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Learning noise via dynamical decoupling of entangled qubits
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Understanding noise in entangled systems is a prerequisite for developing scalable quantum computers. Here,
we propose and apply multiqubit dynamical decoupling sequences that characterize noise during two-qubit gates.
This noise is qualitatively different from the well-studied noise that leads to single-qubit dephasing; it simultane-
ously affects the two qubits, inducing fluctuations in their entangling parameter. In our superconducting system,
the experimentally observed noise comes from coupler flux fluctuations and is observed to be non-Gaussian,
leading to the stepwise decay of signals.
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I. INTRODUCTION

Producing interesting, large-scale quantum dynamics in
engineered systems is being made increasingly possible by the
advancement of superconducting qubits. Transmon qubits that
use frequency tunable couplers to realize interqubit interac-
tions have been successful at this task in the areas of quantum
simulation [1–3], quantum chemistry [4], and theoretical com-
puter science [5–8]. Imperative to this is the ability to generate
entanglement using high-fidelity two-qubit gates [9,10]. As
control of these gates is improved, their performance will
start to become limited by a system-environment interaction.
The characterization and eventual mitigation of this noise
producing interaction is therefore critical to continual forward
progress.

Traditionally, the bulk of low-frequency noise characteriza-
tion in qubits has been dedicated to the study of single-qubit
dephasing noise. This is modeled as either a qubit coupling to
external quantum degrees of freedom or as classical stochastic
fluctuations in the qubit frequency [11]. Most often, the noise
is assumed to have Gaussian statistics. In this Gaussian sce-
nario, sophisticated tools have been developed to characterize
the power spectral density of the noise [12–15]. There have
also been efforts to characterize noise outside of this regime.
These have been focused on measuring the higher-order mo-
ments of single-qubit non-Gaussian dephasing [16,17] as
well as characterizing spatially correlated Gaussian dephasing
noise [18–20].

Studies of single-qubit dephasing may be sufficient to
understand the behavior of small systems involving only
one or a few qubits. However, large systems have many
degrees of freedom, and therefore many channels through
which noise can enter. For example, noise that occurs during

two-qubit gates may lead to noise that affects two qubits
simultaneously. Understanding these two-qubit noise mecha-
nisms in the context of quantum computing will be important
for implementing near term quantum algorithms and building
a fault-tolerant quantum computer in the long term. Indeed,
recent work has begun to develop methods for characteriz-
ing multiqubit noise [21,22]. Experimentally, the difficulty in
characterizing noise in larger systems stems from the fact that
measurement of a particular kind of noise may be confounded
by competing error mechanisms, as larger systems are gener-
ally more difficult to control precisely than the small ones.

In this paper, we characterize noise that occurs during
two-qubit gates. The gate we study is performed using a tun-
able coupler that modulates the qubit-qubit coupling. Our key
observation is that the primary source of noise is frequency
fluctuations of this coupler. These fluctuations lead to noise
in the entangling parameter g, the coupling strength between
the two qubits. The noise is therefore turned on during a gate
operation and affects two qubits simultaneously, in qualita-
tive distinction from single-qubit dephasing. We show that
this fundamentally two-qubit noise can be studied by driv-
ing pairs of qubits through two-qubit pulse sequences with
interleaved coupler and qubit frequency control. We find that
in many samples this noise is composed of Gaussian 1/ f
noise, similar to the noise dominating single-qubit dephas-
ing, and a signal from a few random telegraph fluctuators.
These findings are significant because both the two-qubit
and non-Gaussian nature of the observed noise may require
new error mitigation techniques [23]. Additionally, the clean
signatures of non-Gaussian noise that we see are a signifi-
cant departure from what is typically assumed and observed
in condensed matter systems, where Gaussian 1/ f noise is
ubiquitous [24–27].
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FIG. 1. Circuits for entangled noise metrology. (a) Simplified circuit diagram for two qubits and the tunable coupler. The qubit frequencies
ω j are modulated by changing �Q, j . The coupler frequency is changed significantly during two-qubit gates via �C . (b) Schematic of the
time-dependent coupling g(t ) enacted during two-qubit gates. The coupler flux noise δ�(t ) generates coupling fluctuations δg(t ) according to
Eq. (4). (c) Flux sensitivity χ [Eq. (5)] vs external flux. The qubits are generally operated at frequencies with much lower flux sensitivity than
the coupler. (d) Circuit diagram showing the coupler Carr-Purcell-Meiboom-Gill (CPMG) sequence. Shown here are n = 2 repetitions of a
pulse sequence involving 2m two-qubit gates that are separated by a qubit frequency π pulse. The two-qubit gates serve to expose the qubits to
g noise, which is refocused by the frequency pulse. The decay of the pseudoqubit 〈σz〉 observable is measured at the end of the circuit, which
can be used to characterize the noise. See Supplemental Material Sec. L [28] for further examples. (e) Circuit diagram showing the coupler
Ramsey sequence involving n two-qubit gates, which can be used to measure the response of the qubits to g noise in the absence of refocusing
pulses.

