
PHYSICAL REVIEW A 107, 052424 (2023)

Coherence filtration under strictly incoherent operations

C. L. Liu 1,* and C. P. Sun1,2,†

1Graduate School of China Academy of Engineering Physics, Beijing 100193, China
2Beijing Computational Science Research Center, Beijing 100193, China

(Received 13 February 2023; accepted 24 May 2023; published 31 May 2023)

We study the task of coherence filtration under strictly incoherent operations. The aim of this task is to
transform a given state ρ into another one ρ ′ whose fidelity with the maximally coherent state is maximal by
using stochastic strictly incoherent operations. We find that the maximal fidelity between ρ ′ and the maximally
coherent state is given by a multiple of the � robustness of coherence, R(ρ‖�ρ ) := min{λ|ρ � λ�ρ}, which
provides R(ρ‖�ρ ) an operational interpretation. Finally, we provide a coherence measure based on the task of
coherence filtration.
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I. INTRODUCTION

Quantum coherence is among the necessary features of
quantum mechanics for the departure between the classical
and quantum world. It is an essential component in quantum
information processing [1] and plays a central role in various
fields, such as quantum computation [2,3], quantum cryptog-
raphy [4], quantum metrology [5,6], and quantum biology
[7]. Recently, the resource theory of coherence has attracted
growing interest due to the rapid development of quantum
information science [8–12]. The resource theory of coherence
not only establishes a rigorous framework to quantify coher-
ence, but also provides a platform to understand quantum
coherence from a different perspective.

Any quantum resource theory is characterized by two fun-
damental ingredients, namely, the free states and the free
operations [13–15]. For the resource theory of coherence, the
free states are quantum states which are diagonal in a prefixed
reference basis. The free operations are not uniquely specified.
Motivated by suitable practical considerations, several free
operations have been presented [8,9,16–22]. In this paper,
we focus our attention on the strictly incoherent operations,
which were first proposed in Ref. [17] and, in Ref. [18],
it has been shown that these operations neither create nor
use coherence and have a physical interpretation in terms of
interferometry. Thus, the set of strictly incoherent operations
is a physically well-motivated set of free operations for the
resource theory of coherence.

In the resource theories, a remarkable effort has been
devoted to studying various distillation protocols [15]. The
distillation process is the process that extracts pure resource
states from a general state via free operations. For the re-
source theory of coherence, various coherence distillation
protocols were proposed. These protocols can be divided
into two classes: the asymptotic coherence distillation and
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the one-shot coherence distillation. The asymptotic coher-
ence distillation of pure states and mixed states by using
strictly incoherent operations was studied in Refs. [23–25].
To relax several unreasonable assumptions of the asymptotic
regime, i.e., unbounded number copies of identical states and
collective operations, several one-shot coherence distillation
protocols were proposed and explored [26–37].

However, the literature just mentioned and the results
therein suggested that the conditions of exact coherence dis-
tillation are too stringent. Inspired by the task of filtration of
other quantum resource theories [15,38], which is a basic op-
erational task in quantum resource theories [15], some authors
started to consider the task of coherence filtration instead.
Specifically, this task was studied under maximally incoherent
operations and dephasing-covariant incoherent operations in
Refs. [29,30]. The aim of coherence filtration is to transform
a given state ρ into another one ρ ′ whose fidelity with the
maximally coherent state is maximal by using free operations.
Although some related results about pure coherent states were
obtained, the coherence filtration about mixed states under
strictly incoherent operations has been relatively unexplored.

In this paper, we address this problem completely by
developing the coherence filtration protocol under strictly
incoherent operations. To this end, we first calculate the max-
imal fidelity between ρ ′ and the maximally coherent state and
we find that it is given by a multiple of the � robustness
of coherence, R(ρ‖�ρ), which was given in Ref. [20]. This
provides an operational interpretation to the � robustness of
coherence. Finally, we obtain a coherence measure from this
task and this further shows that the quantity R(ρ‖�ρ) can be
viewed as a coherence monotone which extends the coherence
rank to mixed states.

