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The quantum state discrimination primitive becomes highly nontrivial in the limited measurement setting
and leads to different classes of impossibility, viz., indistinguishability, unmarkability, irreducibility, etc. These
phenomena, often referred to as another nonlocal aspect of quantum theory, have utmost importance in the
domain of data hiding, secret sharing, etc. Motivated by this, recently a significant effort has been devoted to
activate local indistinguishability from locally distinguishable nontrivial sets of quantum states. In the present
work, we introduce other stronger notions of quantum nonlocality and depict a series of hierarchical nonlocality
activation from nontrivial sets of locally distinguishable entangled states. Moreover, we appropriately moderate
the strict condition of nontriviality, introduced in earlier literature, and come up with interesting examples in
support of our claim.
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I. INTRODUCTION

The formalism of quantum theory assures perfect discrim-
ination among any set of orthogonal preparations. However,
identification of a multipartite quantum state, given from an
orthogonal set, by some spatially separated players is a non-
trivial task whenever they are restricted in their actions, i.e.,
allowed to perform only local operations along with classical
communication (LOCC) [1–13]. Such an inadequacy of local
operations in the task of state discrimination is often iden-
tified as a nonlocal feature of quantum theory according to
Bennett et al. [14]. However, the unstructured configuration
of LOCC protocols has motivated researchers to introduce
a weaker version of the same as a preliminary step for state
discrimination, namely, state elimination under orthogonality
preserving local measurements (OPLM) [15]. The impossi-
bility of such an elimination, termed local irreducibility of
orthogonal quantum states, is depicted as a stronger variant
of quantum nonlocality and has fueled a vast amount of stud-
ies [16–21]. For instance, while the two-qubit Bell basis is
simultaneously indistinguishable as well as irreducible, the
three-qubit Greenberger-Horne-Zeilinger (GHZ) basis can be
reduced under OPLM, although it remains indistinguishable,
in every bipartition [15]. On the other hand, recently another
weak variant of state discrimination was introduced by Sen
et al. [22] as an economic alternative for data hiding [23–25]
and secret sharing [26,27]. Instead of identifying a multipar-
tite quantum state given from an orthogonal set, the task is
there to mark the complete set, and hence the impossibility
to accomplish such a task is termed local unmarkability [22].
While an explicit example of locally indistinguishable four

ququad states [8] has been shown to be locally markable with
three-bit of residual entanglement [22], the possibility of local
distinguishability always implies local markability.

Motivated by the immense cryptographic importance of
such local indistinguishabilities [23–27], recently, Bandopad-
hyay and Halder introduced a notion of activating such
nonlocal features from locally distinguishable sets [28]. They
characterized several sets of locally distinguishable orthog-
onal entangled states, which can be converted to a locally
indistinguishable one via OPLM. Notably, the presence of
the same feature has recently been reported for product states
[29], which might possibly be the strongest versions of such
indistinguishabilities [30]. Such nonlocality activation phe-
nomena help the spatially separated parties to modify their
shared key according to their trustworthiness, should they
change after the key has been shared [30]. However, the
impossibility of self-testing and device-independent security
proof for product states suggests the distribution of entangled
quantum states (which can be self-tested) among the agents,
as an initial secret key. Then according to their updated trust-
worthiness, they may want to obtain a key which is locally
indistinguishable but can be decoded when all of them join to-
gether. This demands performing OPLM only, by the players
on their individual subsystems. To activate an even stronger
secrecy, they may wish to disallow all others from collaborat-
ing and even partially updating the information regarding the
shared key. This simply implies obtaining a set of orthogonal
states, none of which can be eliminated even if all but one
of the parties join together. On the other hand, the distributor
may supply a complete set of orthogonal entangled states
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among the players and dictate them to decode the ordering
among the elements of that set, as the hidden secret. This task
of local state marking consumes lesser resources than that
of the local state discrimination, as mentioned earlier [22].
Consequently, the players, upon their updated trustworthiness,
may be curious to activate another stronger nonlocality, from
the state-marking primitive, at any later instant. In the present
work, we have dealt with all these stronger notions of nonlo-
cality activation from the set of locally distinguishable and
hence locally markable set of entangled states. A notable
issue in all these activation phenomena is to share nontrivial
sets of orthogonal entangled states, which is free from local
redundancy. This demands that the locally distinguishable
secret should not be trivially updated to an indistinguishable
one, just by tracing out any of its subsystems. A plausible
restriction to avoid such redundant solutions is to consider
only those sets as the initial secret, where discarding any of
the constituents produces a nonorthogonal set and then the
question of discrimination becomes irrelevant [28–30]. How-
ever, here we will revisit this criterion once again and relax it
further to incorporate an interesting example for activating a
stronger nonlocal feature.

