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Concurrent quantum eigensolver for multiple low-energy eigenstates
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We propose a quantum algorithm that diagonalizes a Hamiltonian by implementing an ansatz that satisfies
the generalized Rayleigh-Ritz variational principle. This algorithm uses a purification technique to target
many quantum states in one quantum circuit and allows multiple eigenstates to be optimized and determined
simultaneously. Moreover, it requires a reasonable circuit depth compared to existing algorithms and enables
flexible postprocessing on the accurately determined eigensubspace. Using the transverse-field Ising model, we
confirm that the eigenvalues obtained with the algorithm converge efficiently and uniformly with the iteration
steps, tested by both simulations and IBM platform measurements. As limited quantum resources are needed,
this algorithm is promising for noise resilience, better performances, and versatile applications.
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I. INTRODUCTION

Quantum computations and simulations utilize quantum
devices to solve classical or quantum problems and hold
promise for tackling large-scale systems that are intractable
with conventional computers. For example, several quantum
algorithms have demonstrated the potential to show expo-
nential or quadratic speedup over their classical counterparts
[1-4]. Their implementation has stimulated surging interest in
the exploration of quantum computing devices [5,6], such as
superconducting circuits [7], ultracold atoms [8], trapped ion
systems [9], photonic systems [10], and systems of nuclear
magnetic resonance with nitrogen-vacancy spins [11].

Quantum computing has advanced into the noisy
intermediate-scale quantum (NISQ) era [12,13]. Successful
manipulations of quantum circuits with more than 50 qubits
have demonstrated the so-called quantum supremacy [14—17].
However, the current quantum processors cannot conduct
large-scale fault-tolerant quantum computation. In particular,
the limited coherence time of qubits, environmental noises,
and the connectivity of NISQ devices put strong constraints on
the scale of applications of quantum algorithms. Nevertheless,
NISQ devices are valuable tools for exploring many-body
quantum physics and other fields and represent a signifi-
cant step toward more powerful quantum technologies in the
future.

In recent years, several variational quantum algorithms
(VQAs) [18] were proposed to solve classical or quantum
problems by parametrizing quantum circuits using classical-
quantum hybrid optimization schemes. This has led to,
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for example, successful applications of NISQ devices in
combinatorial optimization and adiabatic quantum computa-
tion [19,20], quantum chemistry [21-30], machine learning
[31-34], and condensed-matter physics [35—42]. A particular
successful algorithm is the variational quantum eigensolver
(VQE) [21,43]. It is one of the earliest VQASs introduced for
solving ground states using NISQ computers [19-27,31,32].
The VQE has also been extended to determine excited
eigenstates of a Hamiltonian [22,28-30,42,44-49]. However,
the extension has encountered severe challenges imposed
by the limited coherence time of qubits. First, it is much
more sensitive and hard to prepare an initial state orthogonal
to the ground state without intensively increasing quantum
resources. Second, with the increase of the number of diag-
onalized eigenstates, the algorithms require more quantum
resources such as deeper quantum circuits for more variational
parameters or several quantum circuits for calculating differ-
ent terms in optimization functions. Third, the solution relies
highly on the performance of quantum hardware. One of the
main error resources is the readout error from the manufacture
of NISQ devices. The readout error will inevitably introduce
additional uncertainty in determining a targeted eigenstate as
accurately as the ground state. For example, the orthogonality-
constrained VQE [45] and the variational-quantum-deflation
algorithm [46,47] solve the eigenstates recursively but suffer
from accumulative errors and extra quantum resource de-
mands. The subspace-search VQE (SSVQE) [48] requires an
additional optimization process to yield an accurate approx-
imation for a specific excited state which has to increase
the circuit depth as a penalty. A variant of SSVQE that
assigns different weights of searched states could eliminate
additional optimizations. This weighted SSVQE possesses
different degrees of accuracy as the loss function is more
insensitive to lower-weighted trial states, which results in
higher-energy eigenstates suffering larger optimization errors.
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The multistate-contracted VQE [49], on the other hand, can
solve some eigenstates for some specific Hamiltonians simul-
taneously but still has difficulty in preparing the initial states.

