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To implement fault-tolerant quantum computation (FTQC) with continuous variables, continuous variables
need to be digitized using an appropriate code such as the Gottesman-Kitaev-Preskill (GKP) qubit. The scheme
introduced in [Fukui et al. Phys. Rev. X 8, 021054 (2018)] has reduced the threshold of the squeezing level
required for continuous-variable FTQC to less than 10 dB, assuming noise derived from the GKP qubit itself.
In this paper, we propose a scheme to improve noise tolerance during the construction of a large-scale cluster
state used for FTQC with the GKP qubits. In our scheme, a small-scale cluster state is prepared by employing
maximum-likelihood estimation, the entanglement generation via the Bell measurement, and probabilistic
reliable measurement. Then, a large-scale cluster state is constructed from the small-scale cluster states via the
reliable encoded Bell measurement. In the numerical calculations, we assume errors derived from the two-mode
gate and loss in the homodyne measurement in addition to noise from the GKP qubit itself. The results show
that the thresholds of a squeezing level are around 8.1, 9.6, and 12.4 dB for loss in the homodyne measurement
0, 5, and 10%, respectively. Hence, this paper provides a way toward continuous-variable FTQC with a feasible
squeezing level.
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I. INTRODUCTION

Quantum computation (QC) has a great deal of poten-
tial to efficiently solve some hard problems for conventional
computers [1,2]. To realize large-scale QC, a continuous-
variable (CV) system is a promising platform [3–5]; in fact,
larger-scale cluster states composed of the squeezed vacuum
states have been experimentally generated in an optical setup
[6–11]. Furthermore, thousands of frequency-encoded cluster
states in an optical setup have been generated [12–15]. In
addition to an optical setup, the continuous-variable (CV)
system in a circuit QED [16], optomechanics [17,18], atomic
ensembles [19,20], and a trapped ion mechanical oscillator
[21,22] are also promising candidates for large-scale QC
with CVs.

Towards fault-tolerant QC (FTQC) using CVs, it is known
that CVs need to be encoded into appropriate bosonic codes
[23–26], such as a cat code [27], a binomial code [28], or the
Gottesman-Kitaev-Preskill (GKP) code [29], which is referred
to as the GKP qubit in this paper. This is because the squeezed
vacuum state cannot handle the accumulation of analog errors,
such as those arising from the Gaussian quantum channel [29]
and photon loss during QC. In 2014, Menicucci showed the
threshold of the squeezing level for CV-FTQC [30], where the
GKP qubit is used to perform the quantum error correction
for measurement-based QC (MBQC). Recently, there have
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been many efforts towards CV-FTQC with the GKP qubit
[31–50], and a promising architecture for a scalable quantum
circuit incorporating the GKP qubit [51–53]. Furthermore, the
GKP qubit is a promising element for a variety of quantum
information processing such as long-distance quantum com-
munication [54,55].

In Ref. [32], the required squeezing level for CV-FTQC has
been alleviated to less than 10 dB, which is within the reach
of the current experimental technology [56]. In an ion trap
[22] and superconducting circuit quantum electrodynamics
[57] the GKP qubit has been generated recently in an ion trap
[22] and superconducting circuit quantum electrodynamics
[57] with an achievable squeezing level close to 10 dB. In an
optical setup, while there are many efforts to develop vari-
ous ways to generate the GKP qubit [20,58–69], the optical
GKP qubit has not been generated yet due to the difficulty to
obtain a nonlinearity. Thus, there is a demand to reduce the
experimental requirements to generate a sufficient GKP qubit
for FTQC. In addition, the noise model in Ref. [32] assumes
that the deviation is derived from the GKP qubit itself. Con-
sidering a practical optical setup, there are additional noises
such as imperfections derived from the two-mode gate and the
homodyne measurement. This leads to the degradation of the
squeezing level threshold, which increases the requirements
of CV-FTQC. For the aforementioned reasons, a further re-
duction of the threshold is needed for CV-FTQC in an optical
setup.

In this paper, we propose a scheme to improve the required
squeezing level for CV-FTQC under noise in the two-mode
gate and the homodyne measurement. We develop a method to
implement the highly reliable construction of the large-scale
cluster state by harnessing the analog information contained
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in the GKP qubits. Specifically, our method consists of two
parts. One is to make use of the Gauss-Markov theorem,
which is widely known in statistics. In this paper, we apply
maximum-likelihood estimation to reduce the noise (displace-
ment) of the GKP qubits in constructing the small-scale
cluster state and use probabilistic operations to limit the ac-
cumulation of qubit-level errors. The other is the reliable
deterministic entanglement generation to construct the large-
scale cluster state from the small-scale cluster states. In this
operation, we select the most reliable entanglement between
node qubits by using a maximum-likelihood method, allowing
us to safely remove the entanglements except for the most
reliable one by employing the repetition code. Accordingly,
the required squeezing level for CV-FTQC using the proposed
method can be reduced to 8.1, 9.6, and 12.4 dB for the
transmission loss in the homodyne measurement l = 0, 5, and
10 %, respectively, assuming the imperfection of the two-
mode gate.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the background knowledge regarding the
GKP qubit, and imperfections arising from the two-mode gate
and the homodyne measurement. In Sec. III, we propose the
method to reduce the required squeezing level for CV-FTQC
with noise considered in this paper. In Sec. IV, the numerical
results show an improvement in the threshold of the squeezing
level compared to conventional methods. Section V is devoted
to discussion and conclusion.