We begin by introducing the theory of flux noise entering
through the coupler and a technique for measuring it. We
then present the measurement results and show that while
they match well what would be expected for coupler flux
noise, they do not agree well with Gaussian theory. Finally, we
generalize to a non-Gaussian model of the noise and validate
it with further experiments.

II. FLUX NOISE IN THE COUPLER

The single excitation subspace of two qubits is spanned
by the states |01〉 and |10〉 and forms a pseudoqubit with the
Hamiltonian

H = 1
2 [ω(t ) + δω(t )]σz + [g(t ) + δg(t )]σx, (1)

where σz = |01〉 〈01| − |10〉 〈10| and σx = |01〉 〈10| + |10〉
〈01|. Here, ω(t ) and δω(t ) are the control and noise contribu-
tions to the difference of the qubit frequencies, respectively,
while g(t ) and δg(t ) are the control and noise contributions to
the interqubit coupling.

During many types of two-qubit gates, the two qubits are
on resonance, ω(t ) = 0. In this case, δω(t ) and g(t ) + δg(t )
can be considered respectively as z and x components of an
effective magnetic field. The Bloch vector of our effective
two-level system undergoes Larmor precession around the
instantaneous axis, which is almost parallel to the x field, with
the instantaneous Larmor frequency given by

ωL(t ) � 2g(t ) + 2δg(t ) + δω2(t )

4g(t )
. (2)

From this, we can see that coupler noise will dominate
during these resonant two-qubit gates: δg(t ) shows up to first

order in the dynamics while δω(t ) only shows up to second
order and is suppressed by a factor of g(t ).

Coupler noise physically results from coupler frequency
fluctuations. In our tunable coupler system depicted in Fig. 1,
the qubit frequencies ωq and the coupler frequencies ωc are
controllable via the external fluxes, �q and �c, respectively

and the relation between ω and � is ω � ωmax

√
| cos ( π�

�0
)|,

where �0 is the flux quantum. The coupling g developed
between two qubits that are on resonance at ωq is given
by [29]

g �

(
kd − k2

ω2
q

ω2
c − ω2

q

)
ωq

2
, (3)

where k and kd are the indirect and direct coupling efficiencies
that are functions of circuit parameters (see Supplemental
Material Sec. C [28]). The pseudoqubit defined in Eq. (1) is
therefore completely controllable via low-frequency manipu-
lation of the qubit and coupler flux biases and no microwave
control is necessary to implement dynamical decoupling of
the entangled qubits. Another characteristic feature of our
method is its use of excitation preserving dynamics, which
allow us to separate the effects of qubit decay from the desired
signal.

Fluctuations in � lead to fluctuations in frequency, i.e., to
flux noise, which is ubiquitous in superconducting quantum
interference devices (SQUIDs) [30]. During gates, the sensi-
tivity of the coupler frequency to flux noise is substantially
larger than that of the qubit [see Fig. 1(b)]. Noise in the
coupler frequency leads to fluctuations in g. The fluctuation
δg(t ) in the Hamiltonian (1) can be expressed through coupler
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FIG. 2. Experimentally observed Ramsey and CPMG dynamics. (a) Comparing coupler Ramsey decay of normlalized population differ-
ence [Eq. (8)] with gmax = 30 MHz to decay under n = 2 and n = 4 coupler CPMG sequences. The x axis is total evolution time, t = ntg for
Ramsey and t = 2mntg for CPMG. The duration of a fixed n CPMG sequence is modified by changing m. We see that the CMPG sequences
effectively mitigate most of the decoherence, suggesting that most of the noise power is at low frequencies. The Gaussian shape of the Ramsey
decay envelope is typical of 1/ f -type noise [see Eq. (6)]. When observed in detail, the CPMG decay envelopes display behavior not predicted
by Gaussian theory. Increasing the number of CPMG pulses does not increase noise protection as predicted by Eq. (7); the curves braid and
have steps. All data points are the average of 10 000 samples. (b) Ramsey decay rate �R vs gmax. We see that the decay rate is strongly dependent
on gmax, crossing an order of magnitude in 30 MHz. The gmax dependence is well predicted by Eq. (4) given typical circuit parameters.

flux fluctuations δ�c(t ) as follows,

δg(t ) = 2πχ̃�(g)δ�c(t ) = λ(g)ξ (t ), (4)

where the flux sensitivity of g is defined as

χ̃� = 1

2π

∣∣∣∣ dg

d�c

∣∣∣∣ � χ
(0)
� + χ

(1)
� g + χ

(2)
� g2. (5)

Here, ξ (t ) is a dimensionless classical random variable mod-
eling flux fluctuations with characteristic amplitude δ�m, and
λ(g) = 2πχ̃�(g)δ�m is the amplitude of g noise. It can be
shown (see Supplemental Material Sec. C [28]) that in the
studied parameter range the quadratic dependence of χ̃�(g),
displayed in Eq. (5), follows directly from Eq. (3).

