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We demonstrate resonant detection of rf electric fields from 240 to 900 MHz (very high frequency to
ultrahigh frequency) using electromagnetically induced transparency to measure orbital angular momentum
L = 3 → L′ = 4 Rydberg transitions. These Rydberg states are accessible with three-photon infrared optical
excitation. By resonantly detecting rf in the electrically small regime, these states enable a new class of atomic
receivers. We find good agreement between measured spectra and predictions of quantum defect theory for
principal quantum numbers n = 45 to 70. Using a superhetrodyne detection setup, we measure the noise floor
at n = 50 to be 13 µV/(m

√
Hz). Additionally, we utilize data and a numerical model incorporating a five-level

master equation solution to estimate the fundamental sensitivity limits of our system.

DOI: 10.1103/PhysRevA.107.052605

I. INTRODUCTION

Rydberg atoms were recently used to measure radio-
frequency (rf) electric-field amplitude [1], polarization [2],
phase [3,4], and angle of arrival [5]. The detected field am-
plitude is traceable to fundamental atomic structure and has
led to an artifact-free paradigm in rf field calibrations [6–9].
Since the rf field sensing region is defined by laser-atom in-
teraction volume, new opportunities in subwavelength rf field
visualization have emerged [10,11]. Temporal modulation of
the detected rf field has resulted in communication demonstra-
tions of atomic reception using amplitude modulation (AM),
frequency modulation (FM) [12–16], binary phase-shift key-
ing, and quadrature amplitude modulation [17]. A previous
study demonstrated that atomic receivers can operate non-
resonantly in the electrically small regime [18]. In this case,
the data switching rate was taken to be equal to the carrier
frequency (dc to 30 MHz) and not resonant with nearby Ry-
dberg transition frequencies (>10 GHz). In order for atomic
receivers to be compatible with common broadcast technolo-
gies (AM and FM radio, television [19]), they must be able to
operate with a tunable carrier frequency distinct from the data
rate. For example, U.S. ultrahigh-frequency (UHF) television
channels 14 through 89 [20] occupy a frequency band from
470 to 890 MHz (with 6 MHz allocated per channel).

Among the attractive properties of so-called Rydberg re-
ceivers is the fact that they are not subject to the Chu limit for
electrically small antennas [21–23]. This stems from the dif-
ference in the underlying physical mechanism of rf reception
between conducting antennas and atoms. The Chu limit states
that the bandwidth W is constricted for electrically small pas-
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sive conductor antennas, where the characteristic radius of the
antenna is less than the wavelength of the rf field, �ant < λrf .
Specifically,

WChu

f0
� (2π�ant )3

λ3
rf

, (1)

where f0 = c/λrf is the carrier frequency and c is the speed
of light in vacuum. For example, for a lossless electrically
small classical antenna with 2π�ant/λrf = 0.5, the bandwidth
is limited to W/ f0 � 0.1 [24].

In a typical Rydberg atomic receiver experiment [12–17],
f0 ≈ 10 to 40 GHz, W � 30 MHz, and the optical path length
in the atomic vapor is 0.5 < �v < 10 cm. To create an elec-
trically small atomic receiver able to surpass a Chu-limited
antenna in the 10 to 40 GHz range, atomic receiver bandwidth
will need to be increased about 100-fold while reducing the
apparatus size from centimeters to millimeters. However, at
reduced carrier frequency, λrf becomes large such that �v �
λrf . For example, choosing f0 = 300 MHz with typical atomic
parameters (W = 10 MHz, �v ≈ 3 cm < λrf = 1 m) enables
an electrically small receiver.