II. BACKGROUND

In this section, we first review the GKP qubits and noise
model in this paper, assuming three noise sources, i.e.,
the deviation from the GKP qubit itself, the imperfection of
the two-mode gate, and loss in the homodyne measurement
[70]. Then, we describe two techniques used to improve noise
tolerance with the GKP qubit: (1) the highly reliable mea-
surement (HRM) and (2) the single-qubit level QEC with a
maximum-likelihood estimation.

A. The GKP qubit

Gottesman, Kitaev, and Preskill proposed a method to
encode a qubit in an oscillator’s q (position) and p (mo-
mentum) quadratures to correct errors caused by a small
deviation in the q and p quadratures [29]. We refer the
state encoded by their scheme as the GKP qubit. The
ideal code states of the GKP qubit are Dirac combs in
the q and p quadratures [71]. The ideal 0 and 1 states
are described as |0〉GKP = ∑∞

m=−∞ |2m
√

π〉q and |1〉GKP =∑∞
m=−∞ |(2m + 1)

√
π〉q, respectively, where the eigenbasis

of the position operator, {|x〉q}x∈R, is conventionally used as
the computational basis in CVs. The ideal GKP code state
is not a normalizable state and it requires infinite squeez-
ing. Thus, physical states for the GKP code are finitely
squeezed approximations. The basis of the GKP qubit with
finite squeezing is composed of a series of Gaussian peaks of
width σ and separation

√
π embedded in a larger Gaussian

envelope of width 1/σ . The approximate code states |̃0〉 and

|̃1〉 are defined as

|̃0〉 ∝
∞∑

t=−∞

∫
e−2πσ 2t2

e−(x−2t
√

π )2/(2σ 2 ) |x〉q dx, (1)

|̃1〉 ∝
∞∑

t=−∞

∫
e−πσ 2(2t+1)2/2e−(x−(2t+1)

√
π )2/(2σ 2 ) |x〉q dx. (2)

The squeezing level s is defined by s = −10log10(2σ 2). In
the case of finite squeezing, there is a finite probability of
misidentifying |̃0〉 as |̃1〉, and vice versa. Provided the mag-
nitude of the true deviation is more than

√
π/2 from the peak

value, the decision of the bit value is incorrect. The probability
E (σ 2) of misidentifying the bit value is calculated by

E (σ 2) = 1 −
∫ √

π

2

−√
π

2

dx
1√

2πσ 2
e− x2

2σ2 , (3)

which corresponds to bit- or phase-flip errors on the GKP
qubit. We mention that q and p quadratures are also referred
to as Z and X bases, respectively.

We also describe the so-called qunaught state which is
introduced in Ref. [72] for quantum sensing applications. The
qunaught state |∅〉 is described as

|∅〉 ∝
∞∑

k=−∞
e−i

√
2πk p̂ |0〉q =

∞∑
k=−∞

ei
√

2πkq̂ |0〉p , (4)

where {|x〉p}x∈R is the eigenbasis of the momentum operator,
which corresponds to the conjugate basis of {|x〉q}x∈R. Two
qunaught states are transformed to a Bell pair of the GKP
qubits by a 50:50 beam-splitter coupling as |∅〉 ⊗ |∅〉 �→
(|0̄0̄〉 + |1̄1̄〉)/

√
2 [39].

In the case of the qunaught state with the variances σ 2

in both quadratures, the variances of each GKP qubit in the
generated Bell pair are σ 2 in both quadratures. One advantage
of employing the Bell pair from two qunaught states is error
tolerance in terms of variances. Specifically, the variances
of each GKP qubit in the entangled pair generated from the
controlled-Z (CZ) gate between two GKP qubits are σ 2 and
2σ 2 in the q and p quadratures, respectively. Thus, the error
probability for the entangled pair from two qunaught states,
instead of two GKP qubits, is smaller than that prepared from
the two GKP qubits, where the error probability is obtained
from Eq. (3). In this paper, we prepare the small-scale cluster
state from qunaught states, as described in Sec. III A.

B. Noise in the two-mode gate

In this paper, we consider the optical quantum nondemo-
lition (QND) gate as the two-mode gate between the GKP
qubits, which has been demonstrated in Refs. [73,74]. In the
QND gate, we prepare the two GKP qubits as data qubits
and two squeezed vacuum states as ancillary states. Then, we
implement a measurement-based two-mode gate where only
the ancillary states are measured, i.e., the data qubits are not
destroyed. For noise in the two-mode gate in this paper, we
consider noise from the ancilla squeezed vacuum states.

