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Conditional global entanglement in a Kosterlitz-Thouless quantum phase transition
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Entanglement is known as an important indicator for characterizing different types of quantum phase tran-
sitions (QPTs); however, it faces some challenges in the Kosterlitz-Thouless (KT) phase transitions due to an
essential singularity which cannot be identified in finite derivatives of the ground-state energy. In this paper, we
consider global entanglement (GE) in a KT phase transition and show that while it does not indicate any clear
signature of the phase transition, the conditional version of GE is a good indicator with strong signatures of the
KT transition. In particular, we study a deformed version of the Zd Kitaev model which has an intermediate KT
phase which separates a Zd topological phase from a magnetized phase at two different KT transition points.
Using a mapping to the classical d-state clock model, we consider GE and the generalized GE and show that
they do not provide a reliable indicator of transition points. However, their difference, called conditional global
entanglement (Q), shows a peak at the first KT transition point. Additionally, we show that it can characterize
various phases of the model as it behaves substantially differently in each phase. We therefore conclude that Q
is a useful measure that can characterize various phases of KT QPTs as well as their related critical points.
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I. INTRODUCTION

Studying correlations in physical systems is one of the
most important approaches for considering transitions be-
tween different phases of matter [1,2]. In particular, quantum
phase transitions (QPTs) are qualitatively different in a sense
that their critical fluctuations can be understood in the no-
tion of quantum mechanics [3,4] where entanglement is a
powerful tool. It specifically has attracted much attention in
topological quantum phase transitions (TQPTs) which have
been extensively studied [5–7] thanks to the different na-
tures of entanglement in topological phases [8,9]. The role
of entanglement becomes more interesting when one studies
Kosterlitz-Thouless (KT) phase transitions where there are
many challenges due to the essential singularity which ap-
pears in the ground-state energy [10–15]. What emerges out
of these notions is that there is a need to choose a reasonable
measure of entanglement for characterizing different types of
phase transitions [16,17].

Among different measures of entanglement, multipartite
measures are suitable candidates for probing QPTs. This is
motivated by the fact that phase transitions are accompanied
by the divergence of the correlation length at the critical point,
which results in the appearance of long-range correlations at
criticality. This fact leads to the expectation that multipartite
entanglement reaches the maximum value at the critical point
in QPTs [18–22]. Among different multipartite measures,
global entanglement (GE) [23] has been well known through
various scientific studies [19,20,24–32]. Although it peaks
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at the critical point in ordinary QPTs [19,20], it has been
shown that it behaves monotonically through the TQPT [31].
While the same behavior has also been observed [31] for the
generalized version of global entanglement (G̃E), the condi-
tional global entanglement denoted by Q shows the desired
behavior by peaking at the critical point of a TQPT [31].
This result suggests that Q, as a measure of multipartite en-
tanglement, should be considered for studying other types of
QPTs.

On the other hand, calculating multipartite entanglement
for different quantum systems needs costly computational
methods such as tensor networks [33,34]. However, there are
also mappings in spin models which establish a quantum-
classical correspondence [31,32,35–41]. Regarding such map-
pings, there is a possibility to map entanglement measures to
some classical quantities in the classical spin models. Since
simulation of classical spin models is computationally less
costly than quantum systems, one is able to do a simple
analysis of entanglement in quantum systems; see Ref. [31].
For example, it has been shown that a deformation of the Zd

Kitaev state denoted by |Kd (β )〉, where β is a control param-
eter, passes through KT QPTs where there is a mapping to
the classical d-state clock model [11]. In this regard, |Kd (β )〉
moves from the fully magnetized phase to the Zd topologi-
cal phase with decreasing β. There is also an intermediate
KT phase which appears between the trivial and the topolog-
ical phase where transition points are of KT type. However,
there is an important problem that, since singularity in such
transitions is essential, it becomes a challenging task to find
simple measures to characterize KT transitions. On the other
hand, it is known that the correlation length shows divergence
in the entire intermediate KT phase. Therefore, regarding the
effect of the infinite correlation length on the multipartite
entanglement, multipartite measures such as GE should be
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a good candidate for studying the aforementioned KT phase
transitions.