Here, we explore nF7/2 → nG9/2 Rydberg transitions in
rubidium vapor with resonances from 240 to 900 MHz for
very-high-frequency (VHF) to UHF rf detection. Two demon-
strated approaches to reduce f0 are (i) using nonresonant
detection [25–28] and (ii) increasing the principal quantum
number n of resonant detection [1]. In nonresonant detec-
tion schemes, the extension to low rf frequency requires
that the amplitude of the detected field be large enough
(volts to kilovolts per centimeter) to mix in nearby Ryd-
berg states and can require the interpretation and simulation
of Floquet spectra [26–28]. To maximize sensitivity to in-
cident rf fields, we choose sensors where Autler-Townes
(AT) [29] splitting of Rydberg states is resonantly detected
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with electromagnetically induced transparency (EIT) [30,31].
Resonant AT-EIT detection has been shown to sense rf fields
with amplitudes near microvolts per centimeter at carrier
frequencies defined by the difference in energy between Ryd-
berg states [1,4,32]. Reducing f0 requires optical excitation
to higher Rydberg states that are increasingly susceptible
to perturbation from other effects, e.g., dc Stark-induced
state mixing and long-range Rydberg-Rydberg and Rydberg–
ground-state collisions [33–35]. To our knowledge, the lowest
published AT-EIT-detected rf signal is at 724 MHz, with
n > 130 [7]. Higher angular momentum (nF7/2 → nG9/2)
Rydberg transitions are more than an order of magnitude
lower in energetic separation at a given principal quantum
number compared to lower angular momentum transitions
(see Fig. 3 below). Using these higher angular momentum
states, we demonstrate resonant AT-EIT rf sensing with f0

from 240 to 900 MHz using n = 75 to n = 40. Achieving
f0 = 240 MHz using the more familiar nP3/2 → (n − 1)D5/2

transitions would require excitation to n > 200.
This paper is structured as follows: In Sec. II we present

our experimental apparatus and present measurements of rf
transitions between nF and nG. In Sec. III we present a nu-
merical model, and in Sec. IV we use it to assess the sensitivity
of the system to estimate the fundamental noise limits of our
data. Finally, in Sec. V, we conclude with an outlook for future
work.

II. EXPERIMENT

To access Rydberg states with orbital angular momen-
tum, L > 3, we use the three-photon ladder system shown
in Fig. 1(a). This ladder system was previously studied in
a number of contexts, including fundamental atomic struc-
ture [36,37], rf field calibration in the 100-GHz range using
both EIT and electromagnetically induced absorption [38],
time-domain signal reception at 1.2 GHz [39], and quantum
optics [40]. A variety of other multiphoton Rydberg excita-
tion pathways have been explored [41–45]; however, none of
them have been used to optically couple to L � 3 states [46].
This ladder system is appealing for a number of reasons.
First, it utilizes transitions accessible by diode lasers. The two
initial steps are also accessible by frequency-doubled telecom-
band fiber lasers with a linewidth below the Rydberg-state
linewidth. Second, the transition dipole moments between
successive ladder states are larger than in one- or two-photon
Rydberg excitation (increasing Rabi-excitation rates for fixed
optical powers). Third, the near degeneracy in optical fre-
quency between the first two steps in optical excitation allows
access to a broader range of atomic velocity classes in a vapor
cell [38,47].

The EIT probe laser beam addresses the 5S1/2, F = 2 →
5P3/2, F ′ = 3 transition at 780 nm. The effective Rydberg
EIT coupling beam comprises a two-step optical excitation
with a variable intermediate detuning from the 5D5/2, F =
4 state. The 5P3/2, F = 3 → 5D5/2, F ′ = 4 dressing transi-
tion is at 776 nm, and the 5D5/2, F = 4 → nF7/2, F ′ = 5 (or
nP3/2, F ′ = 3) coupling laser is tuned from 1260 to 1253 nm
to access n = 45 to n = 70 Rydberg states. The intermediate
detuning from the 5D5/2 state can be adjusted to trade the

FIG. 1. (a) Level diagram for F -state Rydberg excitation and
rf-induced Autler-Townes splitting in 87Rb. Three electric dipole-
allowed infrared transitions connect the ground state to the Rydberg
nF7/2 (or nP3/2) states. Dashed virtual levels show the single-photon
detunings of each step from atomic resonance. UHF to VHF fields,
depicted with a green bidirectional arrow, can be detected via Autler-
Townes splitting on the nF → nG Rydberg transitions, while 1 to
500 GHz can be detected on nS → nP, nP → (n − 1)D, and nF →
(n + 1)D transitions. (b) Experimental schematic: the 780-nm probe
beam counterpropagates in a Rb vapor cell with 776- and 1260-nm
beams which form the effective EIT coupling beam. PD: photodiode;
DBS: dichroic beam splitter; BD: beam displacer; Pset: polarization
optics consisting of a λ/2 wave plate and a polarizing beam-splitter
cube for power control followed by λ/2 and λ/4 wave plates for
polarization control.

Rydberg excitation rate and intermediate-state-lifetime broad-
ening effects.