For the optical QND gate via the squeezed vacuum state,
two GKP qubits and two squeezed vacuum states interfere
in the beam splitter with a transmittance coefficient

√
R, and
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their quadrature operators transform as

q̂C → q̂C −
√

1 − R

1 + R
q̂Ae−rA , (5)

p̂C → p̂C − 1 − R√
R

p̂T +
√

R(1 − R)

1 + R
p̂Be−rB , (6)

q̂T → 1 − R√
R

q̂C + q̂T +
√

R(1 − R)

1 + R
q̂Ae−rA , (7)

p̂T → p̂T +
√

1 − R

1 + R
p̂Be−rB , (8)

where q̂C ( p̂C ), q̂T ( p̂T ), q̂A( p̂A), and q̂B( p̂B) are the quadrature
operators of the control qubit, target qubit, and two squeezed
vacuum states in the q (p), respectively, and rA (rB) is the
squeezing parameter for the ancillary state A (B). In the case
that the coefficient (1 − R)/

√
R is equal to 1 and the squeez-

ing level of ancillary squeezed vacuum states is infinite,
the QND gate is equivalent to the ideal controlled-X (CX)
gate, which corresponds to the operator exp(−iq̂C p̂T ). For the
controlled-Z (CZ) gate, the QND gate is equivalent to the CZ
gate up to local Fourier transformations.

Regarding the variance of the GKP qubit, the QND gate
changes the variances of the control and target qubits as

σ 2
C,q → σ 2

C,q + 1 − R

1 + R
σ 2

A , (9)

σ 2
C,p → σ 2

C,p + (1 − R)2

R
σ 2

C,p + R(1 − R)

1 + R
σ 2

B , (10)

σ 2
T,q → σ 2

C,q + (1 − R)2

R
σ 2

T,q + R(1 − R)

1 + R
σ 2

A , (11)

σ 2
T,p → σ 2

T,p + 1 − R

1 + R
σ 2

B , (12)

where σ 2
C,q(p) and σ 2

T,q(p) are the variances of the control qubit
and the target qubit in the q(p) quadrature, respectively, and
σ 2

A(B) = 1
2 e−2rA(B) is the variance of the ancillary state A (B).

In this paper, we consider the increase in variances due to the
squeezed vacuum states as noise in the two-mode gate, assum-
ing that σ 2

A = σ 2
B . Additionally, we set a squeezing level of the

ancillary squeezed vacuum to 15 dB in numerical calculations,
a squeezing level that has been successfully achieved in the
experimental setup reported in Ref. [75].

C. Photon loss in the homodyne measurement

Secondly, we consider the effects of photon loss in the
homodyne measurement, which can be modeled as a beam-
splitter coupling between the data qubit and a vacuum state,
resulting in additional noise. The beam-splitter coupling trans-
forms the quadrature operators for the data qubit in the q and
p quadratures as

q̂ → √
ηq̂ +

√
1 − ηq̂vac, (13)

p̂ → √
η p̂ +

√
1 − η p̂vac, (14)

respectively, where
√

η represents the transmittance coeffi-
cient for the beam-splitter coupling, and q̂vac ( p̂vac) denotes
the operator for the vacuum state in the q(p) quadrature. The

FIG. 1. Introduction of the highly reliable measurement. (a) The
conventional measurement of the GKP qubit, where the Gaussian
distribution is followed by the deviation of the GKP qubit whose
variance is σ 2. The plain (blue) region and the region with the vertical
(red) line represent the different code words (k − 1) mod 2 and
(k + 1) mod 2, respectively. The vertical line regions correspond
to the probability of incorrect decision of the bit value. (b) The
highly reliable measurement. The shown dot line represents an upper
limit vup. The horizontal areas show the probabilities of measurement
results being discarded upon the introduction of vup. The vertical line
areas show the probability that our method fails.

variance of the input state in the q(p) quadrature, σ 2
in,q(p),

changes as

σ 2
in,q(p) → σ 2

out,q(p) = ησ 2
in,q(p) + 1 − η

2
. (15)

In the measurement after loss, the outcome from the ho-
modyne measurement is multiplied by 1/

√
η in classical

postprocessing since the peaks of the GKP qubit are fixed at
integer multiples of

√
π due to the GKP codewords. Conse-

quently, the probability to misidentify the bit value in the q(p)
quadrature is calculated by E (σ 2′

out,q(p) ) using Eq. (3), where

σ 2′
out,q(p) is given by

σ 2′
out,q(p) = σ 2

out,q(p)

η
= σ 2

in,q(p) + 1 − η

2η
. (16)

D. Highly reliable measurement

The HRM reduces the probability of misidentifying the bit
value of the GKP qubit by introducing upper limit vup as a
decision line of the bit value, as shown in Fig. 1(a). In the
conventional measurement, the decision sets an upper limit
for |�m| at

√
π/2, and assigns the bit value k = (2t + k)

√
π .

In the HRM, the decision sets an upper limit at vup(<
√

π/2)
to give the maximum deviation that will not cause incorrect
measurement of the bit value as shown in Fig. 1. If the
above condition |�m| < vup is not satisfied, we discard the
result. Since the measurement error occurs when |�̄| exceeds
|√π/2 + vup|, the error probability decreases with increasing
vup at the cost of the success probability of the measurement.
The probability of misidentifying the bit value with the HRM
for the variance σ 2 is given by

Evup (σ 2) =
Pin

vup
(σ 2)

Pcor
vup

(σ 2) + Pin
vup

(σ 2)
, (17)
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where Pcor
vup

(σ 2) is the probability that the true deviation |�̄|
falls in the correct area, and Pin

vup
(σ 2) is the probability that the

true deviation |�̄| falls in the incorrect area. The probabilities,
Pcor

vup
(σ 2) and Pin

vup
(σ 2), are given by

Pcor
vup

=
+∞∑

k=−∞

∫ 2k
√

π+
√

π

2 −vup

2k
√

π−
√

π

2 +vup

dx
1√

2πσ 2
e− x2

2σ2 (18)

and

Pin
vup

=
+∞∑

k=−∞

∫ (2k+1)
√

π+
√

π

2 −vup

(2k+1)
√

π−
√

π

2 +vup

dx
1√

2πσ 2
e− x2

2σ2 , (19)

respectively.