III. NOISE METROLOGY TECHNIQUE

The effect of g noise on the pseudoqubit defined in
Eq. (1) may be characterized using what we call the coupler
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. In this
sequence, the pseudoqubit is initialized in the state |01〉 via
a microwave pulse. It is then exposed to n repetitions of a
spin-echo-like pulse sequence [31], each of which consists
of a fast π rotation around the z axis (σz π pulse) buffered
before and after by exposure to g noise for time TG. The σz

pulse has the effect of refocusing the σx g noise. This exposure
to g noise is accomplished by m repetitions of a Floquet-
calibrated [1] two-qubit gate with duration tg for which ω = 0
and |g| > 0 [see Fig. 1(b)]. There are a total of 2m two-qubit
gates between refocusing pulses; the total time between refo-
cusing pulses is therefore 2mtg. After the n echo sequences
are completed, we can measure the pseudoqubit observable
〈σz〉, which will decay due to g noise. Studying the decay
of this observable will reveal the character of the noise. The
coupler CPMG pulse sequence is shown in Fig. 1(d). This
pulse sequence is analogous to standard, single-qubit CPMG
[32,33], with the main difference being that it takes place in
the z-y plane of the Bloch sphere instead of the x-y plane,
so the direction of refocusing pulses and measurements must

be adjusted accordingly. It is also desirable to observe the σz

decay due to g noise in the absence of the refocusing pulses.
This may be done using the coupler Ramsey pulse sequence
see [Fig. 1(e)].

The statistics of ξ (t ) dictate what type of decay we expect
to see during these sequences. A common assumption is ξ (t )
is a Gaussian random process with a 1/ f power spectrum. In
this case, for decay under the coupler Ramsey sequence we
would expect (up to logarithmic corrections, see Supplemen-
tal Material Sec. G [28])

〈σz(t )〉 � e−(�Rt )2
cos (Gt ), �R ∝ λ, (6)

where G is the coherent swap frequency. In the case of decay
under an n-pulse CPMG sequence,

〈σz(t )〉 � e−(�Ct )2
, �C ∝ λ√

n
. (7)

We experimentally characterize g-noise on our supercon-
ducing qubit device [7] by executing these sequences. We
measure the observable

〈σz〉
〈I〉 = 〈01| ρ(t ) |01〉 − 〈10| ρ(t ) |10〉

〈01| ρ(t ) |01〉 + 〈10| ρ(t ) |10〉 , (8)

as a function of time, number of CPMG cycles, and maximum
coupling gmax. This normalization of 〈σz〉 eliminates the effect
of T1 noise in relevant cases (see Supplemental Material Sec. E
[28]). We can compare the shapes of the measured decay
envelopes with Eqs. (6) and (7), and the g dependence of
decay rates with Eq. (4) to test the theory that our device is
susceptible to Gaussian noise entering through the flux bias
during two-qubit gates.

IV. EXPERIMENTAL RESULTS

As can be seen in Fig. 2(a), the experimentally measured
Ramsey decay envelopes are well predicted by Gaussian 1/ f
noise. Additionally, as shown in Fig. 2(b), the scaling of
the Gaussian decay rate with gmax agrees with the form of
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Eq. (4). Notably, the decay rate increases by an order of
magnitude as gmax is increased from 10 to 50 MHz, suggesting
that this coupler noise heavily exceeds single-qubit dephasing
as an error mechanism during gates with large coupling, as
predicted by Eq. (2). The flux sensitivity function extracted
matches the theory well. From the data we extract a value of
χ

(2)
� /χ

(1)
� � 0.078 ns, while a purely theoretical calculation

using typical circuit parameters yields χ
(2)
� /χ

(1)
� � 0.08 ns.

This excellent agreement with theory strongly suggests that
noise during two-qubit gates is dominated by flux noise in the
coupler, as hypothesized.