The optical layout is shown in Fig. 1(b). Our rf sensing vol-
ume consists of a 75-mm-long, 19-mm-diameter cylindrical
atomic vapor cell with a counterpropagating probe and dress-
ing and coupling laser beams. The room-temperature quartz
vapor cell is filled with isotopically pure (98%) 87Rb and has
wedged fused silica windows at an 11◦ angle with respect to
the laser-beam propagation direction. After interacting with
the atomic medium, the 780-nm probe beam is split from the
776- and 1260-nm beams and monitored with a photodiode.

The 780-, 776-, and 1260-nm beam waists (1/e2 radius)
are measured to be 587(60), 598(60), and 592(60) µm, with
typical powers of 141(9) µW, 13.7(8) mW, and 233(14)
mW, respectively. We estimate the upper bounds for op-
tical excitation Rabi rates using the stretched-state dipole
matrix elements to be 2π × 17(3) MHz for the 780-nm
transition, 2π × 52(6) MHz for the 776-nm transition, and
2π × 13(2) MHz (2π × 7(1) MHz) for the 1260-nm transi-
tion to n = 45 (n = 70) [34]. The 780- and 776-nm lasers
are frequency stabilized to reference vapor cells using one-
and two-color polarization-rotation spectroscopy [48,49], re-
spectively. The probe laser is locked 10 MHz below the
optical cycling 5S1/2, F = 2 → 5P3/2, F = 3 transition. The
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intermediate-coupling laser is locked 30 MHz below the
5P3/2F = 3 → 5D5/2F = 4 transition. The 1260-nm laser can
either be locked to a wavemeter or scanned across the three-
photon resonance.

The 780-nm probe intensity is measured by a photodi-
ode during a scan of the 1260-nm laser frequency across
EIT resonance. To suppress probe-laser intensity noise, we
can optionally use a reference probe beam without coun-
terpropagating lasers and a differential photodetector [4,50].
To calibrate the 1260-nm laser frequency scan, we simulta-
neously record the transmission of a fiber-based Michelson
interferometer with a free spectral range of 30(3) MHz,
allowing frequency-scan nonlinearity to be removed in post-
processing. The scan center frequency is recorded on a
wavemeter with ±50-MHz accuracy. This wavemeter accu-
racy is sufficient to identify the principal quantum number of
each Rydberg transition; it is not used to measure rf transition
frequencies.

The source of rf radiation in our setup is a linear 17-cm
monopole antenna connected to an rf synthesizer and placed
roughly 20 cm away from the vapor cell. The cell and an-
tenna are mounted 15 cm above an aluminum breadboard
on a dielectric post. We expect nontrivial contributions from
the breadboard to the overall radiation pattern of the antenna
since the separation is smaller than the 33-cm to 1.5-m rf
wavelengths investigated here.

When the resonant nF → nG rf radiation coupling strength
exceeds the EIT linewidth, the EIT line splits into two Autler-
Townes peaks. Figure 2(a) shows the AT splitting of the
50F → 50G transition as a function of 1260-nm laser de-
tuning, in good agreement with a five-level optical Bloch
equation simulation of the spectrum (see Sec. IV for further
discussion). The observed EIT linewidth is primarily due to
power broadening associated with the dressing and coupling
Rabi rates and detuning from the intermediate D5/2 state. In
Fig. 2(b) we plot the measured Autler-Townes-peak frequency
splitting of the 50F → 50G transition as a function of the
applied UHF electric field. This shows the expected linear
scaling, applicable for use as an rf power standard [1,7,9]. The
rf electric field can be calculated as

| �E | = h̄

μR
�RF (2)

using measured AT splitting �RF and the known transition
dipole moment μR. The slope of Fig. 2(b) and the Rydberg
transition dipole moment (for the |mJ | = 1/2 π transition of
50F → 50G, μR = 1858ea0 [34]) can be used to calibrate the
apparatus calibration factor from the signal generator power
Ps to the electric field in the atomic sample, ξ = |E |P−1/2

s .
This will be used in Sec. IV to evaluate the sensitivity of our
system.