E. The SQEC with a maximum-likelihood estimation

In this subsection, we describe the single-qubit level QEC
(SQEC) and propose the SQEC with a maximum-likelihood
estimation (ME-SQEC). The SQEC is used to correct small
displacement (deviation) errors in both quadratures, while it
cannot correct bit- and phase-flip errors [29]. We describe the
SQEC in the q quadrature, assuming ideal two-mode gates
here (see also Appendix A for the SQEC in the p quadrature).
To correct the small deviation of the data qubit D in the q
quadrature, the ancilla qubit A is prepared in the logical state
|+̃〉A, and is entangled with the data qubit using the ideal CX
gate, with the data and ancilla qubits serving as the target
and control qubits, respectively. The ideal CX gate described
by exp(−iq̂a p̂D) transforms the deviation values of data and
ancilla qubits as

�q,a → �q,a + �q,D, (20)

�p,a → �p,a, (21)

�q,D → �q,D, (22)

�p,D → �p,D − �p,a, (23)

where �q,D(�p,D) and �q,a(�p,a) are the true deviation
values of the data and ancilla qubits in the q (p) quadra-
ture, respectively. Then, we measure the ancilla qubit in the
q quadrature and obtain the measurement outcome mq,m =
(2t + k)

√
π + �mq,a to minimize |�mq,a|, where k is the bit

value and t = 0,±1,±2, . . .. Then, we perform the displace-
ment operation on the data qubit in the q quadrature by the
measured deviation �mq,a. If |�q,a + �q,D| is less than

√
π/2,

the true deviation value of the data qubit in the q quadrature
changes to −�q,a, where the deviation of the data qubit, �q,D,
is displaced by the measured deviation �q,a + �q,D. On the
other hand, if |�q,a + �q,D| is more than

√
π/2, the bit-flip

error occurs. Using Eq. (3), we obtain the error probability
of the bit-flip error as E (σ 2

D,q + σ 2
a,q), assuming that the vari-

ances of the data (ancilla) qubit in the q and p quadratures are
σ 2

D(a),q and σ 2
D(a),p, respectively. As a consequence, the SQEC

in the q quadrature reduces the variance of the data qubit in the
q quadrature from σ 2

D,q to σ 2
a,q, when σ 2

D,q > σ 2
a,q. Regarding

the variance of the data qubit in the p quadrature, the SQEC
increases the variance from σ 2

D,p to σ 2
D,p + σ 2

a,p.
In this paper, we introduce the ME-SQEC to improve noise

tolerance. In the ME-SQEC, we estimate the true deviation

of the data qubit by considering the Gauss-Markov theorem.
The Gauss-Markov theorem is widely known in statistics and
asserts that the ordinary least-squares estimator in the linear
regression model is the best linear unbiased estimator under
specific conditions [76]. Here, we describe the ME-SQEC in
the q quadrature, where we perform the CZ gate between
the data qubit and ancilla qubit, followed by measuring the
ancilla qubit. Considering the least-squares method, the true
deviation of the GKP qubit follows the posterior probability
corresponding to Gaussian distribution of mean δ and the
variance σ ′2

q,D, where δ and σ ′2
q,D are given by

δ = σ 2
q,D

σ 2
q,D + σ 2

p,A

(�p,A − �q,D) (24)

and

σ ′2
q,D = σ 2

q,Dσ 2
p,A

σ 2
q,D + σ 2

p,A

, (25)

respectively. We note that the proposed maximum-likelihood
estimation is based on the fact that the true deviation values
follow a Gaussian distribution independently. Then, by per-
forming the displacement operation on the data qubit by δ,
the variance of the qubit D in the q quadrature decreases from
σ 2

p,A to σ ′2
q,D, while the variance in the p quadrature increases

from σ 2
p,D to σ 2

p,D + σ 2
q,A. In the case where σ 2

p,D = σ 2
q,A = σ 2,

the ME-SQEC improves the variance of the data qubit in the
q quadrature by σ 2/2 in comparison to the SQEC without a
maximum-likelihood estimation. In the measurement, qubit-
level errors occur when the deviation value is more than

√
π/2

and the misidentification of the bit value occurs. To reduce the
probability of misidentifying the ancilla’s bit value, we use the
HRM during the construction of the small-scale cluster state,
as described in the next section.

III. HIGHLY RELIABLE LARGE-SCALE CLUSTER
STATE CONSTRUCTION

In this section, we introduce the scheme for applying the
ME-SQEC to the construction of a small-scale cluster state.
Then, we describe the construction of a large-scale cluster
state from the small-scale cluster states, where the repetition
code with the analog QEC is employed to reduce measure-
ment errors.