In this regard, here we choose to analyze the behavior of
GE and its conditional version in the above KT QPTs by using
the mapping to the d-state clock model. Using such mapping,
we simulate the d-state clock model to obtain GE, G̃E, and
Q for |Kd (β )〉. We find that both GE and G̃E have monotonic
behavior at the QPT. The derivatives of GE and G̃E also fail to
characterize KT QPTs, as their peaks do not appear near the
critical points. However, Q develops a peak at the first critical
point and decreases linearly within the KT phase. Near the
second critical point, the behavior of Q versus β modifies such
that it converts to the power-law behavior. In other words, Q
decreases linearly within the KT phase while in the topologi-
cal phase the decay of Q becomes stronger (superlinear). This
type of behavior can be related to the underlying behavior of
correlation length in these two phases [10]. Therefore, one can
conclude that not only is Q able to indicate the KT QPT by
peaking near the first critical point, but also it has a distinct
behavior within the KT phase. Hence, it can be regarded as
a reasonable measure for quantifying both TQPTs and KT
QPTs.

The organization of the paper is as follows. In Sec. II,
we define a Zd perturbed Kitaev model which exhibits an
intermediate KT quantum phase. Moreover, we explain the
quantum-classical correspondence between the above quan-
tum model and the classical d-state clock model. In Sec. III,
we show our numerical results on the behavior of GE and
G̃E as multipartite entanglement measures in the KT QPTs.
In Sec. IV, we present our numerical results for the behavior
of Q in the aforementioned KT QPTs and show that it can
capture such QPTs as well. We finally summarize our results
and discuss some concluding remarks in Sec. V.

II. THE MODEL

We start by reviewing the Zd Kitaev state which is a gen-
eralized version of the Z2 Kitaev model where individuals
are d-dimensional quantum systems called qudits. Consider a
two-dimensional (2D) directed square lattice, see Fig. 1, with
periodic boundary condition where N qudits are attached on
the edges of the lattice. Then the Zd Kitaev state is a quantum
stabilizer state stabilized by an Abelian group of stabilizer
operators which are generated by generalized Pauli operators
for a collection of N qudits. In particular, the generalized
versions of the Pauli operators Ẑ and X̂ for a d-dimensional
quantum system are defined in the following form:

Ẑ =
d−1∑
m=0

wm|m〉〈m|, X̂ =
∑

m

|m + 1〉〈m|, (1)

where w = exp(2π i/d ) and |m〉’s are the eigenvectors of Ẑ .
Obviously, Ẑ and X̂ operators are unitary, but not Hermitian,
and they satisfy the relations Ẑd = X̂ d = Î and ẐX̂ = wX̂ Ẑ .
Now it is possible to define two types of operators correspond-
ing to plaquettes and vertices of the lattice. For each plaquette
of the lattice, like the one marked in Fig. 1, the plaquette
operator B̂p is defined in the following form:

B̂p = Ẑ1Ẑ−1
2 Ẑ−1

3 Ẑ4, (2)

FIG. 1. A directed square lattice with periodic boundary condi-
tion in 2D. Qudits exist on the edges. A plaquette and a vertex have
been marked.

where the power of Ẑ is +1(−1), if the corresponding edge
of the plaquette has clockwise (counterclockwise) direction.
Similarly, the star operator Âv corresponding to each vertex of
the lattice, as shown in Fig. 1, is defined by

Âv = X̂1X̂2X̂ −1
3 X̂ −1

4 , (3)

where the power of X̂ is +1 (−1) if the link is outward
(inward) to the vertex v. All plaquette and star operators
commute, simply because they have even number of qudits
in common. Therefore, they can construct the group of sta-
bilizers. Let |Kd〉 denotes the Zd Kitaev state; then it must be
stabilized through all elements of the stabilizer group such that
for each plaquette and star operator it satisfies B̂p|Kd〉 = |Kd〉
and Âv|Kd〉 = |Kd〉. The resultant quantum state up to a nor-
malization factor is

|Kd〉 =
∏
v

(
1 + Âv + Â2

v + · · · + Âd−1
v

)|0〉⊗N , (4)

where |0〉⊗N is a fully magnetized state. Each Âv corresponds
to a closed loop in the dual lattice. The power of Âv in Eq. (4)
determines the weight of the closed loop; see Fig. 2(a). This
readily implies that |Kd〉 is a string-net condensed state which
can be represented as a superposition of all closed weighted
loops.