Figure 3 illustrates the >10 times reduction in carrier
frequency (increase in wavelength) at a given n that can be
attained by using transitions between higher (L � 3) angu-
lar momentum states. The experimentally measured resonant
transition frequencies and uncertainties are shown in green.
The measurements are in good agreement with carrier fre-
quencies computed from the 85Rb G-series quantum defect
model [51–54] after mass scaling [55]. These quantum defect-
derived carrier frequencies are shown as solid curves, with

FIG. 2. (a) AT-EIT spectrum of the 50F → 50G transition with
an applied rf field of 655 MHz (red). A five-level simulated spectrum
is underlaid by the data (blue). (b) Autler-Townes splitting of the
50F → 50G EIT signal as a function of an applied UHF electric
field. Point markers (red) are the measured uncertainties, with a linear
fit to guide the eye (blue). This plot confirms the expected linear
scaling between the rf electric field and Autler-Townes splitting.

the nF7/2 → nG9/2 transitions shown in green. The upper
curves on this graph show resonant transition frequencies
as a function of n for transitions with lower (L � 3) orbital
angular momenta: nS1/2 → nP3/2, nP3/2 → (n − 1)D5/2, and
nF7/2 → (n + 1)D5/2. These transitions were chosen because
they have the largest dipole matrix elements and thus are the
most sensitive for communications applications.

To determine the resonant Rydberg transition frequency
in Fig. 3, we record the amplitude and separation of the
Autler-Townes peaks as in Fig. 2(a). [56] On resonance, the
amplitudes of the peaks are equal, and the separation between
the two peaks is minimized. Off of resonance, the peak ampli-
tudes become imbalanced, and the peak separation increases.
The peak separations as a function of rf frequency reveal
an approximately quadratic minimum about the rf carrier
frequency. Spectra were recorded in a 30-MHz region approx-
imately centered about the nF → nG transition frequency,
with a frequency step size of 1 MHz. The peak positions
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FIG. 3. The top three (blue dashed, red, and black) curves show
calculated rf carrier frequencies [34] of commonly used lower an-
gular momentum Rydberg states accessible by two-photon optical
excitation. The middle (green) curve, located primarily in the UHF
band, is the calculated rf carrier frequency associated with nF7/2 →
nG9/2 transitions; the overlaid green point markers with uncertainty
show corresponding measured carrier frequencies in the n = 45 to
n = 70 range. The bottom (yellow) trace shows the calculated rf
carrier frequency associated with nG9/2 → nH11/2 transitions.

are found by fitting independent Gaussian functions to each
Autler-Townes peak. The peak separations are then fit to a
quadratic to determine Rydberg resonance, with combined fit
uncertainties of <24 MHz on average. We repeat this mea-
surement for several principal quantum numbers in the n = 45
to n = 70 range.

For this measurement at n = 70, the vapor cell is more
than an order of magnitude smaller than the rf wavelength
(�vapor/λrf ≈ 0.05). Carrier frequencies may be further re-
duced using high angular momentum Rydberg states, and
future experimental work will investigate the lower-frequency
limits of this approach. For example, the nG9/2 → nH11/2

transitions, shown at the bottom of Fig. 3, are a factor of 4.6
lower in frequency at a given principal quantum number than
the nF7/2 → nG9/2 transitions. These transitions can be ac-
cessed with additional rf fields. However, when the energetic
spacing between transitions approaches the Rabi coupling rate
(or, potentially, data bandwidth in communication applica-
tions) between the Rydberg states of interest, the incident rf
will couple nearly resonantly to other higher L dipole-allowed
transitions. This will result in complex spectra not easily in-
terpreted for use in calibration or communication.

III. NUMERICAL MODEL

We develop a numerical model to benchmark our experi-
mental data and compute fundamental sensitivity limits. We
use a master-equation formalism to simulate the light-atom

FIG. 4. Dephasing rates versus principal quantum number. Due
to competing Rydberg state lifetime and collisional broadening ef-
fects, the atom-limited dephasing rate is minimized at intermediate
principal quantum numbers 40 < n < 80. This illustrates the advan-
tage of decreasing rf carrier frequency by increasing L rather than
increasing n. The traces in the legend have the same vertical ordering
as the n = 20 data.

interaction, as in previous work [38,57,58]. We numerically
compute the steady-state density matrix for the thermal 87Rb
sample. Our numerical model includes the experimental laser
beam and rf intensities, propagation directions, polariza-
tions, and frequency detunings from relevant Rb electronic
transitions. We account for a number of state decay (T1)
and dephasing (T2) processes via Lindblad operators [59].
These transition-broadening processes include finite laser
linewidth, Rb state decay, transit broadening, and electronic-
state-dependent collisional broadening (see Fig. 4). We model
the system using five electronic states, 5S1/2, 5P3/2, 5D5/2,
nF7/2, and nG9/2, while neglecting the full 45-level Zeeman
structure for computational efficiency. The steady state is
calculated for a range of atom velocities chosen from the
Maxwell-Boltzmann distribution.