In this article, we propose a variational quantum algorithm
to optimize the ground and excited states concurrently using a
purification technique by introducing ancillary qubits (called
ancillas). The steps for implementing this algorithm are al-
most the same as for VQE. Nevertheless, it resolves all the
difficulties mentioned above. First, the circuit can be initial-
ized simply by pairing each ancilla with a physical qubit to
form a maximally entangled state (i.e., a Bell state). It is sim-
ple to carry out this initialization step in the currently available
quantum computers. Second, the variational parametrization
of the circuit applies only to the physical qubits without in-
volving the ancillary qubits, greatly simplifying the circuit
design. It requires quantum resources comparable to those of
existing algorithms, allowing us to target many eigenstates
simultaneously. Third, the algorithm enables us to measure the
matrix elements between any two targeted eigenstates simply
by manipulating the ancilla states. This measurement protocol
significantly reduces the readout errors without adding more
circuit layers. As all targeted eigenstates are determined using
the same quantum circuit, they should converge uniformly
(namely, have the same order of accuracy). Hence, our algo-
rithm has great potential for practical applications of quantum
processors against noisy implementations.

II. CONCURRENT QUANTUM EIGENSOLVER

The VQE uses a quantum circuit to parametrize the
ground state of a Hamiltonian variationally. Using gradi-
ent descendant optimization processes [50,51], the VQE has
demonstrated great potential on NISQ devices. However, this
quantum algorithm cannot be used to simultaneously find a set
of eigenstates, say, the K lowest-energy eigenstates, because
a VQE circuit cannot accommodate two or more orthogonal
trial states at one time. To resolve this difficulty, we introduce
a set of ancillas to convert K orthogonal trial states into a pure
quantum state. This procedure is known as “purification” in
quantum information. The optimization can then be imposed
on this purified quantum state using only one quantum circuit.
Our algorithm is able to tune the weights of different trial
states on the hardware and realizes the weighted SSVQE [48].
Nevertheless, we choose uniformly weighted trial states to
achieve the determination of eigenstates with the same de-
gree of optimization accuracy. This key feature is extremely
helpful in the determination of transition energies in quantum
chemistry and the mass spectrum of the massive Schwinger
model in high-energy physics [52-54], for instance.

Purification of quantum states by introducing ancillas is
a common practice used in physics [55], particularly in the
study of the thermodynamics of quantum many-body systems
[56,57] and in quantum computation [58,59]. This technique
has also been applied to investigate dynamical Green’s func-
tions through variationally optimized quantum circuits [59].
Furthermore, as demonstrated below, the use of this tech-
nique in our algorithm significantly reduces the complexity
and depth of the quantum circuit compared to algorithms that
change Hamiltonians or loss functions during determinations
of serial eigenstates. Later, we will analyze the measurement

requirements of our algorithm, which potentially reduces the
effects of readout errors or the quantum resources of error-
mitigation methods.

Let us consider a system of N, physical qubits (we call
it a physical system) on which the Hamiltonian H is embed-
ded. In order to determine the K lowest-energy eigenstates,
we first introduce N, ancillary qubits to construct a purified
quantum state from which K orthogonal trial states can be
optimized. Here N, should be larger than or equal to log, K
but smaller than N,,. The whole system, therefore, contains N,
physical qubits and N, ancillas. The variational optimization
of this purified quantum state is carried out by performing
unitary transformations for only the physical qubits. As a
result, the ancilla states are not altered by the circuit once
initialized, ensuring the orthogonality remains throughout the
calculation. This process is widely used to embed the desired
mixed-state density matrix using ancillary qubits [60-62].
However, previous algorithms [48,60] achieved the same pur-
pose of cost-function embedding using classical samplings of
different initial states with the same quantum resources con-
sumption. In addition, because the loss function is irrelevant to
the ancillary qubits states, trace-preserving quantum noise on
ancillas would not affect the optimization process. The train-
ing process does not require measurement information from
the ancillary qubits. Therefore, our algorithm requires only a
total number of measurements Npeas X NV, per optimization
step.

We initialize the system by demanding that the physical
qubits form a maximally entangled state with the N, ancillas,

1 M—1
|1/finn>=\/—ﬁ—4§|a)p®|a)a M =2V, (1)

where {|a)?} and {|a)?} are the M orthogonal basis states
of the physical and ancillary systems, respectively. For the
ancillary system, the orthogonal basis states can be simply
taken as product states of local bases {|0)¢, |1)¢}. This max-
imally entangled state can be readily prepared by requiring,
for example, each of the first N, qubits in the physical system
to form a maximally entangled state with a corresponding
ancilla, and the rest of the physical qubits are all in the up-spin
states, namely,

Na Np
W) = Q) 1B)i Q) 10)7, ©))
i=1 Jj=N+1

where |B); is a Bell state formed by the ith physical qubit
and the ith ancilla [58], |B); = 1/+/2(]0)7|0) + [1)?|1)%),.
Of course, one can also choose other N, qubits from the
physical system to form a maximally entangled state with the
ancillas.

