉 = 1

π
exp[± sinh(2r)(α2 + α∗2) − 2 cosh(2r)|α|2]

∂2n

∂sntn
exp

[
± 1

4
sinh(2r)(s2 + t2)

± 2 sinh(r)(ᾱ±t + ᾱ∗
±s) − sinh2(r)st

]∣∣∣∣
s,t=0

. (A20)

Again, we use Eq. (A8) to get rid of all eγ st factors, obtaining

〈ψ±
PS | �̂(α) | ψ±

PS〉 = 1

π
exp[± sinh(2r)(α2 + α∗2) − 2 cosh(2r)|α|2]

∞∑
l=0

(−1)l

22l l!

∂2l

∂ᾱl±ᾱ∗l±

∂2n

∂sntn
exp

[
± sinh(2r)

4
(s2 + t2)

± 2 sinh(r)(ᾱ±t + ᾱ∗
±s)

]∣∣∣∣
s=t=0

. (A21)

Finally, this equation can be simplified to expression (39) by utilizing the relations (A10) and (A11).

APPENDIX B: OVERLAPS OF SPASV AND SPSSV

In this section we calculate the overlap (14) of SPASVS and SPSSVS. Note that for n 
 1 and |δα| � 1, the contribution of
the cross terms between the states to the overlap is negligible, that is,

〈ψ+
PA| D̂(δα) |ψ−

PA〉 = 0 and 〈ψ+
PS| D̂(δα) |ψ−

PS〉 = 0. (B1)

First, we drive each term of Eq. (41). PASV (19) can be rewritten as [76]

|ψ±
PA〉 = Ŝ(±r)[â† cosh(r) ± â sinh(r)]n |0〉 . (B2)

Then, considering the relation given by [76],

( f â + gâ†) :=
(

− i

√
f g

2

)n

Hn

(
i

√
f

2g
â + i

√
g

2 f
â†

)
, (B3)
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which leads to

[â† cosh(r) + â sinh(r)]n =
[

− i

√
sinh(2r)

4

]n

Hn

[
i

√
tanh(r)

2
â + i

√
coth(r)

2
â†

]
, (B4)

[â cosh(r) + â† sinh(r)]n =
[

− i

√
sinh(2r)

4

]n

Hn

[
i

√
tanh(r)

2
â† + i

√
coth(r)

2
â

]
. (B5)

By using these relations, we obtain

〈ψ±
PA|D̂(δα)|ψ±

PA〉 =
[

∓ sinh(2r)

4

]n
〈

0 | Hn

(
i

√
±coth(r)

2
â

)
D̂(η±)Hn

(
i

√
±coth(r)

2
â†

)
| 0

〉
,

=
[

∓ sinh(2r)

4

]n ∫ ∞

−∞

d2α

π
exp

(
− |α|2

2
− α

2
η∗

± + α∗

2
η± − |α − η±|2

2

)
Hn

(
i

√
±coth(r)

2
α

)

× Hn

(
i

√
±coth(r)

2
(α∗ − η∗

±)

)
, (B6)

where

D̂(η±) = Ŝ†(±r)D̂(δα)Ŝ(±r) with η± = δα cosh(r) ∓ δα∗ sinh(r). (B7)

By using (A10), we get

〈ψ±
PA|D̂(δα)|ψ±

PA〉 =
[

∓ sinh(2r)

4

]n
∂2n

∂τ n∂t n
exp(−i

√
±2 coth(r) η∗

±τ ) exp(−τ 2 − t2)

×
∫ ∞

−∞

d2α

π
exp

(
− |α|2

2
− α

2
η∗

± + α∗

2
η± − |α − η±|2

2
+ i

√
±2 coth(r) αt + i

√
±2 coth(r) α∗τ

)∣∣∣∣
τ=t=0

.

(B8)

Using the integral (A5), the previous equation yields

〈ψ±
PA|D̂(δα)|ψ±

PA〉 =
[

∓ sinh(2r)

4

]n

exp

(
− |η±|2

2

)
∂2n

∂τ n∂t n
exp(−t2 + i

√
±2 coth(r) η±t − τ 2 − i

√
±2 coth(r) η∗

±τ

∓ 2 coth(r) tτ )|t=τ=0. (B9)

First, we rid out the factors eγ τ t from above equation by using (A8). Then, by using (A10) and (A11), the preceding equation is
simplified to (42).

Similarly, PSSVS can be rewritten as [76]

|ψ±
PS〉 = Ŝ(±r)[â cosh(r) ± â† sinh(r)]n |0〉 . (B10)

The overlap,

〈ψ±
PS|D̂(δα)|ψ±

PS〉 =
[

∓ sinh(2r)

4

]n
〈

0 | Hn

(
i

√
± tanh(r)

2
â

)
D̂(η±)Hn

(
i

√
± tanh(r)

2
â†

)
| 0

〉
,

=
[

∓ sinh(2r)

4

]n ∫ ∞

−∞

d2α

π
exp

(
− |α|2

2
− α

2
η∗

± + α∗

2
η± − |α − η±|2

2

)
Hn

(
i

√
± tanh(r)

2
α

)

× Hn

(
i

√
± tanh(r)

2
(α∗ − η∗

±)

)
, (B11)

can be easily simplified to (48).
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