II. ACTIVATION OF LOCAL UNMARKABILITY

In this section, we will delve into the activation of several
variants of local unmarkability, in a hierarchical fashion, start-
ing from a perfectly locally distinguishable set of entangled
quantum states. As mentioned earlier, a set of orthogonal
quantum states S := {|ψ〉}N

i=1 distributed among k spatially
separated parties is said to be locally unmarkable, if it is
impossible to mark their order of indices under LOCC [22].

To begin with, let us consider a set of orthogonal states,
S1 ≡ {|ψi〉AB}4

i=1 ⊂ C2 ⊗ C4, where

|ψ1〉AB = |00〉 + |02〉 + |11〉 − |13〉 , (1a)

|ψ2〉AB = |00〉 − |02〉 − |11〉 − |13〉 , (1b)

|ψ3〉AB = |01〉 − |12〉 − |10〉 − |03〉 , (1c)

|ψ4〉AB = |01〉 − |12〉 + |10〉 + |03〉 . (1d)

The ququad system in Bob’s possession can be thought
of as a bipartite composition of two qubits, viz., |0〉B :=
|00〉b1b2

, |1〉B := |01〉b1b2
, |2〉B := |10〉b1b2

, |3〉B := |11〉b1b2
.

In the following, we will prove that the locally distinguish-
able set of states S1 is free from local redundancy. Before
going to the details, we will first recall the definition of local
redundancy as introduced in [28] and also used in a couple
of successive results [29,30]. Note that it is always possi-
ble to construct examples of locally distinguishable states,
which become indistinguishable (preserving their orthogonal-
ity) after reducing subsystem(s); hence one can claim this
phenomenon as an activation of nonlocality. To get rid of such
trivial examples, the authors in [28] have identified a set of
orthogonal states as locally redundant, if discarding any of its
subsystem(s) preserves their orthogonality.

Proposition 1. The set S1 is locally distinguishable and free
from local redundancy.

Proof. To identify the shared ensemble, given from
the set S1, Alice performs a measurement MA ≡ {MA

1 :=

P[|0〉A], MA
2 := P[|1〉A]}. Here, P[(|i〉 , | j〉)#] := (|i〉 〈i| +

| j〉 〈 j|)#, and # denotes the party. Regardless of Alice’s
outcome, Bob measures in the basis {(|0〉 ± |2〉), (|1〉 ± |3〉)}.
Then, by communicating their results, they can identify
the state.

To check the condition of local redundancy, observe that
discarding Bob’s first qubit reduces both |ψ3〉AB and |ψ4〉AB to
1
2 (|0〉〈0|A ⊗ |1〉〈1|b2 + |1〉〈1|A ⊗ |0〉〈0|b2 ), while discarding
the second qubit produces 1

2 (|0〉〈0|A ⊗ |−〉〈−|b1 + |1〉〈1|A ⊗
|+〉〈+|b1 ) from both |ψ2〉AB and |ψ3〉AB. On the other hand,
discarding Alice’s qubit reduces both |ψ2〉AB and |ψ4〉AB to
a uniform ensemble of |+〉b1

|1〉b2
and |−〉b1

|0〉b2
. Hence,

tracing out any of the subsystems leads these states to a
nonorthogonal set and hence completes the proof. �

Note that, being a sufficient condition, the demand of
the nonorthogonality under subsystem(s) reduction for local
redundancy excludes not only all possible trivial construc-
tions, but also several possible classes of nontrivial structures.
For instance, consider two Bell states |φ±〉A1B1

, respectively
tagged with |00〉A2B2

and |01〉A2B2
. Evidently, these states be-

come identical if the subsystem A1B2 is discarded, while
discarding any of the A1B1, A2B2, or A2B1 subsystems leaves
them orthogonal indeed. However, the remaining subsys-
tem(s) for the latter case ({|00〉 , |01〉}A2B2 , {|φ+〉 , |φ−〉}A1B1 or
{ I2 ⊗ |0〉〈0|, I