To account for collision-broadening effects, we calculate
van der Waals (C6) coefficients [60] for both Rydberg-
Rydberg (nF7/2-nF7/2 and nF7/2-nG9/2) and 5S1/2-Rydberg
atomic collisions. We then use the eikonal approximation
with the optical theorem [61] to calculate the total rate �SR

(�RR) for 5S1/2-Rydberg (Rydberg-Rydberg) collisions, as
shown in Fig. 4. We include 5S1/2-Rydberg collisional broad-
ening using a phenomenological jump operator of the form
�SR(|5S1/2〉〈R| + |R〉〈5S1/2|), where |R〉 is the relevant Ryd-
berg state.

We calculate a transit-broadening rate coefficient as the
inverse of the average laser-beam transit time using vapor-cell
temperature T = 300 K and the beam waists and generate a
corresponding Lindblad operator by summing the outer prod-
ucts of each state vector with the ground state to indicate a T1

decay. Similarly, we include Lindblad operators for the laser
linewidth broadening and the various atomic state lifetimes.
The magnitude of each dephasing rate is represented in Fig. 4,
in addition to a “total-atom” dephasing rate, which is the sum
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of all of the non-laser-dependent atomic broadening effects
(collisions and Rydberg-state lifetime). The remaining broad-
ening not included in this model may be due to electric-field
inhomogeneity in the applied rf or a nonuniform distribution
of metallic rubidium within the vapor cell along the axis
of beam propagation. Figure 4 shows two atomic structure
limitations to coherence time. At a low principal quantum
number short atomic lifetimes dominate, while at a high prin-
cipal quantum number Rydberg-Rydberg collisions dominate.
The atom-limited dephasing rate is therefore minimized at
intermediate principal quantum numbers 40 < n < 80. This
optimal atom-limited sensitivity again supports the choice to
use L � 3 states to achieve lower rf carrier frequencies rather
than simply going to higher n states.

For a comparison with absorption measurements, we com-
pute the detuning-dependent optical absorption coefficient α

experienced by the 780-nm probe laser beam as [38]

α = 2kpnV εμp

ε0Ep
, (3)

where

ε =
∫ ∞

−∞
P(vx )Im(ρ01)dvx (4)

is the atomic excitation fraction obtained via integration
of the velocity-dependent quantity Im(ρ01) weighted by the
Maxwell-Boltzmann velocity distribution along the beam

propagation direction, P(vx ) = √ m
2πkT exp(−mv2

x
2kT ). In Eq. (3),

kp is the probe-laser k-vector magnitude, Ep is the probe-laser
electric field, nV is the volumetric number density of 87Rb
atoms in the cell, μp is the electric dipole moment of the
5S1/2 → 5P3/2 probe transition, and ε0 is the permittivity of
vacuum. Finally, we compute the fractional probe-laser-beam
transmission as exp(−α�v ).

IV. SENSITIVITY ASSESSMENT

We characterize the sensitivity of our system using
the 50F → 50G transition. Experimentally, we imple-
ment superheterodyne detection [3,4] using two rf fields:
a signal field Es cos [(ωLO + δ)t] and a local oscillator
ELO cos (ωLOt − φLO). We first make a series of calibration
measurements to obtain ξ [Fig. 2(b)], relating the signal
generator power setting Ps to the electric field through
Eq. (2) and ξ = |E |P−1/2

s . We choose �LO ≈ � to bias
the sensor to maximum sensitivity [60] and apply a cal-
ibrated signal field Es � ELO. When δ � ωLO and δ is
within the atomic response bandwidth, the time-dependent
atomic response is Es/2 cos(δt + φLO) [62]. The beat-note
amplitude then serves to calibrate the receiver response χ

between the photodiode voltage and signal field Es. We
measure an amplitude spectral density noise floor of En =
13(2) µV/(m

√
Hz) for the 50F -50G transition. The LO pa-

rameters are ELO = 0.37 V/m (corresponding to �LO/2π =
9.5 MHz) at ωLO/2π = 655 MHz. The signal-field parame-
ters are Es = 9.3 mV/m, with δ/2π = 50 kHz. Both fields
are applied via the same rf horn. Figure 5 compares this cali-
brated amplitude spectral density with those of only the probe
(without the dressing or coupling lasers) and the electronic
noise floor without the probe. We find the noise dominated by