This paper is organized as follows. In Sec. II, we recall
some notions of the resource theory of coherence. In Sec. III,
we calculate the maximal fidelity between ρ ′ and the max-
imally coherent state. In Sec. IV, we present several results
relating to the coherence filtration protocol. Section V con-
tains our conclusions.
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II. PRELIMINARIES

To present our result clearly, it is instructive to introduce
some elementary notions of the resource theory of coherence
[9]. Let {|i〉}d

i=1 be the prefixed basis in the finite-dimensional
Hilbert space. A state is said to be incoherent if it is diagonal
in the basis and the set of such states is denoted by I. Coherent
states are states not of this form. For a pure state |ϕ〉, we will
write ϕ := |ϕ〉〈ϕ|. The d-dimensional maximally coherent
state has the form

|ψd〉 = 1√
d

d∑
i=1

|i〉. (1)

A strictly incoherent operation [17,18] is a completely
positive trace-preserving map, expressed as

�(ρ) =
N∑

μ=1

KμρK†
μ, (2)

where the Kraus operators Kμ satisfy not only∑N
μ=1 K†

μKμ=I, but also KμIK†
μ ⊂ I and K†

μIKμ ⊂ I for
every Kμ [17,18]. One sees by inspection that there is, at
most, one nonzero element in each column and row of Kμ,
and Kμ are called strictly incoherent operators. From this,
it is elementary to show that a projector is incoherent if it
is of the form Pμ = ∑Nμ

i=μ0
|i〉〈i| and we will denote Pμ as

a generic strictly incoherent projector. Hereafter, we will
use �ρ = ∑d

i=1 |i〉〈i|ρ|i〉〈i| to denote the fully dephasing
channel.

With the definition of strictly incoherent operations, we
further introduce the notion of stochastic strictly incoherent
operations [27]. A stochastic strictly incoherent operation is
constructed by a subset of strictly incoherent Kraus oper-
ators. Without loss of generality, we denote the subset as
{K1, K2, . . . , KL}. Otherwise, we may renumber the subscripts
of these Kraus operators. Then, a stochastic strictly incoherent
operation, denoted as �s(ρ), is defined by

�s(ρ) =
∑L

μ=1 KμρK†
μ

Tr
(∑L

μ=1 KμρK†
μ

) , (3)

where {K1, K2, . . . , KL} satisfies
∑L

μ=1 K†
μKμ � I.

Clearly, the state �s(ρ) is obtained with probability
P = Tr(

∑L
μ=1 KμρK†

μ) under a stochastic strictly incoherent
operation �s, while state �(ρ) is fully deterministic under
a strictly incoherent operation �. Here, we emphasize that
the stochastic transformation with

∑L
μ=1 K†

μKμ � I means
that a copy of �s(ρ) may be obtained from a copy of ρ

with probability P = Tr(
∑L

μ=1 KμρK†
μ)(� 1). That is, the

stochastic transformation runs the risk of failure with certain
probability.

A functional C can be taken as a coherence measure under
strictly incoherent operations, if it satisfies the following four
conditions [18]:

(C1) Non-negativity: C(ρ) � 0, and C(ρ) = 0 if and only
if ρ ∈ I.

(C2a) Monotonicity: C does not increase under the action
of strictly incoherent operations, i.e., C(ρ) � C[�(ρ)].

(C2b) Strong monotonicity: C does not increase under
selective strictly incoherent operations, C(ρ) � ∑

n pnC(ρn),
where pn = Tr(KnρK†

n ), ρn = KnρK†
n /pn.

(C3) Convexity: C is a convex functional of the state, i.e.,∑
n qnC(ρn) � C(

∑
n qnρn) for any set of states {ρn} and any

probability distribution {qn}.

III. COHERENCE FILTRATION UNDER STRICTLY
INCOHERENT OPERATIONS

Let us move to consider the protocol of the coherence
filtration, which can be formally presented as follows: Given
a state ρ, the aim of the protocol is to transform ρ into some
state ρ ′ by using some stochastic strictly incoherent opera-
tions �s, which has the maximal fidelity with the maximally
coherent state. In other words, we want to accomplish the
transformation

ρ
�s−→ ρ ′, (4)

such that the value F (�s(ρ), ψd ) with �s(ρ) = ρ ′ is max-
imal, where the fidelity F (ρ, σ ) is defined as F (ρ, σ ) :=
[Tr

√
ρ1/2σρ1/2]2 [39]. Hence, F (�s(ρ), ψd ) = Tr[�s(ρ)ψd ].

With the above notions, we now present the following theo-
rem.