As predicted by Gaussian theory, the CPMG envelopes de-
cay significantly slower than the Ramsey envelopes. However,
as shown in Fig. 2, the details of these curves deviate from
what would be predicted by Gaussian 1/ f noise. While Eq. (7)
predicts smooth decay, we see very clear steps in the decay
curves. Additionally, the model predicts that the decay rate
�C should decrease proportionately to 1√

n
. This is not seen at

all: The two curves “braid” and decay at the same rate.
The steps in the CPMG curves are difficult for any

Gaussian noise model to produce (see Supplemental Material
Sec. H [28] for further discussion on this). Therefore,
these steps are signatures of non-Gaussian noise in our
system. This non-Gaussian noise may be result of a small
number of strongly coupled random telegraph noise (RTN)
fluctuators [12], since Gaussian 1/ f noise may be produced
via a superposition of a large number of weakly coupled
fluctuators [34] (see Supplemental Material Sec. B [28]). In
the strong-coupling regime the Gaussian approximation for
RTN may not be sufficient due to nonvanishing higher-order
correlators in the cumulant expansion of the RTN decoherence
function [12].

The CPMG decay curve associated with single RTN fluctu-
ator with correlation time tc = 1

γ
is [35–37] (see Supplemental

Material Sec. D [28])

〈σz(t = 2mntg)〉

=
⎧⎨
⎩

e−2mnγ tg
(

q cosh (nα)
cosh (α) + sinh (nα)

)
, n odd,

e−2mnγ tg
(

q sinh (nα)
cosh (α) + cosh (nα)

)
, n even,

(9)

where

q = −4λ2

�2
+ γ 2 cosh (2m�tg)

�2
,

sinh (α) = γ

�
sinh (2m�tg), (10)

and � =
√

γ 2 − 4λ2, which may be real or imaginary, is the
associated Rabi frequency.

We can validate this model by repeating the previous
CPMG measurements for more values of n and attempting
to fit the data simultaneously. The results of this are shown
in Fig. 3. The decay envelopes are excellently described by
a single, underdamped RTN fluctuator alongside single-qubit
white-noise dephasing, which adds a simple exponential pref-

actor e− �φ

4 t to Eq. (9) (see Supplemental Material Secs. E and
F [28]). The scaling of fluctuator coupling strength with g
is consistent with Eq. (5) (see Supplemental Material Sec. K
[28]).

FIG. 3. Braiding in the CPMG decay envelopes. Fitting a single-
fluctuator model to CPMG decay envelopes [Eq. (9)] for different
values of n and gmax. Each set of three curves is fit using only two
parameters, γ and λ. Fits for more values of n can be found in
Supplemental Material Sec. I [28]. Typical values of tc = 1

γ
� 50 µs,

λ

2π
� 0.1–1 MHz (value depends strongly on g), and �−1

φ � 100 µs.
All data points are the average of 10 000 samples.

In each case, the fit fluctuator is strongly in the un-
derdamped regime, 2λ > γ . In this regime (as shown in
Supplemental Material Sec. J [28]), Eq. (9) is well approxi-
mated by

〈σz(t = 2mntg)〉 � e−2mntgγ
(

1 + n
γ

ω
sin (2mtgω)

)
, (11)

where ω = |�|. In this form, the dynamics are much more
clear. The decay envelope will generally follow exponential
decay and will produce steps with frequency ω

n . The implica-
tion of this is that it is difficult to dynamically suppress the
decoherence caused by this kind of noise: More than ω

γ
echo

pulses are required in time t to cause the trajectory to deviate
significantly from exponential decay. This is significantly dif-
ferent than what would be expected for Gaussian 1/ f noise for
example, for which protection increases monotonically and
smoothly with n.

Our results should not be confused with the well-known
phenomenon of echo modulation observed in coupled spin
systems. The latter would require simultaneous excitation of
both qubits using single-qubit microwave pulses, while our
technique relies on sequences of two-qubit gates enabled by a
dc flux-bias control of the coupler frequency. As such, the dy-
namics is confined within a two-dimensional single-excitation
subspace, i.e., our technique is mathematically equivalent to a
dynamical decoupling of a single spin and the results should
be interpreted within this framework.

V. CONCLUSION

It should be noted that this work alone is not enough to
understand the physical origins of this non-Gaussian contri-
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bution to the noise. Although this noise has been observed on
several qubits in our system, this has not been studied system-
atically enough to determine if different qubits see fluctuators
with similar parameters. Additionally, it would be impossible
to tell if multiple pairs of qubits are seeing the same physical
defect or just similar, independent defects with this kind of
time-averaged, two-qubit measurement. These two situations
may be discernible using time-averaged measurements taken
after periodic pulse sequences on more than two qubits.

While the majority of this work was focused on the details
of applying our technique to tunable-coupler transmons, the
basic methods transfer readily to other qubit architectures. As
an example from trapped ion quantum computing, a similar

technique could be used in the characterization of the effect of
noise [38] on the coupling developed between ion electronic
states during Mølmer-Sørensen gates [39].
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94, 012109 (2016).

[20] J. Krzywda, P. Szankowski, and L. Cywiński, New J. Phys. 21,
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