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Depth analysis of variational quantum algorithms for the heat equation
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Variational quantum algorithms are a promising tool for solving partial differential equations. The standard
approach for its numerical solution is finite-difference schemes, which can be reduced to the linear algebra
problem. We consider three approaches to solve the heat equation on a quantum computer. Using the direct
variational method we minimize the expectation value of a Hamiltonian with its ground state being the solution
of the problem under study. Typically, an exponential number of Pauli products in the Hamiltonian decomposition
does not allow for the quantum speedup to be achieved. The Hadamard-test-based approach solves this problem,
however, the performed simulations do not evidently prove that the Ansatz circuit has a polynomial depth with
respect to the number of qubits. The Ansatz tree approach exploits an explicit form of the matrix that makes
it possible to achieve an advantage over classical algorithms. In our numerical simulations with up to n = 11
qubits, this method reveals the exponential speedup.
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I. INTRODUCTION

Quantum computing is a promising technology based on
the principles of quantum mechanics [1]. The main motivation
is to outperform the state-of-the-art classical algorithms and
achieve the so-called quantum supremacy [2,3]. Well-known
examples are the quantum search algorithm [4,5] and Shor’s
factorization algorithm [6,7], which are both superior to
the classical ones. These algorithms, however, require large-
depth quantum circuits composed of highly accurate quantum
gates. Both these requirements are problematic in the present
era of noisy intermediate-scale quantum (NISQ) computers
[8]. Error-correction codes [9–12] and error-mitigation tech-
niques [13–17] could potentially overcome these problems,
however, the state-of-the-art quantum devices lack enough
number of qubits to work in the fault-tolerant regime. Quan-
tum computers can also be useful in various linear algebra
problems. A remarkable example is the Harrow, Hassidim,
and Lloyd (HHL) algorithm for solving systems of linear
equations [18–21]. Because the classical algorithms generally
have the polynomial complexity in the matrix size N , the
HHL algorithm provides the exponential speedup in the case
of sparse matrices. However, the use of the HHL algorithm
for heat equation and similar problems suffers from the expo-
nential decay of the success probability due to the sequential
application of the algorithm for each time step.

An alternative approach to the solution of linear
equations on quantum computers is variational algorithms.
The essence of such algorithms is a combination of the
classical minimization for some objective functions whose
values are found by means of the quantum computer. In
particular, the variational algorithms have demonstrated their
effectiveness in the presence of noise [22–33]. However, there
are limitations to the effectiveness of the objective function
minimization, including noise-induced barren plateaus [34],
as well as the suppression of cost gradient magnitudes [35].

In this paper, we study variational algorithms for solving
systems of linear equations obtained by a finite-difference
scheme of the heat equation at a single time step. We focus on
a possibility to achieve quantum superiority using the quan-
tum variational approach. We analyze the optimal choice of
the time-evolution partition and have found that the time grid
parameter controls the computational speedup in comparison
with the classical algorithms. We also found that there are two
main problems for the efficient implementation of variational
algorithms for solving a linear system: (i) the measurement
of the loss function and (ii) the construction of the variational
Ansatz. The direct variational approach is based on the min-
imization of the expectation value of some auxiliary Hamil-
tonian [36,37]. This approach demonstrates the fundamental
possibility of solving systems of linear equations on a quan-
tum computer, but suffers from both mentioned problems. The
Hadamard-test-based approach [36] solves the first problem
of the loss function measurement by using a specific measure-
ment basis. However, we have not achieved, in this case, an
efficient preparation of the Ansatz circuit with the help of the
universal entanglers. The Ansatz tree approach [38] is based
on the given form of a linear system for constructing the
Ansatz. This approach combines both the efficient measure-
ment of the loss function by exploiting the Hadamard test and
the efficient construction of the Ansatz by using the special
hierarchical optimization technique. This allows us to achieve
a superiority over the classical algorithm. The performance
of discussed algorithms is demonstrated by the numerical
simulation with the matrix size up to 2048 × 2048 (211 × 211).

The article is organized as follows. In Sec. II we in-
troduce the heat equation and its discrete finite-difference
scheme. The direct variational algorithm is introduced and
discussed in Sec. III. Section IV introduces and describes
the Hadamard-test-based approach and presents its numerical
implementation on a simulator. In Sec. V we investigate the
implementation of the Ansatz tree approach. The analysis of
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the computational complexity of the algorithm is presented.
Section VI discusses the optimal choice of the time grid
parameter for the heat equation. Section VIII concludes the
paper with final remarks.

II. HEAT EQUATION

Let us consider the heat equation with constant coeffi-
cients, a given initial time constraint, and periodic spatial
boundary condition,

a2�U (�r, t ) − ∂U (�r, t )

∂t
= f (�r, t ); U (�r, 0) = χ (�r); U (�r, t ) = U (�r + �R, t ), (1)

where f (�r, t ) and χ (�r) are the heat sources and initial distribution function, respectively. In this paper we address the numerical
solution of the Eq. (1). We first analyze the one-dimensional case and then discuss generalization to the multidimensional
situation. The one-dimensional equation reads as

a2 ∂2U (z, t )

∂z2
− ∂U (z, t )

∂t
= f (z, t ), U (z, 0) = χ (z), U (z, t ) = U (z + Z, t ). (2)

For the numerical solution of such equations, a grid of values of the arguments of U is introduced. The values of the function
U (z, t ) on the grid are used for the construction of the finite-difference scheme [39,40] based on the equation

a2 U τ+1
i+1 − 2U τ+1

i + U τ+1
i−1

(δz)2
− U τ+1

i − U τ
i

δt
= f τ

i , U 0
i = χi, U τ

0 = U τ
Nz

(3)

which can be rewritten as

(−2 − c)U τ+1
i + U τ+1

i+1 + U τ+1
i−1 = bτ

i , U 0
i = χi, U τ

0 = U τ
Nz

, (4)

where

c = (δz)2

a2δt
, bτ

i =
(

f τ
i + U τ

i

δt

)
(δz)2

a2
, (5)

where δz and δt are the spatial and temporal partitions of the grid, Nz and Nt are the numbers of space and time partitions,
respectively. Index i corresponds to the coordinate grid, and τ corresponds to the time grid. We use an implicit difference
scheme that yields the stability of the solution for arbitrary parameters of the equation and the grid size [41]. Thus, Eq. (2) turns
into Eq. (4), where bτ

i contains information about previous time layer. The single time-step evolution from t = τ to τ + 1 is
carried out by solving the linear system (4) relative to the spatial coordinates at the time instance τ + 1, where the information
from the previous time layer τ is considered to be known through the function bτ

i . The solution of the system (4) is equivalent to
the solution of a system of linear equations

Ax = b, (6)

where

A(c) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 − c 1 0 · · · 0 1
1 −2 − c 1 · · · 0 0
0 1 −2 − c · · · 0 0
...