The variational wave function is defined by applying a
unitary operation U (0) ® [ to the initial state,

[¥(0)) = U(0) @ I|Vinit), 3)

where ¢ represents identity operators on ancillary qubits,
U(0) acts on only the physical qubits, and 6 are the vari-
ational parameters. It is parameterized as a quantum circuit
U®)= ]_[,Lz1 U 9;), 6=(0,...,0), where U;(6;) is a
unitary operator that acts on the /th layer of the circuit and
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6, is a collection of all variational parameters in that layer. In
general, the depth of the designed ansatz should be deliber-
ately balanced for overall performance, considering the size
of the searching Hilbert space and avoiding the barren plateau
phenomenon [63]. In practice, quantum hardware limitations,
such as the connectivity of the architecture, the quantum noise
of unitary gates, and the coherent time of reliable qubits,
should also be evaluated.

The loss function we used is the total energy expectation
value of K orthogonal physical states, which can be selected
from the first K ancillary states upon measurements [48,49]

K—1
LO) =) _ralfa)y, “)

a=0

where |&@)? = U (0)|a)? is the final state of the physical qubits.
This loss function, according to the generalized Rayleigh-Ritz
variational principle [64], sets an upper bound on the sum of
the K lowest eigenvalues (Ey, ..., Ex_;), of H,ie.,

K—1

LO)> ) E. (5)

i=0

The eigenvalues are assumed to be ascending ordered, Ey <
E, < --- < Eg_. Ey is the ground-state energy. To determine
the K lowest eigenvalues and the corresponding eigenvectors
of H, we minimize the loss function by variationally optimiz-
ing all the gate parameters 6.

III. DETERMINATION OF LOW-ENERGY
EIGENSPECTRA

After minimizing the loss function, we evolve the physical
qubits onto the subspace spanned by the K lowest-energy
states of H. However, for a given ancillary state |«)¢, the
corresponding physical state |@)” generated by the circuit is
not automatically an eigenstate of H. This is because the
loss function depends on the sum of the energy expectation
values of the K lowest eigenstates and cannot distinguish any
unitary rotations of these states in that basis subspace. For
instance, we note a unitary rotation in the target eigensubspace
U= Zij Uij |E;){E;|, and the reduced density matrix of trained

states on physical qubits is p=M""Y " |y;)(¥;]. Given
the commutation relation between U and H, [U,H] =0,
the loss function is Tr(H p) = Tr(UTUHp) = Tr(HU pU ™) =
Tr(Hp). In this case, the ansatz cannot distinguish p and p
in the training process. The output trained states can be any
possible states U|y;) other than [;). On the other hand, if
we acquired information on the matrix representation of H in
the basis of trained states, we would be able to eliminate the
possible rotations by diagonalization of this matrix.

Thus, we need to determine the energy eigenstates through
measurements of not only the diagonal matrix elements of H,
i.e., P(a|H|a)”, but also all off-diagonal matrix elements, i.e.,
Hpo ="(B|H|@)? (B # ) in the final states. X

To measure the off-diagonal matrix elements of H, gen-
erally, one has to take a unitary transformation to construct
a superposition of physical states |&)” and |B)”. In conven-
tional algorithms, it is difficult to determine the transformation
and perform corresponding rotations [49]. In our algorithm,

TABLE I. Example of measuring the outcome to determine the
energy expectation matrix. The operators |i)(j| are applied on the
ancillary qubits.

Observables Operators Expectation values
H®U+2)/2 H ®[0)(0] Hyo
H® X +iY)/2 H ®0)(1] Ho,
H® X —iY)/2 H @ |1){0] Hyo
HeoUI-2)/2 HQ|1)(1] Hy

however, as the ancillas are maximally entangled with the
physical qubits, we can implement this unitary transforma-
tion effectively by rotating only the ancillary qubits. In other
words, to change the physical state from |&)? to |B)?, we
just need to change the corresponding ancillary state from
la) to |B)“. This basis transformation or rotation does not
alter the quantum states of the physical qubits. It provides a
feasible scheme to retrieve interesting physical quantities that
are difficult to measure directly.