2 ⊗ |1〉〈1|}A1B2 , respectively) are perfectly distin-
guishable under LOCC and hence no activation of nonlocality
is possible simply by discarding the subsystem(s) for this case.
Now, if one can come up with an OPLM construction, which
can convert the set {|φ+〉A1B1

⊗ |00〉A2B2
, |φ−〉A1B1

⊗ |01〉A2B2
}

to the locally indistinguishable (mixed) states, then the ac-
tivation should be admitted as a nontrivial one. However,
according to the existing definition for local redundancy [28],
the set is not a potential candidate for nontrivial nonlocality
activation. Therefore, we have further relaxed the strict crite-
rion for local redundancy and define the following:

Definition 1. A set of orthogonal quantum states is said to
be free from relaxed local redundancy if the set gets converted
to either (i) a nonorthogonal set or (ii) a locally distinguishable
orthogonal set, after discarding any of its subsystem(s).

Needless to say, if a set of states is free from local redun-
dancy, then it must be free from the relaxed version since the
earlier considers situation (i) only.

To justify that Definition 1 conceives a broader class of
potential nonlocality activating states, let us now consider the
set S2 ≡ {|ξi〉AB}4

i=1 ⊂ C4 ⊗ C8, where

|ξ1〉AB = |ψ1〉A1B1
⊗ |φ+〉A2B2

, (2a)

|ξ2〉AB = |ψ2〉A1B1
⊗ |φ−〉A2B2

, (2b)

|ξ3〉AB = |ψ3〉A1B1
⊗ |φ−〉A2B2

, (2c)

|ξ4〉AB = |ψ4〉A1B1
⊗ |φ−〉A2B2

. (2d)

Here, |ψi〉’s are same as in the set S1 and |φ±〉 denote the
Bell states 1√

2
(|00〉 ± |11〉. While the set of states is not free

from the earlier definition of local redundancy [28–30], here
we will show the following:

Proposition 2. The set of states S2 is locally distinguishable
and free from relaxed local redundancy.

Proof. Note that the set S2 can be obtained just by tagging
|φ±〉 with the set of states in S1. Therefore, Alice and Bob
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can follow the same scheme elucidated in Proposition 1 for
the bipartite subsystems A1B1, which, in turn, perfectly distin-
guishes the set S2 via LOCC.

To prove that S2 is free from relaxed local redundancy, we
will consider every possible subsystem(s) reductions case by
case.

Case I. First consider that both Alice and Bob
discard their subsystems A1B1. Consequently, the four
resulting states {|ζ ′

1〉 := |φ+〉A2B2
, |ζ ′

2〉 := |φ−〉A2B2
, |ζ ′

3〉 :=
|φ−〉A2B2

, |ζ ′
4〉 := |φ−〉A2B2

} are not mutually orthogonal.
Further, it follows from the proof of Proposition 1 that dis-

carding any subsystem(s) from A1B1, the remaining reduced
sets in C2 ⊗ C8 or C4 ⊗ C2 are also nonorthogonal.

Case II. Let us now consider that Alice and Bob discard the
subsystems A2B2. In this case, it is evident that the reduced
states {|ψi〉A1B1

}4
i=1 are orthogonal and locally distinguishable

(see Proposition 1). So, obviously, this operation does not
make the set nonlocal.

Similarly, it is also evident that whenever any of the players
discards A2 or B2, the set of reduced states remains locally
distinguishable in A1B1. This completes our proof. �

Evidently, it follows from Propositions 1 and 2 that both
sets of orthogonal states S1 and S2 are locally markable [22].
Also it is trivial to argue that any set of orthogonal entangled
states S3 ⊂ S1, with cardinality three, is locally distinguish-
able and hence locally markable. Moreover, it follows from
[28] that the set S3 is free from local redundancy.

Now, we are at a position to present a series of hierarchical
nonlocality activations, which are stronger than local indistin-
guishability. The initial quantum secret in each of these cases
is chosen from the sets S1,S2, and S3. As a weakest variant,
in the following, we will first present the result for simply
local indistinguishability activation.

Theorem 1. The set S2 can be deterministically converted
to a locally indistinguishable, but markable set of states.

Proof. Suppose Bob performs an OPLM, NB1 ≡ {NB1
1 :=

P[(|0〉 , |1〉)B1 ], NB1
2 := P[(|2〉 , |3〉)B1 ]} on the subsystem B1.