. . .
. . .

...

0 0 · · · −2 − c 1 0
0 0 · · · 1 −2 − c 1
1 0 · · · 0 1 −2 − c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

x =

⎛⎜⎜⎜⎝
U τ+1

0
U τ+1

1
...

U τ+1
N−1

⎞⎟⎟⎟⎠, b =

⎛⎜⎜⎝
bτ

0
bτ

1
...

bτ
N−1

⎞⎟⎟⎠. (8)

The matrix A depends on the spatial boundary conditions.
In this paper we consider the periodic boundary spatial condi-
tions, where the matrix A has the form (7).

A. Analysis of the condition number

The loss of the accuracy due to arithmetic operations in the
classical numerical solution of a system of linear equations is

governed by the condition number [42]

κ (A) = λmax(A)

λmin(A)
, (9)

where λmin(A), λmax(A) are the absolute minimum and maxi-
mum eigenvalues. This parameter defines the sensitivity of the
vector b to a change in the vector x. For example, κ (A) = 10k
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means the loss of k digits in accuracy due to arithmetic op-
erations. The condition numbers for a matrix and its inverse
coincide.

At κ (A) → +∞ the linear system is unstable with respect
to small perturbations in the initial conditions and the solution
is not correct at all. Let us consider the condition number for
the matrix A, given by Eq. (7). In this case λmax(A) = c + 4,
λmin(A) = c and the condition number is given by

κ (A) = c + 4

c
; lim

c→0
κ (A) = +∞. (10)

Hereafter, we assume that the number of coordinate partitions
Nz is fixed, and therefore the grid parameter c is determined by
the number of partitions of the time interval Nτ . With c → 0
the condition number diverges, and the system (6) becomes
unstable at small c.

B. Analysis of the precision of the classical numerical solution
for the heat equation

In this section we discuss the choice of the optimal grid
parameter c for the classical numerical solution of the heat
equation given in the paper. The optimal c is chosen through
the minimization of the total error, which is comprised of two
separate errors: (i) the error of the derivatives approximation
by the finite differences, (ii) the arithmetic error due to a finite
accuracy of the arithmetic operations.

The arithmetic error is determined by the condition num-
ber. At each next time step of the algorithm Û τ

i → Û τ+1
i the

solution Û τ+1
i inherits the accumulated error ετ of the solu-

tion from the previous step U τ
i amplified by the conditional

number [see Eq. (5)] and gets the additional arithmetic error ε̃

resulting from the finite accuracy of the floating-point opera-
tions. Thus, the error for Nτ ∝ c time steps can be expressed
as

ε0 = 0,

ε1 = ε̃,

ε2 =
√

ε̃2 + [cκ (A)ε1]2,

εNτ
=

√√√√ε̃2 +
Nτ∑

k=1

(κ (A)c)2kε2
k−1

= ε̃

√
[cκ (A)]2Nτ − 1

[cκ (A)]2 − 1
∼ ε̃(c + 4)Nτ −1. (11)

Equation (11) shows that the arithmetic error grows as O(cNτ )
with the number Nτ ∝ c of time partitions, while the time

derivative approximation error behaves as O(1/c) according
to Ref. [43]. From the behavior of both errors, it can be
concluded that there is an optimal choice of the time partition
number Nτ that minimizes the total error.

III. DIRECT VARIATIONAL METHOD

In this section we use the variational method [36] to solve
a system of linear algebraic equations (6) with the matrix A
of the size 2n × 2n, n > 1, given by Eq. (7). The main idea of
the method is to construct a Hamiltonian with a ground state
corresponding to the linear algebra problem to be solved.

Suppose we need to solve a system of equations (6). A
solution can be formally written as

|x〉 = A−1|b〉. (12)

It can be readily shown [36] that this solution |x〉 is the ground
state of the Hamiltonian

H = A+(I − |b〉〈b|)A, (13)

and E = 〈x|H |x〉 = 0.
Thus, the idea of the variational method is to construct a

parametrized quantum circuit, which is referred later as the
Ansatz

Uφ = Uφ (�θ ) : Uφ (�θ )|0〉 = |φ(�θ )〉. (14)

The minimal expectation value of the Hamiltonian (13) is
found by tuning the parameters �θ of the quantum state |φ(�θ )〉:

�θm = arg min〈φ(�θ )|H |φ(�θ )〉. (15)

In this case, |x〉 = |φ(�θm)〉 is the solution. This problem with
the matrix size 2n × 2n can be solved on a quantum computer
using n qubits. For this purpose it is necessary to set the
variational function |φ(�θ )〉 and then measure the expectation
value of the Hamiltonian. To measure the expectation value, it
can be decomposed into Pauli products:

H =
∑

i

ciσ1σ2 . . . σn, (16)

where σ are the Pauli matrices I, σx, σy, σz.
Then the anzatz quantum circuit is run for each Pauli prod-

uct and the expectation value E = 〈x|H |x〉 is evaluated. In
the standard variational procedure the variational parameters
are changed using a classical computer and the procedure is
repeated until zero energy is reached with a given accuracy.
As a result, we obtain a set of parameters �θm which correspond
to the desired solution |x〉.

TABLE I. Average characteristics of the ibmq_manila processor during measurements.

T1 (μs) T2 (μs) U2 gate error U2 gate duration (ns) Resonant frequency (GHZ ) Readout error Id gate error rate

Qubit 0 126.98 91.92 0.000204 35.556 4.963 0.0221 0.0002
Qubit 1 155.43 69.83 0.000214 35.556 4.838 0.0235 0.0002

Rz error rate Sx error rate X error rate Reset (ns) CNOT (C:0; T:1) error rate CNOT (C:1; T:0) error rate

Qubit 0 0 0.0002 0.0002 5514,67 0.00567 0.00567
Qubit 1 0 0.0002 0.0002 5514.67
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FIG. 1. Quantum circuit for the direct variational algorithm for solving the system of linear equations on two qubits. σ1, σ2 correspond to
the measured Pauli product. Parameters θ1, θ2, θ3 specify the variational function |x〉 = |φ(�θm )〉.

Demonstration of the method was performed on a real IBM
quantum computer via QISKIT [44]. The size of the matrix
A [Eq. (7)] was chosen 4 × 4, where only two qubits are
required. Qubits 0 and 1 of the ibmq_manila processor are
used in this work. Quantum processor characteristics are given
in Table I.

For demonstrative purposes, let us consider c = 0 (Poisson
equation), and assume that b is real. In this case det A = 0 and
the linear system (6) is not determined. The eigenvector cor-
responding to λ = 0 is homogeneous: �eλ=0 = {1, 1, 1, 1}/√4.
Thus, undo an additional constraint �b · �eλ=0 = 0 correspond-
ing to

∑
bi = 0 the linear system (6) has infinitely many

solutions �x = A−1�b + α�eλ=0 with an arbitrary real α. We con-
struct |x〉 using an additional constraint

|x〉 :
∑

xi = 0, (17)

which fixes |x〉 and implies that the solution has no ho-
mogeneous Fourier component: (�eλ=0 · �x = 0). Hence, two
parameters are sufficient to determine the variational function
|x〉 = |φ(θ1, θ2)〉.