Theorem 1. Let �s be a stochastic strictly incoherent oper-
ation. Then,

max
�s

Tr[�s(ρ)ψd ] = 1

d
λmax

(
�ρ− 1

2 ρ�ρ− 1
2
)
. (5)

Here, for a given state ρ = ∑
i j ρi j |i〉〈 j|, the matrix �ρ =∑

i ρii|i〉〈i|, (�ρ)−
1
2 is the diagonal matrix with elements

(�ρ)
− 1

2
ii = {ρ

− 1
2

ii if ρii 
= 0
0 if ρii = 0,

and λmax(A) denotes the max-

imal eigenvalue of A.
Proof. First, we show that the maximum in Eq. (5) is

always achieved by a map �s with only one term,

�1
s (ρ) = KρK†

Tr(KρK†)
, (6)

i.e., there is

max
�s

Tr[�s(ρ)ψd ] = max
�1

s

Tr
[
�1

s (ρ)ψd
]
. (7)

To see this, let the form of �s(ρ) in Eq. (5) be

�s(ρ) =
∑L

μ=1 KμρK†
μ

Tr
(∑L

μ=1 KμρK†
μ

) . (8)

By substituting Eq. (8) into Eq. (5), one obtains that

Tr[�s(ρ)ψd ] =
∑L

μ=1〈ψd |KμρK†
μ|ψd〉∑L

μ=1 Tr(KμρK†
μ)

. (9)

Next, let pμ := 〈ψd |KμρK†
μ|ψd〉 and qμ := Tr(KμρK†

μ).
Then, given a finite pair of positive numbers, (p1, q1),
(p2, q2), . . . , (pL, qL ), one can see that∑L

μ=1 pμ∑L
μ=1 qμ

� max
μ

pμ

qμ

. (10)
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To show this, let pν

qν
:= maxμ

pμ

qμ
. It is direct to obtain the result

in Eq. (10) from the following calculations:

pν

qν

L∑
μ=1

qμ −
L∑

μ=1

pμ �
L∑

μ=1

(
pμ

qμ

qμ − pμ

)
= 0. (11)

Thus, the maximum in Eq. (5) can always be obtained by only
considering �1

s (ρ), which implies the relation in Eq. (7).
Second, we show that

max
�1

s

Tr
[
�1

s (ρ)ψd
]
� 1

d
λmax

(
�ρ− 1

2 ρ�ρ− 1
2
)
. (12)

To see this, let us consider the structure of a strictly incoherent
operator K . From the definition of the strictly incoherent op-
erator, we obtain that any strictly incoherent operator K can
always be decomposed into K = PπK ′, where Pπ is a per-
mutation matrix and K ′ = diag(a1, a2, . . . , ad ) is a diagonal
matrix. On the other hand, it is direct to obtain that for any
permutation matrix Pπ , there is Pπ |ψd〉 = |ψd〉. With these
results, by direct calculations, we obtain

Tr
[
�1

s (ρ)ψd
] =

∑d
i, j=1 aiρi ja∗

j

d
∑d

j=1 |a j |2ρ j j

. (13)

Let us further introduce a normalized vector,

|ϕ〉 := 1√∑
j |a j |2ρ j j

(�ρ)
1
2 (a∗

1, a∗
2, . . . , a∗

d )t , (14)

where (·)t is the transpose. By substituting Eq. (14) into
Eq. (13), we obtain

Tr[�1
s (ρ)ψd ] = 〈ϕ|�ρ− 1

2 ρ�ρ− 1
2 |ϕ〉

d
. (15)

Since 〈ϕ|�ρ− 1
2 ρ�ρ− 1

2 |ϕ〉 � λmax(�ρ− 1
2 ρ�ρ− 1

2 ), with
λmax(A) being the maximal eigenvalue of A, we obtain that

max
�1

s

Tr[�1
s (ρ)ψd ] � 1

d
λmax

(
�ρ− 1

2 ρ�ρ− 1
2
)
, (16)

which is the relation in Eq. (12).
Third, we show that the upper bound in Eq. (15) can be

achieved by some �1
s , i.e., there is

max
�1

s

Tr
[
�1

s (ρ)ψd
] = 1

d
λmax

(
�ρ− 1

2 ρ�ρ− 1
2

)
. (17)

To show this, let us denote by

|λmax〉 := 1∑d
j=1 |c j |2

(c1, c2, . . . , cd )t (18)

a normalized eigenvector corresponding to the largest eigen-
value of �ρ− 1

2 ρ�ρ− 1
2 , i.e., there is

�ρ− 1
2 ρ�ρ− 1

2 |λmax〉 = λmax
(
�ρ− 1

2 ρ�ρ− 1
2
)|λmax〉. (19)

Let us define a j := c∗
j√
ρ j j

if ρ j j 
= 0 and a j := 0 if ρ j j = 0.