FIG. 5. Amplitude spectral density noise measurements at n =
50, frf = 655 MHz utilizing a superheterodyne technique and the
parameters described in the text. The traces in the legend have the
same vertical ordering as the data. The top red trace shows the
noise with a 9.3 mV/m calibration field on, with a 13 µV/(m

√
Hz)

white-noise floor near the calibration frequency offset of 50 kHz
from the LO field. The calibrated noise with only probe light (black
solid trace) and without any light (light gray trace) and the photon
shot noise (psn; black dashed trace) are shown for reference. The
estimated quantum projection noise is 34 nV/(m

√
Hz), well below

the range displayed.

probe detection and well above the photon shot-noise floor,
indicating room for further improvement.

The fundamental sensitivity limits of Rydberg vapor quan-
tum sensors are determined by the quantum projection noise
and the photon shot noise [63]. Below, we utilize our model
and measurements to estimate the applicable limits to our
system in the UHF frequency range investigated here.

The quantum projection noise limited sensitivity to an rf
electric-field amplitude Eqpn is

Eqpn = h̄

μR

1√
NT2t

, (5)

for the coherence time T2 and t is the total measurement time.
The number of atoms participating in the measurement is
N = εnV V for an interaction volume defined by optical beam
geometry V = πw2

0�eff for beam waists w0 and effective inter-
action length �eff . Typical parameters in our simulations yield
10−3 < ε < 10−2, significantly less than an estimation based
on all available atoms in the laser-beam column [63,64]. At
principal n = 50 at room temperature and with the experimen-
tal parameters defined above, we estimate ε = 10.7 × 10−3

and participating atom number N ∼ 106. We use the bare EIT
FWHM � = 2π × 9.7 MHz to estimate T2 = �−1 [4] and
�Eqpn = 38 nV/(m

√
Hz).

The photon shot noise for a single photodiode intensity
measurement is �Ipsn = √

2e(ηe�p)� f , where e is the elec-
tron charge, η is the photodiode quantum efficiency, �p is the
probe photon flux incident upon the photodiode, and � f is
the measurement bandwidth [32]. Using the transimpedance
amplifier gain Gv and the receiver response χ in photodiode
response amps per applied Esig, we can express this as a field

052605-5



ROGER C. BROWN et al. PHYSICAL REVIEW A 107, 052605 (2023)

sensitivity limit,

�Epsn = Gvχ�Ipsn. (6)

The photon shot noise in Fig. 5 is �Epsn = 1.6 µV/(m
√

Hz),
a factor of 40 higher than Eqpn. Technical improvements that
will be pursued in future work to reach the photon shot-noise
limit include intensity stabilization and the addition of a laser
to repump the ground-state population [50] and, potentially,
comb-based optical probing [65].

V. OUTLOOK

We have demonstrated AT-EIT rf field sensitivity using
nF → nG Rydberg transitions that enable resonant electri-
cally small UHF receivers. Future work includes recording
temporally modulated fields to characterize the sensitivity and
bandwidth at UHF and lower frequencies. This can be done by
using portable laser systems and operating in a controlled rf
environment since λrf is comparable to or larger than many
optical elements. Furthermore, this approach is compatible

with using auxiliary rf fields to Stark-tune the desired rf fre-
quency [57,66], offering continuous tuning between atomic
transitions.

The three-photon all-infrared optical excitation approach
also offers a number of benefits that may be further explored.
The three optical beams may be aligned in a planar orientation
to achieve Doppler-free and recoil-free excitation [67–69],
potentially enabling Rydberg lifetime-limited narrow spectral
features useful in precise rf field calibrations. Infrared optical
excitation may also enable simplified all-dielectric vapor-cell
sensor heads with more uniformly applied EIT coupling fields
compared to infrared-blue excitation [70]. This should reduce
transit broadening and increase sensitivity in a deployable
package.
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[31] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Observation of
Electromagnetically Induced Transparency, Phys. Rev. Lett. 66,
2593 (1991).

[32] S. Kumar, H. Fan, H. Kübler, A. J. Jahangiri, and J. P. Shaffer,
Rydberg-atom based radio-frequency electrometry using fre-
quency modulation spectroscopy in room temperature vapor
cells, Opt. Express 25, 8625 (2017).

[33] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, 1994).
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