The quantum circuit is shown in Fig. 1. Three parameters
θ1, θ2, θ3 provide a variational function |x〉, with only the first
two of them being independent, and the third one according to
the condition (17) reads as

θ3 = −2 arctan
cos θ+ + sin θ+
cos θ− + sin θ−

,

θ± = 1

2
(θ1 ± θ2). (18)

The gates σ1, σ2 are chosen depending on the Pauli products
term (16):

σx → H, σy → S+H, σz → I, (19)

where

H = 1√
2

(
1 1
1 −1

)
, S+ =

(
1 0
0 −i

)
. (20)

An example of the map of the Hamiltonian expectation
value E = 〈φ(�θ )|H |φ(�θ )〉 for two parameters θ1, θ2 is shown
in Fig. 2 for the random |b〉. The bright dots indicate two
solutions corresponding to E = 0, which differ by modulo π .

The direct variational algorithm demonstrates a funda-
mental possibility to solve linear algebra problems, and in
particular the discretized heat equation on a quantum proces-
sor. However, it has one essential disadvantage: this algorithm
does not demonstrate quantum speedup in the situation where
the number of Pauli products in the Hamiltonian decompo-
sition is exponential in the number of qubits. Generally, for
the arbitrary |b〉, the number of terms in the Pauli products

expansion is indeed exponential. In some cases it is possible
to effectively sample over the Pauli products if one knows
the distribution of the Pauli decomposition weights ci [see
Eq. (16)], but this option requires a separate study. Thus, it
is more promising from a practical point of view to develop
more sophisticated variational methods described below.

IV. HADAMARD-TEST-BASED APPROACH

A development of the previous approach is a variational
method where the problem of the measurement of the expo-
nential (in general case) number of Pauli products is avoided.
This method takes advantage of the fact that the Fourier map-
ping of the matrix A, given by Eq. (7), has a diagonal form

D = M+
QFTAMQFT, (21)

where MQFT is the quantum Fourier transform unitary matrix
[45].

As in the preceding section we search for the minimum of
the expectation value E of the Hamiltonian (13). The expec-
tation value E = 〈x|H |x〉 can be presented in the form

E = 〈x|A+(I − |b〉〈b|)A|x〉 = 〈x|A+A|x〉 − |〈x|A|b〉|2
= 〈φ|D2|φ〉 − |〈φ|D|b f 〉|2
= 〈φ|D2|φ〉 − Re 〈φ|D|b f 〉2 − Im 〈φ|D|b f 〉2, (22)

where |φ〉 is the Fourier transform of the desired solution and
|b f 〉 is the Fourier transform of |b〉. For the matrix A of the size

FIG. 2. The expectation value of the Hamiltonian
E = 〈φ(�θ )|H |φ(�θ )〉 as a function of two parameters θ1, θ2 for
the random |b〉. Bright circles denote two equivalent minima of the
function corresponding to the desired solution. The parameter space
is specified on a 30 × 30 grid.

052422-4



DEPTH ANALYSIS OF VARIATIONAL QUANTUM … PHYSICAL REVIEW A 107, 052422 (2023)

FIG. 3. A general quantum circuit of a variational algorithm using the Hadamard test. We choose gate I or S on the qubit a to measure Re
or Im |〈φ|D|bf 〉|, respectively. To measure 〈φ|D2|φ〉, the Uφ gate is used without control from the qubit a.

2n × 2n this method requires n + 1 qubits, where one extra
qubit (ancilla) is exploited in the Hadamard test [38].

The overall circuit of the algorithm is shown in Fig. 3.
A prepared state |b〉 is an input for the quantum circuit.
The desired gate and control of the ancilla qubit depends on
which particular term in the last line of the expression (22)
is going to be measured. The measurement of the 〈φ|D2|φ〉
term does not require the usage of the ancilla qubit and
Uφ control gate is disabled, while for the measurement of
Re 〈φ|D|b f 〉 or Im 〈φ|D|b f 〉 term one takes I or S gate on the
ancilla

Re {〈φ|D|b f 〉} = 〈ξI |Z ⊗ D|ξI〉,
Im {〈φ|D|b f 〉} = 〈ξS|Z ⊗ D|ξS〉, (23)

where |ξI or S〉 is the output state of the circuit (see Fig. 3). The
expression (23) is an implementation of the Hadamard test.
The measurement outcomes obtained on the qubits b1 . . . bn

(see Fig. 3) are the binary representation of the eigenvalue in-
dex the operator A. The terms Re 〈φ|D|b f 〉 or Im 〈φ|D|b f 〉 are
obtained by sampling out the eigenvalue index �b = b1 . . . bn

and the ancilla qubit value a and averaging the corresponding
eigenvalue with the weight factor (−1)a.

Thus, in order to measure the total expectation value of the
Hamiltonian (22) it is necessary to run only three quantum
circuits and sampling out qubits outcomes a, b1, . . . , bn. The
variational parameters �θ enter into the circuits through the
gate Uφ :

|φ(�θ )〉 = MQFTUφ (�θ )|b〉. (24)

One searches for the minimum of the expectation value E
of the Hamiltonian (13) by varying the parameters �θ . The
obtained solution �θm gives the desired solution |x〉 using the
Uφ Ansatz:

|x〉 = Uφ (�θm)|b〉.
The main challenge of this method is a proper choice of the

Ansatz for Uφ . The common recipe is to make the Ansatz lay-
ered where the number of layers M determines the precision.
Figure 4 shows a single layer for each Ansatz we use: (a) hard-
ware efficient Ansatz (HEA), (b) checkerboard Ansatz (CBA),
and (c) digital-analog Ansatz (DAA). DAA implies that a
digital-analog strategy is used, which is based on always-on
interaction between the qubits, so that single-qubit gates are

implemented digitally, while the entanglement arises from
native interactions of the qubits. The interaction of the qubits
is assumed to be of Ising ZZ type between the neighboring
qubits of the quantum device, while the connectivity topology
of the device is assumed to be a ring. All interaction constants
are chosen to be equal to each other. Digital-analog strategy
has an advantage that it does not require two-qubit gates.
Note that quantum Fourier transform can also be implemented
using the digital-analog approach [46].

Each Ansatz consists of the same layers where the number
of the layers is determined by the problem. The number of
gates in each Ansatz is ∼O(n), where n is the number of
qubits. The quantum algorithm outperforms the classical one
if the required number of the layers M remains polynomial
in n. In this situation the whole quantum algorithm will be
completed in O(nk ) = O(logk N ) steps while the best classical
algorithm for linear algebra problem requires O(N ) steps,
where N = 2n is the matrix size.