Then, let us choose the strictly incoherent operator as

K = diag(a1, a2, . . . , ad ). (20)

By direct calculations, we immediately obtain

Tr
[
�1

s (ρ)ψd
] = 1

d
λmax

(
�ρ− 1

2 ρ�ρ− 1
2
)
, (21)

which is the relation in Eq. (17). This completes the proof of
the theorem. �

The theorem mentioned above, along with its proof, ad-
dresses the aforementioned question above: How can we
convert a given state ρ into a state ρ ′ that has the highest
possible fidelity to the maximally coherent state by using
stochastic strictly incoherent operations denoted as �s? The
maximum fidelity achievable with the maximally coherent
state is determined by Eq. (5). The required operations can be
chosen based on Eq. (6) and the corresponding Kraus operator
can be selected as described in Eq. (20).

IV. RELATIONSHIPS WITH COHERENCE MEASURES

In this section, we will present several results relating to
the above theorem.

The first is that we can provide an operational interpreta-
tion of the � robustness of coherence [20], which is defined
as

R(ρ‖�ρ) := min{λ|ρ � λ�ρ}. (22)

This leads to the following theorem.
Theorem 2. For a given d-dimensional density matrix ρ,

the maximum achievable fidelity in Eq. (5) is determined by
the � robustness of coherence. In other words, the expression
can be written as follows:

max
�s

Tr[�s(ρ)ψd ] = 1

d
R(ρ ‖ �ρ). (23)

Proof. To see this, we first show that supp(ρ) ⊂
supp(�ρ), where supp(A) means the support of A [40]. Let
the spectral decomposition of ρ be ρ = ∑l

j=1 λ j |λ j〉〈λ j |,
where λ j > 0. By the definition of support, we obtain
that supp(ρ) = span{|λ1〉, |λ2〉, . . . , |λl〉} and supp(�ρ) =
span{|1〉, |2〉, . . . , |n〉} with n � d . With these notions, we
prove supp(ρ) ⊂ supp(�ρ) by contradiction. Suppose there
exists some |λ j〉 /∈ supp(�ρ), then there is some |m〉 /∈
supp(�ρ) while 〈m|λ j〉 
= 0 for some j. We further obtain that
〈m|ρ|m〉 � λ j |〈m|λ j〉|2 > 0. But this is in contradiction with
|m〉 /∈ supp(�ρ). Thus, we obtain that

supp(ρ) ⊂ supp(�ρ). (24)

Next, with supp(ρ) ⊂ supp(�ρ), one can see that ρ �
λ�ρ is equivalent to

�ρ− 1
2 ρ�ρ− 1

2 � λI. (25)

Further, it is direct to see that the smallest λ achieving the in-
equality in Eq. (25) is λmax(�ρ− 1

2 ρ�ρ− 1
2 ). By using Theorem

1, we obtain the result in Eq. (23). �
We would like to stress that we adopt the term “operational

interpretation” by following Refs. [15,17,41]. This term de-
scribes a scenario in which a particular quantity or resource
measure provides a quantitative depiction of a fundamental
parameter within an operational task or a task that benefits
from the resource. In the theorem mentioned above, we can
present an operational interpretation of the � robustness of
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coherence. This interpretation demonstrates that the quantifi-
cation of filtration coherence is precisely captured by the �

robustness of coherence.
The second is that max�s Tr[�s(ρ)ψd ] obtains its min-

imum if and only if ρ is an incoherent state and
max�s Tr[�s(ρ)ψd ] obtains its maximum if and only if ρ is
a pure coherent state with its coherence rank being d . Here,
for a pure state ϕ (not necessary normalized), the coherence
rank of it, Cr (ϕ), is the rank of �ϕ [17,42], i.e.,

Cr (ϕ) := Rank(�ϕ). (26)

This arrives at the following theorem.
Theorem 3. Let ρ be an arbitrary d-dimensional density

matrix. Then there is
1

d
� max

�s

Tr[�s(ρ)ψd ] � 1, (27)

where max�s Tr[�s(ρ)ψd ] = 1
d if and only if ρ is an incoher-

ent state and max�s Tr[�s(ρ)ψd ] = 1 if and only if ρ is a pure
coherent state with its coherence rank being d .