A. Small-scale cluster state construction

In this paper, we prepare the small-scale cluster states from
the qunaught states and the GKP qubits using HRM and ME-
SQEC. Figure 2 shows the schematic diagram of the proposed
scheme for preparing reliable small-scale cluster states, where
larger-scale cluster states are generated from smaller-scale
cluster states via the fusion gate and the two-mode gate with
HRM. In this subsection, we describe the construction of two
types of five-tree cluster states described in Figs. 2(g) and
2(h), which are used to construct larger-scale cluster states
with HRM.

First, we prepare two types of two-mode entangled pairs:
the balanced-entangled pair and the biased-entangled pair.
For the balanced-entangled pair, the Bell pair of GKP qubits
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FIG. 2. The preparation of small-scale cluster states with the
ME-SQEC and the highly reliable measurement (HRM). (a) The
generation of the balanced-entangled pair of two GKP qubits via
50:50 beam-splitter coupling between two qunaught states. (b) The
generation of the biased-single qubits via the ME-SQEC. (c) The
generation of the biased-entangled pair via the ME-SQEC in the p
quadrature on one of the biased-entangled pairs in Fig. 2(b), where
the ancilla qubit is prepared in |̃0〉 as the control qubit for the CNOT
gate. (d) The generation of the three-tree cluster state from the two
balanced-entangled pairs. (e) The construction of the five-mode clus-
ter state from the two three-tree cluster states. (f) The construction
of the six-mode cluster state from the five-mode cluster state and
the three-tree cluster state. (g), (h) The construction of two types of
five-tree cluster states.

is generated using a 50:50 beam splitter between the two
qunaught states, as shown in Fig. 2(a), where the qunaught
state, |∅〉, is described in Sec. II A. For simplicity, we assume
that the two-mode gate for the ME-SQEC is ideal in this
section. For the variances, each GKP qubit of the entangled
state has variances of (σ 2, σ 2), i.e., variances in the q and
p quadratures are both σ 2. After the Fourier transformation
on one of the qubits, we obtain the two-mode cluster state.
For the biased-entangled pairs, the ME-SQEC with the HRM
in the q quadrature is applied to one of the entangled pairs,
as shown in Fig. 2(b), where the variances are transformed
from (σ 2, σ 2) to (σ 2/2, 2σ 2) [77]. Figure 2(c) shows the
preparation of the biased-single qubit via the ME-SQECs in
the q and p quadratures, where the variances are transformed
from (σ 2, σ 2) to (σ 2/2, 2σ 2) and (2σ 2, σ 2/2), respectively.

The two biased-single qubits are used for the ME-SQECs on
the qubit whose variance is not (σ 2, σ 2).

Then, we generate the three-tree cluster states via the CZ
gate between each qubit of the two balanced-entangled pairs,
as shown in Fig. 2(d). Considering the variances of the GKP
qubits in the balanced-entangled pair, the CZ gate transforms
the variances of qubits 2 and 3 from (σ 2, σ 2) to (σ 2, 2σ 2).
After measuring qubit 3, qubits 2 and 4 are entangled as the
Bell state. After performing Fourier transformation on qubit
4, the three-tree cluster state is prepared. The variances for
qubits 1 and 4 and for qubit 3 are (σ 2, σ 2) and (σ 2/2, 2σ 2),
respectively. We note that the ME-SQEC is employed after
the measurement of qubit 3 to reduce the variance in the q
quadrature. Figure 2(e) shows the construction of the five-
mode cluster state, where the two three-tree cluster states are
entangled by the CZ gate and one of the qubits is measured. In
the measurement, the ME-SQEC with the HRM is employed
on the qubit whose variances are transformed as (σ 2, σ 2) �→
(σ 2/2, 2σ 2). After the Fourier transformation, the five-mode
cluster state is prepared, where the Fourier transformation
transforms variances from (σ 2/2, 2σ 2) to (2σ 2, 2σ 2/2). Fig-
ure 2(f) shows the construction of the six-mode cluster state
from the five-mode cluster state and the three-tree cluster
state via the Bell measurement. We refer to the entanglement
generation via the Bell measurement as the fusion gate.

Then, we prepare two types of five-tree cluster states, as
shown in Figs. 2(g) and 2(h). The five-tree cluster state in
Fig. 2(g) is prepared by the measurement of one of the qubits
in the six-mode cluster state and the Fourier transformation.
We note that the error probability in the measurement during
the construction of the cluster states in Figs. 2(d)–2(g) is given
by Evup (2σ 2). The five-tree cluster state in Fig. 2(h) is prepared
by employing the ME-SQEC in the p quadrature between the
two qubits in the five-tree cluster state in Fig. 2(g) and the
biased-single qubit in Fig. 2(c). This ME-SQEC transforms
the variances from (σ 2/2, 2σ 2) to (5σ 2/2, 2σ 2/5). The error
probability in this ME-SQEC is given by Evup (5σ 2/2). After
preparing the small-scale cluster states described in Fig. 2,
we construct the encoded hexagonal cluster state. Figure 3(a)
shows the encoded hexagonal cluster state, where each of the
six node qubits is connected to two encoded leaf qubits. Each
encoded leaf qubit consists of the encoded ancilla qubits, and
each encoded ancilla qubit consists of the single leaf qubit
and three ancilla qubits. The procedure for generating such
small-scale cluster states is similar to the one introduced in
Ref. [32]. The details for the construction of the encoded
hexagonal cluster are described in Appendix B. In the con-
struction of the hexagonal cluster state, the maximum error
probability for the fusion gate with the proposed scheme is
Evup (5σ 2/2), while with the conventional scheme [32] it is
Evup (3σ 2). Additionally, the error probabilities for the ME-
SQECs during the construction of small-scale cluster states
are limited to Evup (5σ 2/2) at most. Consequently, we obtain
the three-tree cluster state with low error accumulation.