In our work we use the measure of similarity of two vectors
defined as

F (a, b) =
∣∣∣∣ a†b√

a†ab†b

∣∣∣∣2

. (25)

This quantity turns into a well-known measure of the proxim-
ity of two pure quantum states if the vectors are normalized.

The algorithm was run on a local simulator in the QISKIT

package. For a given number of qubits n and layers M of the
Ansatz, the optimization was carried out (finding the minimum
of the expectation value of the Hamiltonian) and the fidelity
(25) between the resulting approximate and exact solutions
was calculated. The number of the layers M was increased
until the fidelity value F = 0.99 was achieved. The simulation
results for the different Ansätzes and parameters c are shown
in Fig. 5. Graphs are plotted on the log-log scale, so any
straight line indicates a polynomial dependence.

The simulation was carried out for the number of qubits n
ranging from 2 to 8. Each point on the graph was obtained by
averaging out the results for a random sample of 20 vectors
|b〉. It was found that the number of Ansatz layers M required
to achieve a given accuracy is practically independent on the
initial conditions (vector |b〉).

The curves in Fig. 5 show superlinear behavior in most
cases. At the same time, in the case of CBA (b) for the param-
eter c = 2 we see a polynomial dependence and the number
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FIG. 4. One layer of the hardware-efficient Ansatz (a), the checkerboard Ansatz (b), digital-analog Ansatz (c). The entangling gate (dotted
region) is used in (b) and (c), where Rzz(θ ) = e−iθZ⊗Z and θ is a variational parameter. The number of gates in each layer is O(n), where n is
the number of qubits.

of layers M needed to solve the problem remains polynomial
in the number of qubits. The best results were obtained for
CBA, as it provides a more uniform entanglement. Moreover,
an increase in the parameter c also leads to a decrease in the
number of the required ansatz layers. The weak convergence
of the variational algorithm for small c can be explained by
the concept of condition number, which is outlined in Sec. II.

However, the present simulations with at most eight qubits
turn out to be not sufficient to make an unambiguous con-
clusion about the advantage of the quantum algorithm over
the classical one. Still, we can conclude that it is important to
choose both an appropriate Ansatz and the value of parameter
c. In the next section we demonstrate how to choose the Ansatz
which provides a computational advantage.

FIG. 5. The number of Ansatz layers M needed to achieve a fidelity of 0.99, as a function of the number of qubits n used. The graphs are
plotted on the log-log scale. A simulation was performed for three different types of Ansätzes: HEA (a), CBA (b), and DA (c).
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V. ANSATZ TREE APPROACH

In this section, we apply the variational algorithm of
Ref. [38] to the solution of the heat equation. The algorithm
has a branched tree structure and is referred to as the Ansatz
tree approach (ATA). The ATA is based on an efficient de-
composition of the matrix A (7) into a superposition of unitary
matrices

A =
KA∑
i=1

βiUi. (26)

The efficient decomposition means that (i) the unitary op-
erators of the decomposition can be presented by quantum
circuits with a polylogarithmical depth, (ii) the number of Ui

also scales polylogarithmically with the size of the matrix A.
The loss function of this approach has the form

LR(x) = ‖Ax − |b〉‖2
2 = x†A†Ax − 2 Re{x†A|b〉} + 1; (27)

while the gradient overlap is defined as

∇LR(x) = 2A2x − 2A|b〉. (28)

The loss function is the well-known �2-norm loss used in
regression methods. One looks for the solution vector x in the
tree form

x = α0|b〉 + α1Uv1 |b〉 + α2Uv2Uv1 |b〉 + · · · , (29)

where αk are variational parameters. The parameters v j de-
termine the index of Ui from the decomposition (26). The
rule of expansion of the vector x is explained below. Note
that the vector x is not normalized as far as the vectors
|b〉, Uv1 |b〉, Uv2Uv1 |b〉 . . . are not orthogonal. Reference [38]
proves that the loss function (27) is convex when x has the
form (29). For the further convenience, we introduce the vec-
tors

|0〉 = |b〉, |1〉 = Uv1 |b〉, | j〉 = Uv jUv j−1 . . .Uv1 |b〉, (30)

x =
∑

j

α j | j〉. (31)

Let us consider an iterative optimization algorithm for the
expansion of the vector x. In the beginning, let the subspace
S contain only the root of the Ansatz tree, i.e., S = {|b〉}. At
each next step, we perform the following:

(1) Find the optimal xs = ∑m
j=0 α j | j〉 by optimizing the

loss function (27) over the parameters α0, . . . , αm.
(2) For each child quantum state |c〉 ∈ C(S) = {U1|m〉,

U2|m〉, . . . ,UKA |m〉} compute the gradient overlap g =
〈c|∇LR(xs) = 2

∑m
j=0 α j〈c|A2| j〉 − 2〈c|A|0〉. This quantity

can be computed efficiently using the quantum circuit de-
picted in Fig. 3.

(3) Add a new node with the largest gradient overlap to the
subspace S: S ← S ∪ {|m + 1〉}, |m + 1〉 = argmax|c〉∈C(S)|g|.

A. Efficient unitary decomposition for heat equation

In this section we apply ATA to the heat equation. First, we
construct the efficient unitary decomposition of A. Obviously,
any Hermitian matrix can be decomposed into the Pauli prod-
ucts. This decomposition, indeed, satisfies the first efficiency
requirement, but scales exponentially with the number of

c

c

c

c

c

c

FIG. 6. The spectrum of the matrix A and its piecewise-quadratic
approximation at small λ�

k .

qubits. Nevertheless, we demonstrate that the decomposition
into the Pauli products can be effectively incorporated into our
approach. Our idea is to switch into the Fourier representation
and modify the matrix A spectrum, that will sufficiently reduce
the number of the decomposition terms.

1. Piecewise-quadratic approximation of the spectrum
for the heat equation

Let us consider the spectrum of the matrix (7):

λA
k = (MQFT A M†

QFT)kk = (AF )kk = −c − 4 sin2

(
πk

2n

)
,

(32)

where MQFT is the Fouruer transform unitary transformation
matrix. The Laplace operator � has a quadratic spectrum
�φk = k2φk , where φk are eigenvectors. The finite-difference
representation of the Laplace operator [see Eq. (3)] modifies
the quadratic spectrum into the sine spectrum (32). The eigen-
values of these two spectra coincide at small k. Therefore, we
replace the spectrum of the matrix A by a piecewise-quadratic
spectrum for small λ�

k = k2 (see Fig. 6). This transformation
can be done in the following way: first, we apply N/2 times
the cyclic permutation to the diagonal matrix (AF )kk ,

(AF )kk → (
AL

F

)
kk = −c − 4 sin2

(
πk

2n
− π

2

)
, (33)

and, next, we expand the sine at the maximum:(
AL

F

)
kk → (

AL′
F

)
kk = −c − 4

(
πk

2n
− π

2

)2

. (34)

Finally, we again apply the N/2-fold cyclic permutation(
AL′

F

)
kk → (A′

F )kk = −c − π2

(∣∣∣∣ k

2n−1
− 1

∣∣∣∣ − 1

)2

. (35)

This approximation implies that a sufficiently fine spatial grid
is selected, so that the heat source function f (x, t ) changes
smoothly on the grid scale.