Proof. First, we show that 1
d � max�s Tr[�s(ρ)ψd ]. For

the sake of simplicity, we denote

Cs(ρ) := max
�s

Tr[�s(ρ)ψd ]. (28)

Let �′
s and �s be two stochastic strictly incoherent operations.

Then, by the definition of stochastic strictly incoherent oper-
ations, it is direct to examine that �′

s ◦ �s is also a stochastic
strictly incoherent operation. Then, there is

Cs(�s(ρ)) � Cs(ρ). (29)

By using the facts that (i) the set of strictly incoherent oper-
ations is a subset of stochastic strictly incoherent operations,
(ii) any incoherent state can be obtained from a coherent state
by using strictly incoherent operations, and (iii) any incoher-
ent state can be obtained from another incoherent state by
using strictly incoherent operations, one can see that the mini-
mum of Cs(ρ) is obtained when ρ is an incoherent state. Thus,
the minimum of Cs(ρ) can be obtained when �s(ρ) = |1〉〈1|.
Therefore, there is 1

d � Cs(ρ), i.e., 1
d � max�s Tr[�s(ρ)ψd ].

Then, we show that there is 1
d < max�s Tr[�s(ρ)ψd ] when

ρ is a coherent state. To see this, suppose ρ is a coherent
state, then there is some ρi j 
= 0. Let ρ ′ := �s(ρ) = KρK†

Tr(KρK† ) ,
where K = |i〉〈i| + | j〉〈 j|. By using Eq. (29), we obtain that
Cs(ρ ′) � Cs(ρ), with

ρ ′ = 1

ρii + ρ j j

(
ρii ρi j

ρ ji ρ j j

)
. (30)

We next show that Cs(ρ ′) > 1
d . To this end, one can see,

from Theorem 1, that this is equivalent to showing that

λmax(�ρ ′− 1
2 ρ ′�ρ ′− 1

2 ) > 1. One can be obtained by calcu-

lating the eigenvalues of �ρ ′− 1
2 ρ ′�ρ ′− 1

2 . This means that
1
d � max�s Tr[�s(ρ)ψd ] and max�s Tr[�s(ρ)ψd ] = 1

d if and
only if ρ is an incoherent state.

Next, we show that max�s Tr[�s(ρ)ψd ] � 1. To see this,
we consider the properties of the matrix Bρ := �ρ− 1

2 ρ�ρ− 1
2 .

It is direct to see that Bρ is a positive semidefinite matrix and
all its nonzero diagonal elements are 1. Let λ j with 1 � j � d
be the nonzero eigenvalues of Bρ . Then there is

∑
j λ j = d .

Thus, one can see that λmax(Bρ ) � d . Since λmax(Bρ ) = d if
and only if the rank of Bρ is one and supp(ρ) ⊂ supp(�ρ), we
immediately obtain that the rank of ρ is one and its coherence
rank is d . This completes the proof of the theorem. �

With the above results, we find that we can obtain a coher-
ence measure from the task of coherence filtration, which is
defined as

Cm(ρ) := max
�s

Tr[�s(ρ)ψd ] − 1

d
. (31)

This leads to the following theorem.
Theorem 4. The functional Cm(ρ) is a coherence measure

satisfying the conditions (C1)–(C3).
Proof. First, we show that Cm(ρ) satisfies the condition

(C1). By Theorem 3, which says that max�s Tr[�s(ρ)ψd ]
� 1

d , where the equality is obtained if and only if ρ is an
incoherent state, we immediately obtain that Cm(ρ) � 0 and

Cm(ρ) = 0 if and only if ρ ∈ I. (32)

Second, we show that Cm(ρ) satisfies the condition (C2b).
Let {�k

s } be a set of stochastic strictly incoherent operations,
whose sum

∑
k Pk�

k
s (ρ) =: �(ρ) defines a (trace-preserving)

strictly incoherent operation. Then, by Eq. (29), we obtain
that

∑
k PkCs(�k

s (ρ)) � Cs(ρ), which further implies the con-
dition (C2b), i.e.,∑

k

PkCm(�k
s (ρ)) � Cm(ρ). (33)