In some cases, we use N, ancillary qubits to determine
M = 2V eigenstates which might exceed the number of target
eigenstates, K, i.e., M > K. It is simple to show that the
expectation value of the operator H ® |8)*(| in the final state
| (0)) equals the matrix element of the Hamiltonian,

Hpo = My O)|(H ® |B)" ()| (0)). (6)

For each element of the Hamiltonian Hg,, it can be “la-
beled” by the ancillary operator |8)%(«|. By calculating the
linear combination of Pauli operators of the position label, we
obtain the corresponding observables on the ancillas. For ex-
ample, we calculate Hy by evaluating the expectation value of
H ® |0)4(0], and the linear combination for the observable on
the ancillas is |0)*(0] = (I + Z)/2. Here we demonstrate the
elements of the Hamiltonian and corresponding observables
for the case with one ancillary qubit in Table 1. Refer to the
Appendix for general cases.

We note the diagonalization of Hg , with a unitary matrix
S,

M-1

Hpo =) SpiEiSy;; (7)
i=0

thus, we obtain all the eigenvalues and eigenvectors. If the
eigenvalues are ascending ordered, then the first K eigenval-
ues E; (i=0,...,K — 1) are what we hope to target. The
corresponding eigenstates are given by

M-1
NP =" Sqila)’. ®)
a=0

This determination of matrix elements is conducted after the
convergence of the loss function, and the number of searched
states during the optimization process is M (= K), which is
similar to those in SSVQE or other existing methods. The
above scheme also allows us to measure the expectation value
of a physical operator, such as the thermal average, by taking
actions on the ancillary qubits. Refer to the Appendix for more
details.
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FIG. 1. Sketch of a quantum circuit for implementing a varia-
tional optimization for N, = 4 and N, = 1 systems. An entanglement
generator U, is applied between the ancillary and physical qubits to
prepare a purified initial state. U; is a collection of all unitary gate
operations, which act only on physical qubits, in the /th layer of the
circuit. H is the Hadamard gate. V denotes a postprocessing operator,
which applies to the ancillas only.

IV. RESULTS

As an application and demonstration, we apply our method
to the one-dimensional quantum transverse-field Ising model
(TFIM),

A=-J Z SiS% | + Iy Z Sy, ©)

where S and S are the § = 1/2 spin operators. This model
is exactly soluble, allowing us to compare the results obtained
with simulations using our algorithm with the exact ones. We
do the calculation at the point 4, = 0.5 and J = 1, where the
ground state of this model becomes critical in the thermody-
namic limit.

Figure 1 shows an example of the trial states prepared for a
system of N, = 4 and N, = 1. In this case, the ancillary qubit
is maximally entangled with the physical qubit labeled by p,
in the initial state. Each layer of the variational ansatz can
be represented as [38,65] U;(6;) = W(6;)Rzz(012)Ryy (6:.1),
where W represents the product of three single-qubit rotation
gates, W(6;) = Rx(61,5)Rz(0;,4)Rx (6 3), and (X, Y, Z) repre-
sent the three Pauli matrices (ox, 0y, 0;). R is a rotation gate
along the Q axis, Rp(#) = exp(i6Q/2). Each layer comprises
two sublayers of two-qubit gates, Ryy and Rz, in a brick-wall
structure and three sublayers of single-qubit gates, Rx, Rz,
and Ry . Each unitary gate is parameterized by one variational
parameter.

Let us first solve the four lowest eigenstates in an eight-
spin system. Figure 2(a) shows how the four eigenvalues E;
(i=0,...,3) vary with the optimization step m for TFIM.
The four eigenvalues converge very quickly with the increase
of m. Their differences from the exact eigenvalues E*, §E; =
E; — Ef*, drop exponentially at nearly the same speed as m
for all the eigenvalues [Fig. 2(b)]. Hence, the four eigenvalues
uniformly converge—the absolute errors of the converging
eigenvalues are of the same order of magnitude. This implies
that the energy differences between any two eigenvalues eval-
uated are more accurate than the eigenvalues themselves. This
is, indeed, what we see, for example, by comparing the error
of the energy difference §A; = |§E| — 6Ey| with the errors of
E/ and Ey, as shown in Fig. 2(c).