Here, P[(|ψ〉 , |φ〉)k] denotes the projector onto the subspace
spanned by {|ψ〉 , |φ〉}, on the k party’s subsystem. For each
of the clicks, the players are left with the following four
orthogonal states in C2⊗2 ⊗ C2⊗2:

(|0p〉 + |1q〉)A1B1 ⊗ |φ+〉A2B2
, (3a)

(|0p〉 − |1q〉)A1B1 ⊗ |φ−〉A2B2
, (3b)

(|0q〉 − |1p〉)A1B1 ⊗ |φ−〉A2B2
, (3c)

(|0q〉 + |1p〉)A1B1 ⊗ |φ−〉A2B2
, (3d)

where p = 0 and q = 1 whenever NB1
1 clicks, while for

NB1
2 , p = 2 and q = 3 (up to a local phase of eiπ ). In both

cases, the orthogonal set in Eq. (3) is known to be locally
indistinguishable [8], but perfectly markable under LOCC
with three-bits of remaining entanglement [22]. �

Now we consider the next level of stronger nonlocality
activation, i.e., to obtain an orthogonal set of entangled states
unmarkable under one-way LOCC only. Notably, one-way
LOCC deserves importance over the both-way scenario when-
ever one of the players, sharing the quantum secret, is assumed
to completely trustworthy.

Theorem 2. The set S3 can be deterministically converted to
a locally indistinguishable set which is also unmarkable under
one-way LOCC.

Proof. Note that the local measurement NB1 performed
at Bob’s possession (on the B1 subsystem), in Theorem 1,
updates the A1B1 subsystem, i.e., the set S1, to four orthogonal
Bell states. Now, since the set S3 is a subset of S1, the same
OPLM converts S3 to the corresponding three Bell states.
The local indistinguishability of any three Bell states follows
from [1,2], while the unmarkability under one-way LOCC
was recently proved in [22]: This proves the claim of the
present theorem. �

Notably, the activation of local indistinguishability from
the set S3 has also been independently depicted in [28].

Importantly, while the local markability for three Bell
states under one-way LOCC is impossible, the status is the
same, considering that both-way LOCC has been an open
problem [22]. As a natural consequence, one may ask whether
there exists any orthogonal set of entangled states from which
the strongest form (until now) of quantum nonlocality, i.e.,
unmarkability under both-way LOCC, can be activated. In the
following, we will answer this affirmatively.

Theorem 3. The set S1 can be deterministically converted
to a locally unmarkable set of states by performing OPLM.

Proof. As mentioned in Theorem 2, performing the
OPLM, NB ≡ {NB

1 := P[(|0〉 , |1〉)B], NB
2 := P[(|2〉 , |3〉)B]},

on his possession, Bob can transform the set S1 to four
orthogonal entangled states, which are equivalent to the two-
qubit Bell basis. In particular, the updated states will be
{|00〉 ± |11〉 , |01〉 ± |10〉} and {|02〉 ± |13〉 , |12〉 ± |03〉} for
the clicks NB

1 and NB
2 , respectively. Finally, the local unmark-

ability of the Bell basis has been shown in [22], which further
implies their local indistinguishability [1,2]. �

With all three above theorems, we can conclude that the
activation of all possible nonlocal features in question of the
state markability, via one-sided OPLM, is a generic feature for
quantum theory. However, one may be curious to ask whether
the OPLM performed by a single party suffices for all these
activation phenomena. In the following, we will come up with
another set S4 of orthogonal entangled states, the activation
of local unmarkability from which involves both of the parties
to perform OPLM and communicate their outcomes to each
other. In particular, we choose S4 := {|ξi〉}8

i=1 of eight bipar-
tite states in C4 ⊗ C4, where

|ξ1(2)〉AB = |00〉 ± |02〉 ± |31〉 − |33〉 , (4a)

|ξ3(4)〉AB = |01〉 ∓ |32〉 ∓ |30〉 − |03〉 , (4b)

|ξ5(6)〉AB = |10〉 + |12〉 ± |21〉 ∓ |23〉 , (4c)

|ξ7(8)〉AB = |11〉 − |22〉 ± |20〉 ± |13〉 . (4d)

Here, the bases of each subsystem can be assumed as a two-
qubit composite system, i.e., |0〉 := |00〉 , |1〉 := |01〉 , |2〉 :=
|10〉 , |3〉 := |11〉.