B. Large-scale cluster state construction
with the encoded measurement

After preparing the encoded hexagonal cluster states, we
construct the so-called Raussendorf-Harrington-Goyal lattice
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FIG. 3. The construction of a large 3D cluster state. (a) The hexagonal cluster state with the encoded leaf qubits, where each of six node
qubits is entangled with 2L encoded leaf qubits and two neighboring node qubits. Each encoded leaf qubit consists of a single leaf qubit and
m ancilla qubits. (b) The encoded Bell measurement between the two encoded leaf qubits in the neighboring hexagonal cluster states. (c) The
m-Bell measurements for each encoded Bell measurement. (d) Each measurement of the m Bell measurements between the two neighboring
qubits. (e) The measurement on the ancillae in the q quadrature to keep the most reliable entanglement by comparing the reliabilities obtained
from the measurement results of the Bell measurement. (f) The measurement on the ancillae in the p quadrature to discard the entanglement
except for the most reliable entanglement, which corresponds to the encoded measurement with the m-repetition code in the q quadrature.

referred to as the three-dimensional (3D) cluster state in
this paper. In this step, the large-scale 3D cluster state must
be constructed deterministically from the encoded hexagonal
cluster states since large-scale QC should be implemented de-
terministically. In Ref. [32], the large-scale 3D cluster state is
constructed from the hexagonal cluster described by using the
deterministic fusion gate without the HRM. The bottleneck
to improve the threshold of squeezing level, as obtained in
Ref. [32], is the error arising from the deterministic fusion
gate since the error probability of the deterministic fusion gate
is several orders of magnitude higher than that of the fusion
gate with the HRM. In this paper, we employ the encoded
hexagonal cluster state to reduce the error probability of the
deterministic fusion gate by using encoded ancilla qubits, as
shown in Fig. 3(b). Consequently, we can perform topologi-
cally protected MBQC on the highly reliable 3D cluster state.

Here we describe the fusion gate with the encoded mea-
surement in more detail, which realizes deterministic and
reliable entanglement generation between neighboring node
qubits. Figures 3(c)–3(f) show the schematic diagram for the
encoded measurement, which consists of three steps. First,
we implement the Bell measurement between the two leaf
qubits of neighboring hexagonal cluster states, as shown in
Fig. 3(d). Then, we select the most reliable entanglement
from the measurement results by comparing L likelihoods of
the Bell measurements. The likelihoods are obtained from
the measurement results as follows: We assume that the ith
measurement deviations �m,Ai and �m,Bi are obtained from
the ith Bell measurement on the two ith leaf qubits whose
variance in the q(p) quadrature is σ 2

leaf,q(p). The ith likelihood
is calculated by

Fi = f (�m,Ai ) f (�m,Bi ), (26)

where f (x) corresponds to the Gaussian distribution with
mean zero and variance σ 2

leaf,q + σ 2
leaf,p = 2σ 2, i.e., the sum

of the variances for the leaf qubit in the q and p quadratures.

Thirdly, we keep the most reliable entanglement while
removing the remaining entanglement by comparing the m
likelihoods. To keep the entanglement, we measure the an-
cillae connected to the most reliable entanglement in the q
quadrature, as shown in Fig. 3(e). The probability of misiden-
tifying the bit value in the q quadrature is sufficiently small
compared to that in the p quadrature. For instance, the vari-
ance in the q quadrature is σ 2/2 or 2σ 2/5, while the variance
in the p quadrature is 2σ 2 or 5σ 2/2. As a result, we remove
the ancillae from entanglement with a low error probabil-
ity. For entanglement, except for the most reliable one, we
perform the encoded measurement by measuring the ancillae
in the p quadrature, as shown in Fig. 3(f). In the encoded
measurement, we can obtain the bit value of the leaf qubit in
the q quadrature by the m-repetition code. In the m-repetition
code for the encoded leaf qubit, when there are no errors, the
node qubit labeled by N and the ith ancilla labeled by Ai are
stabilized by

ẐN X̂Ai = +1 (i = 1, 2, . . . , m), (27)

where m corresponds to the number of ancilla qubits. After
measuring the m ancilla qubits, we implement a majority
vote among the measurement results of the ancillae in the p
quadrature. As an example, we consider the case that the mea-
surement results for the ancillae with m = 3 are X̂A1 = +1,
X̂A2 = +1, and X̂A3 = −1, i.e., the bit values of the qubits A1,
A2, and A3 are measured as 0, 0, and 1, respectively. In this
case, the bit value for the node qubit in the q quadrature is
determined to be zero by a majority vote. This type of indirect
measurement via ancilla qubits was introduced by Varnava
et al. [78] for loss-tolerant optical quantum information pro-
cessing. In our method, we apply the analog QEC [31] to
the repetition code to enhance the QEC performance, where
we compare two likelihoods for the logical bit values from
the measurement results of the m ancilla qubits. The procedure
for the m-repetition code with the analog QEC is described
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in Ref. [31]. Consequently, we can obtain the large-scale 3D
cluster state with a low error accumulation via the determinis-
tic fusion gate with the encoded measurement.