However, it should be noted that the eigenstates obtained
with the circuit shown in Fig. 1 may not always be the
K lowest ones. For example, if we still use that circuit to
calculate eight eigenstates using three ancillas, we find that

@ 15
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FIG. 2. Four lowest eigenvalues obtained with a purified trial
wave function using two ancillas for the eight-spin transverse Ising
model with 4, = 0.5 and J = 1. The energy values plotted are in
units of J. (a) shows the four lowest eigenvalues, E, (solid line),
E, (dash-dotted line), E, (dotted line), and E; (dashed line), and
(b) shows how their absolute errors converge with the iteration num-
ber of optimizations m. (c) Comparison between the error of the
spectral gap §A; (lower line) and the errors of Ey and E.

six of them are, indeed, the lowest eigenvalues of the system.
Still, the other two converge to the eighth and tenth excited
eigenvalues, respectively. Hence, the sixth and seventh excited
eigenstates are missing due to some restriction imposed by
U (0) on the variational subspace, which prohibits these two
eigenstates from being targeted by the circuit. There are two
ways to solve this problem. One is to increase the number of
ancillas. For example, by expanding the number of ancillas
from three to four, we can correctly obtain the eight lowest
eigenvalues, still using that circuit. The other is redesigning
the unitary circuit U (6) to avoid trapping the targeted states in
some restricted subspace. A detailed discussion of this issue
is given in the Appendix.

We further examine the algorithm by calculating the two
lowest eigenvalues of TFIM using the Oslo quantum processor
on the IBM quantum computing platform. This is a direct test
of the algorithm on a NISQ computer. To avoid using too
many two-qubit gates in a circuit (which have relatively large
implementation errors), we modify the variational ansatz. The
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FIG. 3. The ground-state energy Ey (lower line), the first excited
eigenenergy E; (upper line), and the loss function £ (middle line)
obtained with a purified trial wave function using one ancilla for the
three-spin TFIM with #, = 0.5 and J = 1. The energy values plotted
are in units of J. The relative errors of the ground and first excited
eigenenergies are 1.244% and 2.924% compared to the exact results
(dashed horizontal lines), respectively.

revised circuit design is shown in Fig. 6 in the Appendix.
As the quantum computing resources publicly available are
limited, we demonstrate the method using only four qubits,
which contain three physical qubits and one ancilla. Figure 3
shows the output after 200 iterations: both the ground and
first excited eigenenergies converge quickly with the iteration
number. Their relative errors are 1.244% and 2.924% com-
pared to the exact ones. The corresponding relative error in
the loss function is ~2.971%. Refer to the Appendix for more
technical details of this test.

V. SUMMARY

We have proposed a quantum algorithm for concurrently
optimizing multiple low-energy eigenstates of a Hamiltonian
using a quantum circuit. This algorithm resolves all the ma-
jor problems in the determination of these eigenstates by
parametrizing a quantum circuit variationally. It is resilient
to noisy implementations on NISQ hardware and can be im-
plemented as efficiently as the standard VQE. Furthermore, it
can access all the matrix elements (including the off-diagonal
ones) of the Hamiltonian or other physical observables simply
by manipulating ancillary states, significantly reducing the
readout error without increasing the circuit depth.

Our algorithm does not increase the requirement of the
hardware connectivity significantly, which is mainly due to
the purification module. Potentially, our algorithm is ap-
plicable on sparsely connected two-dimensional quantum
hardware. For instance, the algorithm can be readily imple-
mented on a NISQ device with a ladder-shaped architecture
[14-16]. We have tested the algorithm on a NISQ computer by
taking TFIM as an example. Our test, although still on a rel-
atively small-scale quantum computing platform, does show
the promise of our algorithm for low-energy eigenspectra
calculations on upcoming large-scale NISQ and fault-tolerant
quantum computers.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Project of China (Grants No. 2017YFA0302901

and No. 2022YFA1403900), the National Natural Sci-
ence Foundation of China (Grants No. 11888101 and No.
11874095), the Youth Innovation Promotion Association of
CAS (Grant No. 2021004), and the Strategic Priority Research
Program of the Chinese Academy of Sciences (Grants No.
XDB33010100 and No. XDB33020300).