Proposition 3. The set S4 := {|ξi〉}8
i=1 is locally distinguish-

able and free from local redundancy.
Proof. We start by describing the local distinguishability

protocol. First, Alice performs a measurement RA ≡ {RA
1 :=

P[(|0〉 , |3〉)A], RA
2 := P[(|1〉 , |2〉)A]}. The postmeasurement

states are {|ξi〉}4
i=1 or {|ξi〉}8

i=5 for the first and second out-
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come, respectively. However, it is evident that those two sets
of qubit(equivalently)-ququad states are in one-to-one corre-
spondence to the set S1. The rest of the distinguishability
protocol is thus a straightforward extension of the protocol
provided in Proposition 1.

It is also straightforward to show that the set does not have
local redundancy. If both of the parties discard one of their
subsystems, they will remain with eight states in C2 ⊗ C2,
which cannot be orthogonal in any way. Further, discard-
ing Bob’s first (second) qubit, the states |ξ3〉 and |ξ4〉 will
produce a uniform ensemble of |001〉 and |110〉 (|00−〉 and
|11+〉). Similarly, discarding any of Alice’s qubit will produce
1
2 (|0〉〈0| ⊗ |−〉〈−| ⊗ |1〉〈1| + |1〉〈1| ⊗ |+〉〈+| ⊗ |0〉〈0|) both
from |ξ3〉 and |ξ4〉. �

Now, we will show that the strongest form of nonlocality,
i.e., the unmarkability under both-way LOCC, can be acti-
vated from the set S4 whenever both of the parties perform
OPLM on their respective subsystems.

Theorem 4. The set S4 can be deterministically converted
to a locally unmarkable set of states via local OPLMs.

Proof. In order to activate the nonlocality of the or-
thogonal set S4, Bob performs an OPLM, NB ≡ {NB

1 :=
P[(|0〉 , |1〉)B], NB

2 := P[(|2〉 , |3〉)B]}. On the other side, Alice
measures RA ≡ {RA

1 := P[(|0〉 , |3〉)A], RA
2 := P[(|1〉 , |2〉)A]}.

For all possible outcomes of these two measurements, it is
quite evident that the players are left with any of the four
two-qubit Bell states (equivalently) which is known to be
locally unmarkable under general LOCC [22]. This completes
our proof. �

Thus we can conclude that quantum theory admits the
complete hierarchy for the activation of local unmarkability, a
stronger notion than local indistinguishability. Notably, the fi-
nal states obtained in Theorems 2 and 3 (hence, in Theorem 4)
are locally irreducible indeed. In particular, the states obtained
in Theorem 2 are three two-qubit Bell states, for which the
local irreducibility under OPLM follows from the fact that any
two orthogonal bipartite states are always locally distinguish-
able [1]. On the other hand, the irreducibility of the complete
two-qubit Bell basis (i.e., the final states obtained in Theo-
rems 3 and 4) can be shown via explicit OPLM construction
[15]. However, a pertinent question in this direction would
be regarding the activation of a stronger nonlocal feature of
local irreducibility in the multipartite scenario, which we will
answer affirmatively in the following.

III. ACTIVATION OF MULTIPARTITE LOCAL
IRREDUCIBILITY

For the sake of completeness, let us begin with defining the
feature local irreducibility [15] for a set of orthogonal quan-
tum states. A set of multipartite orthogonal quantum states is
said to be locally irreducible when spatially separated parties,
each holding one part of a state chosen arbitrarily from the
given set, cannot rule out even one possibility by performing
orthogonality preserving local measurements.

Now, consider a set of N-partite states S (N )
5 :=

{|ηk (±)〉}αN
k=0 ∈ C4 ⊗ C2⊗(N−1)

, such that

|ηk (±)〉 = |0, k〉 ± |1, (αN − k)〉 ± [|2, k〉 ∓ |3, (αN − k)〉],
(5)

where αp := 2(p−1) − 1, k is the decimal equivalent of the cor-
responding (N − 1)-bit string, and the states {0, 1, 2, 3} can
be assumed as a composition of two qubits {00, 01, 10, 11},
respectively. In the following, we will first comment on the
LOCC distinguishability of this set.