Third, we show that Cm(ρ) satisfies the condition (C3).
Let ρ1 and ρ2 be two states and ρ = pρ1 + (1 − p)ρ2 with
0 � p � 1. For the state ρ, let 
s be a stochastic strictly
incoherent operation achieving the maximum in Eq. (5), i.e.,
max�s Tr[�s(ρ)ψd ] = Tr[
s(ρ)ψd ]. Then, one can see that

max
�s

Tr[�s(ρ)ψd ] = Tr[
s(ρ)ψd ]

= Tr{
s[pρ1 + (1 − p)ρ2]ψd}
= pTr[
s(ρ1)ψd ] + (1 − p)Tr[
s(ρ2)ψd ]

� p max
�s

Tr[�s(ρ1)ψd ] + (1 − p) max
�s

Tr[�s(ρ2)ψd ].

(34)

This implies the condition (C3),

Cm(ρ) � pCm(ρ1) + (1 − p)Cm(ρ2). (35)

Since conditions (C2b) and (C3) imply the condition (C2a),
we obtain that Cm(ρ) is a coherence measure. This completes
the proof of the theorem. �

We would like to point out that the quantity R(ρ‖�ρ)
can be viewed as a coherence monotone which extends the
coherence rank to mixed states. Here, we say a functional is a
coherence monotone if it satisfies the conditions (C2a), (C2b),
and (C3).

Finally, we discuss the relationship between Cm(ρ) and
the state transformations under stochastic strictly incoherent
operations. This leads to the following corollary.

Corollary 1. There is a stochastic strictly incoherent op-
eration �s such that �s(ϕ1) = ϕ2 if and only if Cm(ϕ1) �
Cm(ϕ2). However, for mixed states, this condition is only a
necessary one.
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Proof. By using a result in Ref. [17] which says that the
transformation is impossible when the coherence rank of the
target state is larger than that of the initial state, but other-
wise the conversion is achievable by using some stochastic
strictly incoherent operation, we then obtain that if �s(ϕ1) =
ϕ2, there is Cr (ϕ1) � Cr (ϕ2). This further implies Cm(ϕ1) �
Cm(ϕ2).

For the mixed states case, the necessary part of this condi-
tion can be obtained from the expression in Eq. (29). Next, we
show that this condition is not a sufficient one. To see this, let
us consider the following two three-dimensional states:

ρ1 = 1

15

⎛
⎝5 4 4

4 5 4
4 4 5

⎞
⎠ (36)

and

ρ2 = 1

2

⎛
⎝1 1 0

1 1 0
0 0 0

⎞
⎠. (37)

By using Theorem 1 and direct calculations, we obtain that
Cm(ρ1) = 0.533 > Cm(ρ2) = 0.333. On the other hand, let us
recall a result in Ref. [34], which says that a pure coherent
state |ϕ〉 can be obtained from a mixed state ρ by using
stochastic strictly incoherent operations if and only if there
is an incoherent projector P , with the coherence rank of PρP
being greater than or equal to that of |ϕ〉. However, it is direct
to examine that there is no incoherent projector P such that the
coherence rank of Pρ1P is greater than or equal to 2. Thus, we
cannot transform ρ1 into ρ2 via stochastic strictly incoherent
operations. This completes the proof of the corollary. �

V. CONCLUSIONS

To summarize, we have studied the task of coherence
filtration in this paper. Specifically, the aim of this task is
to transform a given state ρ into another one ρ ′ whose
fidelity with the maximally coherent state is maximal by
using stochastic strictly incoherent operations. Interestingly,
we have found that this maximal fidelity between ρ ′ and the
maximally coherent state is given by the � robustness of co-
herence R(ρ‖�ρ) in Theorems 1 and 2. Thus, we provide the
� robustness of coherence using an operational interpretation.
Furthermore, we obtain a coherence measure from the task of
coherence filtration in Theorems 3 and 4. Finally, we discuss
the relation between Cm(ρ) and the state transformations un-
der stochastic strictly incoherent operations in Corollary 1.

In passing, we would like to point out that strictly incoher-
ent Kraus operators can always be constructed by the system
interacting with an ancilla, and a general experimental setting
has been suggested based on an interferometer in Ref. [18]
and an experimental implementation of it has recently been
presented in Ref. [43]. Thus, our scheme of coherence fil-
tration can be experimentally demonstrated by using the
setup in [43].
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