APPENDIX

1. Determination of low-energy eigenspectra

The basis transformation from |a)? to |B)* can be
achieved by applying the operator |8)“(«| to the ancillary
system. For each ancilla, say the ith one, this basis trans-
formation operator takes four possible values, |B;){o;| =
(10)(01, |0) (1], |1){0], |1){1]);, depending on the initial and
final basis states of the ancilla. These four basis transfor-
mation operators are related to the four unitary operators,
Al = (I, oy, 0y, 0);, by the transformation

1Bi) (il = Y vpa Al (A1)
i

where I is the identity matrix, (o, oy, 0;) are the three Pauli
matrices, and v is a 4 x 4 matrix if we regard (f;c;) as one
index,

1 0 0 1
1lo 1 i o

V=210 1 =i o0 (A2)
10 0 -1

It is simple to show that the expectation value of the op-
erator H ® |B)“(«| in the final state |y (6)) equals the matrix
element of the Hamiltonian,

Hpo ="(BIH|&)"
= MY O)|(H ® |B)" (@Dl (6)).
Substituting (A1) into the above equation, we find that

Hpo =My Vi s WO @ A0 (0). (A4
n

(A3)

where
Na
Av=T]®AL. =@ ....¢n,). (AS)
i=1
Ny
Vsau = [ | voanr B=(Br,.... Bx).  (A6)

i=1
Equation (A4) indicates that by measuring the expectation

values of the operators H ®AAM (the total number of these
operators is 4") in the state [y (9)),

hy = (Y O)IH @ Al ()), (A7)
we can obtain the matrix element of the Hamiltonian,
Hpu =My Voo uhy. (A8)

n

The above scheme allows us to measure the expectation value
of a physical operator simply by rotating the ancillary states.
As an example, let us calculate the thermal average of a
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physical observable O in the physical subspace spanned by
the previously determined eigenstates of H,

(0) = Tr(p0),

p=2") e PHIE)E,
i

(A9)

(A10)

where Z = ", ¢ PEi is an approximate partition function and
B is the inverse temperature. Again, it is difficult to determine
this quantity just by measuring the states of the physi-
cal qubits. To solve this problem, we introduce a diagonal
Hermitian operator in the ancillary system,

T=z") e PHE)(E (AL1)
where
M—1
E)* = Saila)”. (A12)
a=0
It is straightforward to show that
(0) =My (©)|0®T|y(®)). (A13)

Hence, the thermal average of O can be obtained just by
measuring the expectation value of O ® 7" on the final state.

2. Simulation of the transverse-field Ising model
a. Determination of four lowest eigenstates

As an application example of our algorithm, let us first
solve the four lowest eigenstates in an eight-spin system. The
dimension of the full Hamiltonian is 256. We use two ancillas
to purify the quantum state. The variational parameters 6 in
the ansatz defined by Fig. 1 in the main text are randomly
initialized within an interval [0, 0.1). The optimization is iter-
atively conducted a few hundred times until all the variational
parameters converge. This optimization step is taken 21 times,
starting from different initial variational parameters. We use
the best set of parameters that minimizes the loss function to
evaluate the four lowest eigenpairs of the Hamiltonian.

To determine the matrix elements of the Hamiltonian with
four eigenstates, we first evaluate the expectation values
of the 4% = 16 operators H ® AAM defined in Eq. (A7). Substi-
tuting the results into Eq. (A8), we then obtain all the 4 x 4
matrix elements of H in the optimized basis subspace. The
four lowest eigenvalues are obtained by diagonalizing this
4 x 4 matrix. The results are shown in Fig. 2 in the main text.

b. Determination of eight lowest eigenstates

In a circuit with N, spins, up to 2"« eigenstates can be
simultaneously optimized with our algorithm. However, these
eigenstates may not be the lowest-energy ones for a given uni-
tary operator U (0) because, in some cases, U(8) can access
only part of the Hilbert subspace spanned by the 2V lowest
eigenstates. As shown in Fig. 4, this is, indeed, what we see in
the variational calculation for the eight lowest eigenvalues of
the eight-spin TFIM using the unitary ansatz shown in Fig. 1
in the main text with three ancillas. For comparison, we also
show the exact results for the lowest 11 eigenvalues of the
same system in the right panel of Fig. 4. Among the eight

Exact

FIG. 4. Eight low-energy eigenvalues obtained using three an-
cillas for the eight-spin TFIM. The left panel shows how the eight
eigenvalues converge with the optimization step m. The right panel
shows the lowest 11 eigenvalues in ascending order from the bottom
obtained by exact diagonalization. Among these 11 eigenvalues,
the sixth, seventh, and ninth excited eigenvalues are skipped in the
variational calculation. Six variational layers (L = 6) are used.

eigenvalues we obtain, six of them, including the ground-state
energy and the energies of the five lowest excited eigenstates,
converge to the exact results. The other two eigenvalues, how-
ever, converge to the eighth and tenth excited eigenvalues.
Hence, the sixth and seventh excited eigenstates are missing
in the variational calculation.