Proposition 4. The set S (N )
5 is distinguishable under LOCC

and free from local redundancy.
Proof. To discriminate this ensemble, all but the

first party will measure their respective qubits in
Mi ≡ {Mi

1 := P[|0〉i], Mi
2 := P[|1〉i]} and, via classical

communication, they can identify the decimal index k and
correspondingly the state will be either |ηk (±)〉 or |ηαN −k (±)〉.
Now, performing a four-outcome measurement NA ≡
{NA

1 := P[|0 + 2〉A], NA
2 := P[|0 − 2〉A], NA

3 := P[|1 + 3〉A],
NA

4 := P[|1 − 3〉A]} on the first party’s possession, they can
discriminate the state perfectly. Precisely, the outcomes of
the first party’s measurement correspond to the states |ηk (±)〉
and |ηαN −k (∓)〉, respectively, for every value of k.

Now, we will argue that the set of states is free from
local redundancy. Note that if the first (second) qubit of
the first party (personified as Alice) is discarded, then
the reduced density matrix for each pair of states |ηk (±)〉
({|ηk (±)〉 , |ηαN −k (∓)〉}) will be identical. Further, if the sec-
ond party discards their qubit, then the reduced system for
each of the pairs {|ηk (±)〉 , |ηk+αN−1+1(±)〉} will be identical
and a similar argument runs for all the (N − 1) parties due to
the party-symmetric nature of these states. �

Our next theorem will depict the possibility for a stronger
form of nonlocality activation from the set S (N )

5 .
Theorem 5. The set S (N )

5 can be deterministically converted
to a class of locally irreducible N-partite genuinely entangled
states, which are even indistinguishable when all but one party
come together.

Proof. To activate local irreducibility, Alice will per-
form a measurement NA ≡ {NA

1 := P[(|0〉 , |1〉)A], NA
2 :=

P[(|2〉 , |3〉)A]} on her possession. For each of her clicks, the
set S (N )

5 will be converted to a set of genuinely entangled states
in C2⊗N

, which can be represented as

|φk (±)〉 = |p, k〉 ± |q, (αN − k)〉 , (6)

where |p〉 = |0〉 (|2〉) and |q〉 = |1〉 (− |3〉) whenever the
projector NA

1 (NA
2 ) clicks.

Clearly, these states are N-partite genuinely entangled
GHZ states, up to a local unitary (|2〉 → |0〉 ; − |3〉 → |1〉)
for the click NA

2 . These states are known to be locally irre-
ducible [15]. Moreover, in the following, we will show that
they are locally indistinguishable, even if all but one of the
parties collaborate.

It is easy to see that any N-qubit GHZ state, in any 1 : (N −
1) bipartition, can be written as

|Gk (±)〉 = |0, k〉 ± |1, (αN − k)〉 , (7)

where k ∈ {0, . . . , αN } represents the decimal equivalent of
(N − 1)-bits.

Now, it is evident that when all the (N − 1) parties come
together, they can construct the unitary U±

k , which takes
|0〉⊗(N−1) → |k〉 and |1〉⊗(N−1) → ±|(αN − k)〉. Therefore,
one can write

|Gk (±)〉 = (I ⊗ U±
k ) |G0(+)〉 . (8)
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Further, by noting that all the 2N states in Eq. (7) are en-
tangled in C2 ⊗ C2⊗(N−1)

and using Eq. (8), we can assure
that these states can only be distinguished under LOCC with
a probability of not more than 1

2 [31]. This proves that
the states are indistinguishable even in one versus (N − 1)
bipartitions. �

Lastly, we will consider even a stronger nonlocality activa-
tion for which the final states are locally irreducible whenever
all but one of the parties collaborate, which readily implies the
local indistinguishability in the same bipartition. Remember
that the practical scenario for all these nonlocality activations
from local sets involves a trustworthy agent (say, Alice) who
has complete freedom to activate different levels of local state
discrimination complexities, depending upon her updated be-
lief regarding the others. This motivates us to consider the
activation of strong irreducibility, in the Alice versus others
bipartition only.

Let us consider the set S (N )
6 ⊂ S (N )

5 containing four
N-partite states {|ηk (±)〉, such that k = 0, αN }. Following
Definition 1 for relaxed local redundancy, we can argue the
following:

Proposition 5. The set S (N )
6 is distinguishable under LOCC

and free from relaxed local redundancy.
Proof. Note that the set S (N )

6 ⊂ S (N )
5 . Now, the local distin-

guishability of S (N )
5 (as in Proposition 4) simply implies that

the set S (N )
6 is distinguishable under LOCC.

In a similar spirit, it follows from Proposition 4 that dis-
carding the first or second qubit for the first party makes the
set S (N )

6 nonorthogonal, as it contains both the pair of states
{|ηk (±)〉} and {|ηαN −k (±)〉} for k ∈ {0, αN }.