IV. THRESHOLD CALCULATION

In this section, we numerically calculate the threshold of
the squeezing level required for FTQC. In the numerical
calculation, we simulate the QEC process for topologically
protected MBQC by using the minimum-weight perfect-
matching algorithm [79,80] for the code distances d = 5, 7,
9, and 11. In the simulation, we set the upper limit vup for the
HRM to 9

√
π/20, and the number of ancilla qubits for the

encoded measurement in the deterministic fusion gate is set to
m = 3. In addition to the repetition code in the deterministic
fusion gate, we apply the analog QEC [31] to decoding for the
surface code in topologically protected MBQC to enhance the
QEC performance. The procedure to apply the analog QEC
to the surface code has been described in Ref. [32]. For an
error model, we consider the errors derived from the variance
for the node qubit itself, the accumulation of errors during
the hexagonal cluster construction and deterministic fusion
gate, assuming noise in the two-mode gate and homodyne
measurement. For noise due to the two-mode gate described in
Sec. II B, we assume that the squeezing level of the ancillary
squeezed vacuum state is 15.0.

In Fig. 4, the logical error probabilities are plotted as
a function of the standard deviation for photon loss in the
homodyne measurement l = 0, 5, and 10%, where photon
loss l is equal to 1 − η with a transmittance coefficient η

described in Sec. II C. The numerical results confirm that our
method for l = 0, 5, and 10% achieves the threshold values
of the standard deviation, around 0.278, 0.234, and 0.168,
which correspond to the threshold values of the squeezing
level, around 8.1, 9.6, and 12.4 dB, respectively. The proposed
scheme improves the threshold by about 2 dB compared to the
previous one in Refs. [32,81]. Therefore, our scheme provides
a high-threshold squeezing level for FTQC, even under noise
in homodyne measurement and the two-mode gate.

V. DISCUSSION AND CONCLUSION

In this paper, we have developed a method to perform
high-threshold FTQC with the GKP qubit under noise in the
two-mode gate and homodyne measurement. In our method,
we have proposed a maximum-likelihood method to reduce
noise of the GKP qubits in the SQEC and the deterministic
fusion gate with the encoded measurement, and combined
the proposed methods with the conventional high-threshold
FTQC [32]. The numerical calculations have shown that the
required squeezing level can be improved to less than 10 dB
with the analog QEC up to about a 5% transmission loss in
the homodyne measurement, which could be generated with
the near-term experimental setup. Furthermore, our method
enables us to perform CV-FTQC with 12.4 dB for a 10%
transmission loss, demonstrating numerically the robustness
of CV-FTQC with GKP qubits against photon loss. In ad-
dition, there has been experimental progress in improving
the squeezing level for CV quantum information processing,
such as using squeezed light with an optical cavity [75,82,83]

FIG. 4. Simulation results of the topologically protected MBQC
with the analog QEC for the code distances d = 5, 7, 9, and 11.
The failure probabilities of the QEC are plotted as a function of
the standard deviation of the GKP qubits for loss in the homodyne
measurement, (a) 0%, (b) 5%, and (c) 10%, respectively. The QEC
process is simulated by using the 3D cluster prepared by the proposed
method with vup = 9

√
π/20. The simulation results are obtained

from 10 000 samples.

and waveguide devices [84–86]. Therefore, we believe that
this paper will pave the way for CV-FTQC with a moderate
squeezing level.

In future work, we will analyze the resources required for
CV-FTQC, such as the number of qubits needed to implement
a quantum algorithm at various squeezing levels. Additionally,
we could apply the proposed scheme to noise that includes
imperfections during the generation of the GKP qubit. Such a
noise model has been studied in Refs. [33,36].
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FIG. 5. The construction of the encoded hexagonal cluster state via fusion gates with the HRM. (a)–(c) The construction of three types of
the five-tree cluster state. (d) The construction of the four-tree cluster state. (e) The construction of the encoded leaf qubit from the four-tree
cluster state and the five-tree cluster states. (f) The construction of the encoded five-tree cluster state consisting of three qubits and two encoded
qubits. Each encoded qubit consists of the L = 3 encoded leaf qubits. Each encoded leaf qubit consists of the m + 1 = 4 qubits used for the
m-repetition code. (g) The construction of the encoded hexagonal cluster with the encoded leaf qubits from the six encoded five-tree cluster
states.