To understand why the variational optimization does not
produce the eight lowest eigenstates, we evaluate the wave
function overlaps between the true eight lowest eigenstates of
the Hamiltonian and the eight optimized basis states |&)” (¢ =
0,...,7),

Miq = (E™|a)’. (A14)
In order to obtain all the eight lowest-energy eigenstates of H,
M should be a matrix of rank 8. However, in our calculation,
we find that its rank is 6, indicating that only six out of the
eight lowest-energy eigenstates of A can be obtained from the
variational ansatz we adopt if three ancillary qubits are used.

If the variational ansatz is not changed in our layered
circuit structures, one way to solve the above problem is to
increase the number of ancillas. By introducing more ancillary
qubits, we are able to optimize the wave function in a larger
Hilbert subspace. By increasing the number of ancillas, we
should be able to find the eight lowest eigenpairs. In other
words, if the eigenpairs so obtained do not change with the
increase of the number of ancillas, they should be the targeted
eight lowest eigenpairs.

For the eight-spin TFIM, we find that it is sufficient to find
the eight lowest-energy eigenstates by utilizing four ancillas.
Figure 5(a) shows how the eight lowest eigenvalues of H
converge with the iteration step m. The absolute errors §E;
(i=0,...,7 of these eigenvalues, shown in Fig. 5(b), drop
exponentially and uniformly with m. For all eight eigenval-
ues, the errors become less than 107° if six layers (L = 6)
are used and m becomes larger than 300. The errors can be
further reduced if more iteration steps are taken to optimize
the variational parameters.
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FIG. 5. Eight lowest eigenvalues obtained in ascending order
from the bottom using four ancillas for the eight-spin TFIM. (a) and
(b) show the m dependence of the eight lowest eigenvalues E; and
their absolute errors, 8E; = E; — E*, respectively. Six variational
layers (L = 6) are used.

3. Test on NISQ computers

Here we present the technical details of the test for our
concurrent quantum eigensolver on real NISQ computers by
taking the three-spin TFIM with one ancilla as an example.

A variational calculation generally needs an ample depth
of the circuit to represent a highly entangled quantum state.
However, too many variational parameters may induce the
so-called barren-plateau effect, undermining the optimization
performance in NISQ computers. This implies that we should
take a balanced strategy to optimize the number of variational
parameters and their implementation errors. Since two-qubit
gates have much lower fidelity than single-qubit gates in cur-
rently available quantum computing platforms, we modify the

FIG. 6. (a) Variational circuit for solving the lowest two eigenen-
ergies of the three-spin TFIM with one ancilla. U is the two-qubit
rotation gate, whose structure is depicted in (b). S is the phase gate,
S = Rz(7/2).

variational ansatz to use more single-qubit gates to lower the
use of two-qubit gates.

Figure 6 shows the variational circuit used in our calcula-
tion. To improve the optimization process without increasing
the number of two-qubit gates, we add additional single-
qubit rotation gates along the Y axis between the two
controlled-NOT (CNOT) gates, which introduces more varia-
tional parameters to improve the search capability of our
ansatz. Note that there is no need to add the Z- and X-axis
rotation gates because they commute with the CNOT gate, and
these two kinds of gates are equivalent to rotating W gates.

We implemented our algorithm on the Oslo quantum pro-
cessor on the IBM quantum computing platform. The result
is shown in Fig. 3 of the main text. Our implementations
use a full readout error-mitigation technique to determine
the response matrix before the optimization. Applying this
technique, we can mitigate the cross-talk effect [66,67] in
the readout process. Given the small size of the circuit, this
error-mitigation process is achievable with reasonable com-
putational resources. Increasing the number of qubits, we can
still mitigate the readout error under the assumption of an
independent readout error model such as the tensor product
noise model [68] using the bit-flip averaging technique [69].
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