However, unlike Proposition 4, when any of the (N − 1)
parties (except the first party) discards the corresponding sub-
system, the final set remains orthogonal to each other. The set
of the four final states then reads

ρη0(±) = 1
4 (|0 ± 2〉〈0 ± 2| ⊗ |0〉〈0|⊗(N−2)

+|1 ∓ 3〉〈1 ∓ 3| ⊗ |1〉〈1|⊗(N−2)),

ρηαN (±) = 1
4 (|0 ± 2〉〈0 ± 2| ⊗ |1〉〈1|⊗(N−2)

+|1 ∓ 3〉〈1 ∓ 3| ⊗ |0〉〈0|⊗(N−2)).

Interestingly, all four states can discriminated under
LOCC only: the first party (say, Alice) performs a
measurement NA ≡ {NA

1 :=P[|0 + 2〉A], NA
2 :=P[|0 − 2〉A],

NA
3 :=P[|1 + 3〉A], NA

4 := P[|1 − 3〉A]}, while any one among
the other (N − 2) parties performs the computational basis
measurement on the respective quantum system. Evidently,
the mutual communication between them can single out the
final state, and hence this completes the proof. �

In the following, we will demonstrate the possible notion of
strong irreducibility activation from the set S (N )

6 under OPLM.
Theorem 6. The set S (N )

6 can be deterministically converted
to a class of strongly irreducible N-partite genuinely entan-
gled states.

Proof. Note that if Alice performs the same measurement
as depicted in Theorem 5, the set S (N )

6 will be converted to
the states in Eq. (6), with k ∈ {0, αN }. Now, the action of the
local unitary (|2〉 → |0〉 ; − |3〉 → |1〉) for the click NA

2 on Al-
ice’s system makes the set identical to {|00〉 ± |1αN 〉 , |0αN 〉 ±

|10〉}. Observing that these states are equivalent to two-qubit
Bell states between Alice versus all (N − 1) others, we can
conclude regarding their strong irreducibility in the same bi-
partition [15]. �

IV. DISCUSSION

In summary, we have shown that quantum theory allows
one to activate several stronger variants of local indistin-
guishability from a set of locally distinguishable entangled
states, under local operations only. Dealing with two differ-
ent complexity levels of local quantum state discrimination,
namely, local unmarkability and local irreducibility, we have
concluded that both of them can be activated in a hierarchical
fashion. In particular, as the weaker variants, we have come
up with two different examples in C4 × C8 which can be
activated to locally indistinguishable sets of states, respec-
tively markable and unmarkable under one-way LOCC only.
Further, the stronger notion, i.e., the local unmarkability under
both-way LOCC, has been introduced for another set of states
in C2 × C4 and C4⊗2

. The latter among them is important
to conclude that the activation of such nonlocal aspects is
not a generic feature for a single-sided local measurement;
instead, it may involve all the parties to perform OPLM on
their individual subsystems. It is also possible to decrease the
cardinality of the activated set more than that of the initial
one, which is again supported by the last example. On the
other hand, we have also presented two generic examples in
C4 × C2⊗(N−1)

, which can be activated to the sets of states
that are indistinguishable in any bipartition. Moreover, while
the final set of states obtained from the first one is locally
irreducible, the activated irreducibility from the latter one is
stronger in the sense that none of them can be eliminated even
if all but the trustworthy agent collaborate.

Besides exploring a vivid range of quantum nonlocality
from the perspective of state discrimination, our work opens
up a number of different directions for future research. Al-
though the activation of indistinguishability and irreducibility
for the product states has been reported very recently [29,30],
the idea of unmarkability activation has not been widely stud-
ied. Further, it will be interesting to study the possibilities
of all such activations for the nonmaximally entangled states,
which, in turn, may provide an answer towards the activation
of the strongest possible state indistinguishability with two
copies under adaptive LOCC [11]. While the present paper
considers the notions of nonlocality in terms of the com-
plexities associated to the local decodability of the quantum
secrets, an alternative quantification can be made in terms of
the resource requirement for their perfect decoding, i.e., under
separable superoperator [8,32–34], positive partial transpose
(PPT)-preserving operation [35], etc. In this direction, it is
noteworthy that the activated nonlocality in Theorem 1 is
secured even under a PPT-preserving operation [8]. However,
the complete characterization of this particular aspect of non-
locality activation can be an interesting open direction.
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