Let us analyze how the solution of Eq. (6) changes due
to the approximation has been made. Figure 7 shows how
fidelity between A−1|b〉 and A′−1|b〉 depends on the size of the
matrix (the number of qubits). This figure evidences that the
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FIG. 7. The dependence of the fidelity of two solutions for the
matrix A with a sinusoidal and A′ with a piecewise-quadratic spec-
trum on the number of qubits (the size of the matrix A). Each point
represents an averaging over 1000 random |b〉 and over 20 random
values of c in the range from 0.1 to 2.0

approximation of the spectrum (35) introduces only a small
perturbation to the solution, and the error does not scale with
an increase of the number of qubits (the size of the system). In-
fidelity can be further reduced by eliminating high-frequency
harmonics of Laplace operator. Thus, instead of the system
(6) with matrix (7), in this paper the ATA is applied to the
same system with the matrix A′ without a significant loss of
accuracy.

2. Decomposition into Pauli products in the Fourier
representation

In this section, we construct the efficient decomposition of
the matrix A′ into a sum of unitary operators that satisfies both
efficiency requirements. This decomposition is based on the
following statement: For a diagonal matrix with the spectrum
p(m) = ∑s

i=0 αimi, the decomposition into Pauli products in-
volves only terms containing no more than s operators Z .
This statement is analyzed and proved in Appendix A. The
matrix A′ has the same eigenvectors as A, and therefore is
diagonal in the Fourier representation. In this case, A′ has the
piecewise-quadratic spectrum, which also satisfies the above
statement. Hence, the matrix A′ can be decomposed into O(n2)
of Pauli products, each of which contains no more than two
operators Z:

A′ = M†
QFT

⎛⎝∑
i, j

di jZiZ j +
∑

i

siZi + ζ I

⎞⎠MQFT

=
∑
i �= j

di jM
†
QFTZiZ jMQFT +

∑
i

siM
†
QFTZiMQFT + ζ I.

(36)

Thus, combinations of ZiZ j and Zi, as well as I can be chosen
as Ui for the decomposition (26) in the Fourier represen-
tation. This satisfies the second efficiency requirement: the
number of Ui depends polylogarithmically on the size of the
matrix A′.

Let us give an upper estimate for the complexity of con-
structing of the unitaries Ui. The quantum Fourier transform

FIG. 8. Quantum circuit for measuring 〈i|A|i〉 and 〈i|A2|i〉.

requires n(n − 1)/2 Cphase gates. Two of them are required,
therefore, the construction of one Ui requires at most n(n − 1)
two-qubit entangling gates, and on average n(n − 1)/2, since
the quantum Fourier transformation collapses when applying
Z gates not to the last qubit. Thus, the unitary decomposition
(36) satisfies both efficiency requirements.

B. Numerical realization of the Ansatz tree approach

In this section, a numerical simulation of the described
algorithm for the heat equation is considered. To implement
the algorithm, it is necessary to be able to calculate the loss
function (27) and the gradient overlap

g = 〈c|∇LR(xs) = 2
m∑

j=0

α j〈c|A2| j〉 − 2〈c|A|0〉. (37)

A quantum computer is used to calculate the values of 〈i|A| j〉
and 〈i|A2| j〉. Similarly to Sec. IV, the Hadamard test is uti-
lized, where the corresponding quantum circuits in the ATA
case are shown in Figs. 8 and 9. Here we exploit the decompo-
sition of the matrix A into the Pauli products �vi in the Fourier
representation and denote

|i〉 = Uvi |b〉 = M†
QFT�vi MQFT|b〉. (38)

The measurement outcome is the eigenvalue index of the
matrix A or A2, respectively, similar to the method described
in Sec. IV.

In contrast to the methods described in the Secs. III and
IV, the ATA does not require a permanent access to the
quantum device during the optimization of the loss func-
tion. Here, the optimization occurs in two separate steps: (i)
quantum measurements of all terms 〈i|A2| j〉 and Re〈i|A|0〉
in the decomposition (29) by the Hadamard test; and (ii)
classical optimization of the loss function LR(x) with respect
to the parameters αi. Moreover, when extending the tree depth
from d to d + 1, only the new unknown terms 〈i|A2|d + 1〉,
i = 0, . . . , d , and Re〈d + 1|A|0〉 must be measured. On the
contrary, the optimization of the variational parameters �θ of
the Ansatz circuit U (�θ ) requires the new measurement of the
loss function for each new change in �θ .

In Appendix B, we discuss the influence of the depolariz-
ing noise on this type of optimization. In particular, we found
that in the case of a fully depolarizing channel the solution
accuracy does not converge to 1/2n, which corresponds to a
random vector.

FIG. 9. Quantum circuit for measuring real or imaginary part of
〈i|A| j〉 and 〈i|A2| j〉 depending on the I or S gate.
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FIG. 10. The quantum circuit which generates the normalized
solution |x〉.

1. Construction of the solution

Given the set of weights {αi}, the quantum solution |x〉 can
be constructed in a probabilistic way by the circuit shown in
Fig. 10. The quantum gate U|ψm〉 generates the state |ψm〉 =
U|ψm〉|00 . . . 0〉 in the upper auxiliary qubit register, where

|ψx〉 =
m−1∑
i=0

αi|i〉. (39)

The gate Ux is defined as

Ux =
∑
j=0

| j〉〈 j| ⊗ UijUi j−1 . . .Ui1 , (40)

and can be constructed through two Fourier transforms and
CZ gates in-between. The solution |x〉 is generated in the
lower qubit register once one measures the state |00 . . . 0〉
in the auxiliary register. The number of the auxiliary qubits
scales as �log2 d� with the tree depth d . Thus, on average, the
probability of triggering the solution |x〉 is 1/2�log2 d�.