APPENDIX A: SINGLE-QUBIT LEVEL QEC
IN THE p QUADRATURE

We describe the SQEC in the p quadrature after the SQEC
in the q quadrature. The SQEC in the p quadrature is per-
formed using the additional ancilla qubit A2 prepared in the
state |+̃〉A2

= (|̃0〉A2
+ |̃1〉A2

)/
√

2. The data qubit D is inter-
acted with the ancilla A2 by the CX gate, where the ancilla
qubit is assumed to be the control qubit. Regarding the devia-
tion, the CX gate operation transforms the deviations in the q
and p quadratures as

�q,a2 → �q,a2 , (A1)

�p,a2 → �p,a2 − �p,D + �p,a, (A2)

−�q,a → −�q,a + �q,a2 , (A3)

�p,D − �p,a → �p,D − �p,a, (A4)

where �q,a2(�p,a2) is the true deviation value of the ancilla
A2 in the q (p) quadrature. Then we measure the ancilla in
the p quadrature, and obtain the deviation of the ancilla
�mp,a2 . Then we measure the ancilla qubit in the p quadra-
ture, and obtain the measurement outcome mp,m = (2t +
k)

√
π + �mp,a2 to minimize |�mp,a2 |, where k is the bit value

and t = 0,±1,±2, . . .. If |�mp,a2| = |�q,a2 − �q,D + �p,a|
is less than

√
π/2, the true deviation value of the data qubit

in the q quadrature changes from �q,D − �q,a to �q,a2 after
the displacement operation. If |�mq,a2| is more than

√
π/2,

the phase-flip error occurs after the displacement operation.
Consequently, the sequential SQECs in the q and p quadra-
tures transform the variances of the data qubit in the q and p
quadratures as σ 2

D,q → σ 2
a,q + σ 2

a2,q and σ 2
D,p → σ 2

a2,p, respec-
tively. In this paper, we employ the ME-SQEC to reduce the
variances, as described in Sec. II E.

APPENDIX B: CONSTRUCTION OF THE HEXAGONAL
CLUSTER STATE

We describe the construction of the encoded hexagonal
cluster state from the cluster states described in Fig. 2, where
larger-scale cluster states are generated from smaller-scale
cluster states by using the fusion gate with the HRM, as
depicted in Fig. 5. We describe the preparation of the encoded
hexagonal cluster state, where each node qubit consists of
2L = 6 encoded leaf qubits and each encoded leaf qubit con-
sists of m = 3 ancilla qubits. We note that the fusion gate does
not increase the variances of the node qubits, and the HRM is
used to ensure reliability for the fusion gate until the encoded
hexagonal cluster state is prepared. During the construction of
the encoded hexagonal cluster state, the error probabilities of
the measurements are limited to at most Evup (5σ 2/2) for each
measurement.

Figures 5(a)–5(c) show the construction of three types of
the five-tree cluster states. For the five-tree cluster state in
Fig. 5(a), the cluster state is prepared by the fusion gate
between the qubits of cluster states in Figs. 2(b) and 2(g),
where the error probability in the fusion gate is given by
Evup (5σ 2/2). Figure 5(b) describes the five-tree cluster state
via the three ME-SQECs in the q quadrature on the qubits
in Fig. 5(a), where the error probabilities in the ME-SQECs
are given by Evup (2σ 2) and Evup (5σ 2/2). The ME-SQECs
in the q quadrature transform variances as (2σ 2, σ 2/2) �→
(2σ 2/5, 5σ 2/2) and (σ 2, σ 2) �→ (σ 2/2, 2σ 2). Figure 5(c) de-
scribes the five-tree cluster state via the three ME-SQECs in
the q quadrature on the qubit in the five-tree cluster state in
Fig. 5(b). Figure 5(d) describes the four-tree cluster state. For
this four-tree cluster state, we first prepare the four-tree clus-
ter state with the node qubit whose variance is (σ 2/2, 2σ 2),
where we perform the CZ gate between the qubits in the
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three-tree cluster state and the balanced-entangled pair, and
implement the Fourier transformation after the measurement.
Then, we apply the fusion gate between the qubits in the
four-tree cluster state and the biased-entangled pair to obtain
the four-tree cluster state with the node qubit whose variance
is (2σ 2, σ 2/2), where the error probability in the fusion gate is
given by Evup (5σ 2/2). Figure 5(e) describes the construction
of the encoded leaf qubit from the four-tree cluster state and
the five-tree cluster state by using the fusion gates. Figure 5(f)
describes the construction of the encoded five-tree cluster state
via the fusion gate between the qubits in the cluster states in
Figs. 5(d) and 5(e). The encoded five-tree cluster state, i.e., the
encoded leaf qubit, consists of the 2L encoded ancilla qubits,
where each encoded ancilla qubit consists of the single leaf
qubit and three ancilla qubits. These ancilla qubits are used
for the encoded measurement to realize the reliable entangle-
ment generation between the node qubits in the neighboring

hexagonal cluster states, as described in Sec. III B. Finally,
the encoded hexagonal cluster state is constructed from the
six encoded five-tree cluster states, as shown in Fig. 5(g). For
the error probabilities, the probability of errors in the fusion
gate between qubits with variances of (σ 2, σ 2) is given by
Evup (2σ 2), while that between qubits between variances of
(σ 2/2, 2σ 2) is Evup (5σ 2/2). Accordingly, the error probabil-
ities of the fusion gate are limited to Evup (5σ 2/2) at most
during the preparation of the encoded hexagonal cluster state.
In the construction of the hexagonal cluster state, the maxi-
mum error probability for the proposed scheme, Evup (5σ 2/2),
is improved compared to the scheme in Ref. [32], Evup (3σ 2).
Thus, we obtain the highly reliable encoded hexagonal cluster
state with low error accumulation at the cost of the success
probability for the HRM. This method is used for the deter-
ministic generation of a large-scale cluster state required for
CV-FTQC.
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