2. Estimation of algorithm complexity

Let us estimate the complexity of the ATA, the total number
of single and two-qubit gates applied during the construction
of the Ansatz tree of the depth d . First, let us find the number
of operations applied for the loss function measurement [see
Eq. (27)]. At each step m = 0, . . . d − 1 one needs to perform
m + 2 separate measurements: m + 1 measurements 〈m|A2|i〉,
i = 0, . . . , m, and one Re〈m|A|0〉 measurement. Each of these

measurements is done with Hadamard test (see Fig. 9), involv-
ing O(n2) quantum gates due to Fourier transform circuit. The
net cost of the loss function measurement is thus given by
O(d2n2). Second, during the tree growth one searches d times
the best candidate for the next level of the tree among n2 can-
didates. For each candidate one estimates the overlap gradient
[see Eq. (37)] that requires d measurements of the Hadamard
test with O(n2) quantum gate circuits. Thus, in total the whole
gradient overlap procedure exploits O(d2n4) quantum gates
and the net complexity of the ATA is ∼O(d2n2 + d2n4) ∼
O(d2n4). The classical tridiagonal matrix inversion algorithm
[47] has complexity O(2n) and, therefore, the ATA gives the
exponential speedup compared to the classical algorithm at
d = poly(n).

The Pauli decomposition of the inverse matrix (A′)−1 has
in general 2n terms,

A′−1
F =

2n−1∑
p=0

hp�p, (41)

where the weights hp can be expressed through the weighted
sum of the eigenvalues of the matrix A′−1,

hp =
N−1∑
i=0

λA′−1

i (−1)
∑

s is ps , (42)

where ps and is are the sth binary digit of p and i index,
respectively.

For the matrix A′−1, the analytic form hp is cumbersome
and therefore is not amenable to an explicit analysis. Figure 11
shows the dependence of nonzero |hp| on the parameter c (5).
One can see, as far as the parameter c growths, the distribution
of |hp| shrinks near zero values and only few nonvanishing
|hp| contribute to A′−1

F . We assume that this behavior on the
parameter c is preserved with rising size of the matrix A. The
ATA at each step selects a Pauli product with the largest in

FIG. 11. The absolute value of nonzero coefficients of the decomposition into Pauli products of matrix A′−1
F as a function of c for four

qubits. On the right there are the Pauli coefficients distributions for c from the set {0.05, 0.3, 0.5,1} for six qubits. Distribution histograms have
a logarithmic scale along the vertical axis.
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FIG. 12. Dependence of the depth of the tree reaching the fidelity
of 0.99 on the number of qubits (size of the matrix A) for the different
values of the grid parameter c.

absolute value weight. Thus, our conjecture is that the depth
of the ATA tree can be upper bounded by the d � poly(n), and
the contribution of the Pauli products with a relatively small
|hp| can be neglected without significant loss in the accuracy
of the ATA solution

x = AATA
sol |b〉 = (

α0I + α1Ui1 + α2Ui2Ui1 + · · · )|b〉. (43)

We note that the matrix AATA
sol is build for the specific |b〉

and thus is not in general the approximation of the inverse
matrix A′−1.

Therefore, we solve the linear system (6) with a finite
accuracy. In order to analyze the convergence of the ATA, we
limit the expansion of the Ansatz tree by the fidelity value 0.99
between the ATA solution and the exact numerical solution
for matrix A′. Figure 12 shows the dependence of the depth
corresponding to the fidelity value 0.99 on the number of
qubits (matrix size A). One can see that, as the parameter c
increases, the exponential dependence turns into a constant
one in accordance with our conjecture.

The parameter c is controllable through the grid sizes δz
and δt [see Eq. (5)]. However, choosing a very large parameter
c gives too tiny step in the temporal dimension and thus may
lead to a loss in the computation speed. Thus, based on the
results of numerical simulation, we can conclude that with
the correct choice of the grid parameter c, it is possible to
achieve a depth that is polynomial or even constant in the
number of qubits and reaches a given accuracy. It follows
from the estimate O(d2n4) that, for the polynomial depth, ATA
exponentially outperforms the classical tridiagonal matrix al-
gorithm whose complexity is estimated as O(2n).

C. Generalization to higher dimensions

Hitherto we have considered the case of the heat equa-
tion with one spatial dimension. The generalization to the
multidimensional case is straightforward. The multidimen-
sional analog of the matrix A has the form

A(dr )(c) = A(0) ⊗ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
dr

+I ⊗ A(0) ⊗ I ⊗ · · · ⊗ I

+ · · · + I ⊗ I ⊗ I ⊗ · · · ⊗ A(0) − cI (2ndr ). (44)

This form of the matrix A(dr ) allows us to determine the effec-
tive set of Ui for the ATA algorithm. For example, the ith term

of the sum (44) can be decomposed as,

I ⊗ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗A ⊗ · · · ⊗ I

= I ⊗ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗
KA∑
i=1

βiUi ⊗ · · · ⊗ I, (45)

where the decomposition of the matrix A (26) has been used.
Hence, the ATA scales as O(drd2n4) depending on the di-
mension of the coordinate space dr , where n is the number
of qubits required for a single spatial dimension.

VI. ANALYSIS OF THE ANSATZ TREE
APPROACH COMPLEXITY

In this section, we compare the performance of the Ansatz
tree approach and the HHL algorithm [18] in solving the heat
equation. We start our consideration with a fault-tolerance
case. The HHL algorithm is probabilistic; it returns the so-
lution when its ancilla qubit is measured in the state |1〉
with some probability p < 1. The solution of the heat equa-
tion (1) requires Nτ times applications of the HHL algorithm
to the linear system (4) at each time step, where the initial
condition at the ith time step involves the solution of the
preceding (i − 1)th time step [see Eq. (5)]. This means that
the correct solution of the heat equation at the final time
step is obtained only with an exponentially small probability
∼(1 − p)Nτ ≈ exp(−pNτ ) implying that the ancilla qubit is
measured in the state |1〉 at the all sequential applications
of the HHL algorithm. Thus, the probabilistic nature of the
HHL algorithm significantly restricts its application for the
heat equation problem even in the fault-tolerant case.

In the Ansatz tree approach one also generates the solution
of the heat equation in the probabilistic manner as shown in
Fig. 10, where the solution is returned only when m ancilla
qubits are all measured in the state |0〉 with the probability
∼1/d where d is the Ansatz depth. The important difference
with the HHL approach is that we build up the Ansatz tree in
a classical manner: once we learned the Ansatz tree for the
time step t we need not repeat all the proceeding steps while
constructing the initial condition for the next time step. This
allows us to circumvent the exponentially decay of the prob-
ability to get the correct answer: the probabilistic overhead in
the number of runs of the circuit, Fig. 10, results in the penalty
factor ∼Nτ d which scales linearly with Nτ in contrast to the
exponential penalty factor exp(Nτ p) in the number of runs of
the HHL algorithm.

The construction of the initial condition for the next time
step can be done efficiently, provided the heat source function
�f t can be generated at each time by the known Ansatz tree

applied to the initial state �b0:

�f t = M†
QFT

⎛⎝ Kt
f∑

i=0

βt
i �hi

⎞⎠MQFT �b0, (46)

where �hi is a Pauli product that contains tensor products of
X , Y , Z , I .
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Indeed, as follows from Eqs. (5), (29), and (46), the initial
condition for the time step t + 1 is given by

�bt = (δz)2

a2
�f t + c �xt = (δz)2

a2
M†

QFT

⎛⎝ Kt
f∑

i=0

βt
i �hi

⎞⎠MQFT �b0

+ c M†
QFT

⎛⎝ Kt
x∑

i=0

αt
i �vi

⎞⎠MQFT �bt−1 = · · ·

= M†
QFT

⎛⎝ K0
b∑

i=0

κ0
i �si

⎞⎠MQFT �b0. (47)

Next, let us discuss the noise sensitivity of the variational
Ansatz tree approach and the HHL approach due to the gate
errors. The most important parameter in this respect is the
number of two-qubit gates required to build the variational
Ansatz (see Fig. 10) and the HHL quantum circuit. In the
former case the majority of the two-qubit gates come from
the Fourier transform which results in O(n2) two-qubit gates
complexity of the variational Ansatz. The HHL quantum cir-
cuit comprises three different blocks: (i) a phase estimation
block (PEA), (ii) a reciprocal eigenvalue block (REV), and
(iii) an inverse phase estimation block (iPEA). The PEA
block decomposes the initial vector �b0 into eigensystem of
the square matrix A [see Eq. (7)]: |0〉|�b0〉 → ∑

λ β0
λ |λ〉|�aλ〉

with A�aλ = λ�aλ. For the specific heat equation case the PEA
and iPEA blocks can be implemented with O(n3) number of
two-qubit gates. The IEV block makes the reciprocal function
transformation of the eigenvalue register and the ancilla qubit:
|0〉|λ〉 → (

√
1 − c2/λ2|0〉 + c/λ|1〉)|λ〉. In general, for an ar-

bitrary spectrum {λ} this transformation requires O[exp(n)]
quantum gates, although for the quadratic spectrum [see
Eq. (35)], one possibly can compose an approximate REV
operator with polylogarithm complexity O(np) that requires
a separate study. Therefore, one can conclude that the HHL
approach requires at least O(n3) two-qubit gates that makes it
more sensitive to the gate noise.

Now we turn to the complexity of the construction of
the initial state �b0 which was not considered in the previ-
ous sections. The construction of an arbitrary state vector is
an exponentially hard problem in general. In order to have
quantum advantage one has to conjecture an efficient way
for generation of the initial state �b0. For the Ansatz tree
approach considered here, any generation procedure which
has O[poly(n)] complexity guarantees an exponential speedup
over the classical algorithm (see Sec. V B 2). We argue that
such a requirement corresponds a sufficiently smooth ini-
tial temperature distribution function [48]. We interpret this
physically meaningful restriction as a limit on the number of
nonzero low-frequency harmonics in the Fourier decomposi-
tion of the initial temperature distribution.

VII. ANALYSIS OF THE ALGORITHMS’ ACCURACY

In this section, we evaluate the errors inherent in the varia-
tional algorithms discussed in this paper. The main parameter
under study is the grid parameter c of the finite-difference
scheme, which controls the number of time partitions Nτ for

the fixed number of coordinate partitions Nz. As mentioned
earlier, the number Nz is determined by the number of qubits.
At each time step i = 1, . . . Nτ we define the variational algo-
rithm error εi as the infidelity between the solution xi given by
the classical numerical algorithm and the solution x̃i given by
the variational algorithm

εi = 1 − |x†
i x̃i|2. (48)

Then it follows from (48) that

|x†
i δxi| = εi/2 + o

(
ε2

i

)
, (49)

where δxi ≡ x̃i − xi. If the number of partitions Nτ is large
enough, one can assume that xi is almost the same as xi+1 and
therefore

|x†
i+1δxi| ≈ |x†

i δxi| = εi/2 + o
(
ε2

i

)
. (50)

According to Eq. (5) the solution from the previous time
instant x̃i enters to the next time step of the variational scheme
through the vector b̃i = bi + cδxi,

x̃i+1 = A−1bi + cA−1δxi, (51)

where bi is defined through the classical numerical solution xi.
Making use of the triangular inequality one gets the following
estimate for the fidelity:

|x†
i+1x̃i+1| � || x†

i+1A−1bi︸ ︷︷ ︸√
1−εi

| − c|x†
1A−1δxi||

�
√

1 − εi − cκ (A)|x†
i+1δxi|

≈ 1 − εi

2
(5 + c). (52)

Therefore, one gets an upper estimate for the error at the ith
time step as εi+1 � (5 + c)εi � (5 + c)iε1. Here ε1 is the error
due to the finite depth of the variational Ansatz. Thus, as far as
the number of time partitions Nτ ∝ c increases the error of the
variational algorithm scales as O[(5 + c)Nτ −1]. Note that the
same picture is valid for the classical numerical solution: the
arithmetic error scales as O[(4 + c)Nτ −1] with c [see Eq. (11)].

Let us fix the same accuracy of the final solution for quan-
tum and classical schemes. In order to achieve this accuracy
one searches for the optimal value of the grid parameter c by
minimizing together the time derivative error ∝O(1/c) and the
numerical scheme error ∝O[(4 + c)Nτ −1] or O[(5 + c)Nτ −1] in
the classical or quantum case, respectively. One then checks
whether or not the polynomial regime of the Ansatz depth
d ∝ poly(n) is satisfied at this c (see Figs. 5 and 12). Once the
polynomial regime is observed, the quantum scheme indeed
outperforms the classical one.

VIII. CONCLUSION

The paper studies the implementation of three variational
quantum algorithms for solving the heat equation presented
in the finite-difference form. This problem is reduced to the
solution of the system of linear equations arising at each
discrete step of the time evolution.

In the first approach (direct variational method) the expec-
tation value of the Hamiltonian (13) is minimized on some
class of probe functions. The Hamiltonian is constructed in
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a way that its ground state corresponds to the solution of the
system of linear equations. We performed proof-of-principles
quantum computation with the matrix of size 4 × 4 using
the real quantum processor of IBM Q project. The direct
variational algorithm demonstrates a fundamental possibility
of solving the system of linear equations (6) on a quantum
computer. However, the exponential number of Pauli products
in the matrix decomposition does not allow one to achieve
the quantum speedup (superiority over classical algorithms).
In some cases it is possible to effectively sample over these
products if we know the distribution of the decomposition
coefficients, but this requires a separate study.

The second approach (Hadamard test approach) is based
on the minimization of the expectation value of the same
Hamiltonian, but the problem of the exponential number of
Pauli products is eliminated by using the Hadamard test [38].
A numerical simulation of the algorithm was performed with
up to n = 8 qubits using three different entanglers or An-
sätzes. The results show that it can be possible to achieve the
quantum superiority, but the simulations with more qubits are
required to definitively confirm this issue. It is also important
to identify an effective entangler for the investigated prob-
lem. With this approach, three types of Ansätzes were tested:
the hardware efficient, checkerboard, and the digital-analog
Ansatz. The best results were obtained for the checkerboard
Ansatz, as it gives a more uniform entanglement. In addition,
by increasing the grid parameter c [see (5)], one decreases
the number of required layers in the Ansatz. An exponential
acceleration of up to eight qubits was demonstrated for this
entangler. However, we argue that the considered number of
qubits is not enough for an unambiguous conclusion about the
advantage of the algorithm over the classical one.

The third type of approach (Ansatz tree approach) mini-
mizes the l2 norm (27), rather than the expectation value of the
Hamiltonian. The algorithm is based on the unitary decompo-
sition of the matrix (7). For the heat equation it turns out to be
advantageous to switch to the Fourier representation by using
the quantum Fourier transform. In the Fourier representa-
tion, the matrix becomes diagonal with a sinusoidal spectrum
(32). Then we used a technique that allows us to replace the
spectrum of this matrix by a piecewise-quadratic function,
which, at the level of the original discretized problem, cor-
responds to the elimination of high-frequency oscillations of
the solution, justified from the physical point of view. This
makes it possible to radically reduce the number of Pauli
products in the matrix decomposition. The simulation of the
algorithm with up to 11 qubits was performed and the com-
plexity of the algorithm was estimated. The complexity is
determined by the depth of the algorithm. The results show
that the depth starting from certain value saturates on the
number of qubits for certain values of the grid parameter c.
This reveals the fundamental ability of the Ansatz tree ap-
proach to demonstrate the quantum superiority for the heat
equation.

Thus, the third approach can be considered as the
most promising. The reason is that Ansatz tree approach
makes use of the explicit form of the matrix (7), unlike
the other algorithms discussed, which use the universal
entanglers.
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APPENDIX A: DECOMPOSITION INTO PAULI PRODUCTS
OF MATRICES WITH A POLYNOMIAL SPECTRUM

In this Appendix we prove that a diagonal matrix with
a polynomial spectrum can be decomposed into O[(ln N )s]
Pauli products, where s is the highest degree of the polynomial
and N = 2n is the size of the matrix A.

Let us first consider the case when the diagonal matrix D
has a spectrum

D =
N−1∑
m=0

ms|m〉〈m|. (A1)

We introduce a bit representation of the number m as
∑

k 2kmk

and use the fact that

|m〉〈m| = 1

2n

n−1∏
k=0

⊗(I + eiπmk Z ). (A2)

Replacing the projector in (A1) with (A2) turns the expression
(A1) into a decomposition of Pauli products

D =
N−1∑
p=0

hp�p, (A3)

where �p refers to the Pauli product consisting of I and Z
gates. The number p in its binary representation has 0 and 1
where I and Z are applied. Let the number p have nonzero
elements in the bit representation with numbers k1, k2, . . . , kl ,

p = 2k1 + 2k2 + · · · + 2kl . (A4)

Thus, the decomposition coefficient hp has the form

hp = 1

2n

∑
m

ms exp
(
iπmk1 + iπmk2 + · · · + iπmkl

)
= 1

2n

∑
m̃

∑
mk1 ,mk2 ,...,mkl

(
2k1 mk1 + 2k2 mk2 + · · · + 2kl mkl + m̃

)s

× (−1)mk1 +mk2 +···+mkl , (A5)

where m̃ is the remaining part of the bit form of the num-
ber m after separating mk1 , mk2 , . . . , mkk . It follows from the
expression (A5) that if l > s, then hp = 0. This conclusion
leads us to the following: For a diagonal matrix with spectrum
p(m) = ∑s

i=0 αimi, the Pauli product decomposition contains
only terms with at most sZ operators. Thus, for a polynomial
of degree s, the number of nonzero terms of the decomposition
into Pauli products hp is O[(ln N )s].

APPENDIX B: THE FIDELITY OF THE ATA SOLUTION
IN THE PRESENCE OF THE DEPOLARIZING NOISE

This Appendix examines the effect of depolarizing noise
on the fidelity of the solution for the Ansatz tree algorithm.
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FIG. 13. The dependence of the fidelity of the solution obtained
by the ATA on the depolarizing noise parameter p for a 4 × 4 matrix
A. Each point is an average over 1000 initial conditions |b〉 and over
20 random values c ranging from 0.1 to 2.0.

The model of such a noise for one qubit is

E (ρ) = (1 − p)ρ + p
I

2
. (B1)

In this noise model, the qubit state density matrix is replaced
by the identical one I/2 with probability p. Figure 13 shows
the effect of uncorrelated depolarizing noise on the implemen-
tation of an Ansatz tree algorithm for two qubits. It can be seen
from the graph that linear interpolation up to p = 1 does not
take a value close to the expected 1/2n, which corresponds to
a random vector. To understand the reasons for this behavior,
consider the effect of depolarizing noise on the ATA loss
function

LR(x) =
∑

j,k

α∗
j αk〈 j|A2|k〉 − 2 Re

⎧⎨⎩α j

∑
j

〈 j|A|b〉
⎫⎬⎭ + 1.

(B2)

Convert the loss function to the form

LR(x) =
∑

j

|α j |2〈 j|A2| j〉 − 2 Re{α0〈0|A|0〉} + 1

+
∑
j �=k

α∗
j αk〈 j|A2|k〉 − 2 Re

⎧⎨⎩∑
j �=0

α j〈 j|A|b〉
⎫⎬⎭.

(B3)

FIG. 14. The dependence of |〈b〉x|2 (the fidelity of the ATA in the
presence of noise at p = 1) on the number of qubits (the size of the
matrix A). Each point is an average over 1000 initial conditions |b〉
and 20 random values c ranging from 0.1 to 2.

Let us consider each contribution to the expression (B3).
The last two sums of the expression (B3) are measured using
the Hadamard test described in Sec. IV, the corresponding
quantum circuit of such a measurement is shown in Fig. 1.
In the presence of noise with p = 1, each of the qubits will
have a density matrix I/2 when measured. Consequently, due
to the nature of the Hadamard test measurement, each term of
these two sums has a mean value of zero. The first two terms
of the expression (B3) are measured by the quantum circuit
shown in Fig. 8. These measurements contribute to the loss
function

Lnoise
R (x) =

∑
j

|α j |2〈 j|A2| j〉 − 2 Re{α0〈0|A|0〉} + 1.

(B4)

It can be seen from Eq. (B4) that the minimum corresponds
to the condition αi = δi0, then the solution of the algorithm is
the state |0〉 = |b〉.

Thus, with noise for p = 1, the algorithm converges not to
1/2n, but to |〈b〉x|2. Figure 14 shows how the mean value of
|〈b〉x|2 scales from the number of qubits (matrix size A). Each
point on the graph corresponds to the average value of |〈b〉x|2
for 1000 different |b〉 and 20 random values of c ranging from
0.1 to 2.
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