Now let us consider a deformation of the Zd Kitaev state
such that it passes through a QPT. To this end, as has been
done in Ref. [11], we add fluctuations to the probability am-
plitudes of |Kd〉 by applying a local invertible transformation
to each qudit in the following form:

|Kd (β )〉 → exp

{
β

2

∑
i

(
Ẑi + Ẑ−1

i

)}|Kd〉, (5)

where β is a control parameter and i refers to the number of
each qudit. In the β → ∞ limit, each local invertible transfor-
mation exp{ β

2 (Ẑ + Ẑ−1)} goes to a projection operator |0〉〈0|,
simply because the probability amplitude of |0〉〈0| in the
exp{ β

2 (Ẑ + Ẑ−1)} = ∑d−1
m=0 exp{β cos 2πm

d }|m〉〈m| dominates.
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(a) (b)

FIG. 2. (a) Each Âv (vertex operator) corresponds to a loop in the dual lattice. The power of Âv determines the weight of the loop in the
quantum model. (b) d-state variables in the classical clock model are placed on the vertices. Circles mark variables with ni �= 0. me = nj − ni

refers to edge variable. Each configuration in the clock model corresponds to a weighted loop pattern.

Therefore, |Kd (β )〉 approaches the trivial state |0〉⊗N . On the
other hand, when β = 0 the Zd Kitaev state retrieves. Hence,
it is obvious that a QPT must occur as a result of changing β

from 0 to ∞. Moreover, note that we need also a normalization
factor for |Kd (β )〉 which is in the form of

1/(〈Kd |exp

{
β

∑
i

(
Ẑi + Ẑ−1

i

)}|Kd〉)1/2. (6)

To illustrate the QPT, let us explain an interesting property
of |Kd (β )〉. In particular, there is a mapping to the d-state
clock model where the probability amplitudes of |Kd (β )〉 cor-
respond to the Boltzmann weights of different configurations
of the d-state clock model in 2D which is described by the
Hamiltonian

H = −
∑
〈i j〉

cos(θi − θ j ), (7)

where θi = 2πni/d , and ni = {0, 1, ..., d − 1} refers to the
classical d-state spins living in the vertices of a square lattice.
In order to clarify the above quantum-classical correspon-
dence, let us switch to the graphical representation of the clock
model. Consider a 2D square lattice with periodic boundary
condition and give each edge a direction as shown in Fig. 2(b).
It is then possible to show an arbitrary configuration of spins
in terms of closed weighted loops in the dual lattice. To this
end, consider an arbitrary configuration shown in Fig. 2(b)
where for spins denoted by circles ni �= 0 and for other spins
ni = 0. Then, let me = n j − ni denote a different variable liv-
ing in any edge of the lattice. By connecting lines which cross
from edges with me �= 0, a configuration with closed weighted
loops emerges. It is perfectly obvious that the closed loops in
the classical and quantum model are exactly the same.

In this regard, there is a relation between the partition
function of the classical model and the normalization factor of
the |Kd (β )〉 [11]. The partition function of the classical d-state
clock model at temperature T is expressed as

Zclock(T ) =
∑
{θi}

exp
∑
〈i j〉

cos(θi − θ j )/T . (8)

We can write the partition function in the following form:

Zclock (T ) =
∑
{ni}

exp

⎧⎨⎩∑
〈i j〉

ωni−n j + ωn j−ni

2T

⎫⎬⎭, (9)

where we use the fact cos(x) = eix+e−ix

2 . i and j in Eq. (9) refer
to the d-state classical spins placed on the vertices.

On the other hand, in Eq. (6) we can rewrite the square of
the denominator in the form of∑

{mi}
〈Kd |m1m2...mN 〉exp

{∑
i

β(ωmi + ω−mi )

}
× 〈m1m2...mN |Kd〉, (10)

where we open a complete basis of eigenvectors of Ẑ operator
denoted by |mi〉 corresponding to each qudit at the edge i. By
recalling that |mi〉 refers to the state of the qudit at the edge i,
we can deduce that it corresponds to the edge variable me in
the classical model. Therefore, Eq. (10) is nothing more than
sum of Boltzmann weights of configurations in the d-state
clock model. Indeed, it is the partition function of the clock
model up to a constant factor where the control parameter β

maps to 1
2T .

Next, using the quantum-classical mapping, it has been
shown that the fidelity susceptibility of |Kd (β )〉 maps to the
heat capacity of the clock model [11]. Whereas this implies
that |Kd (β )〉 passes through KT phase transitions for d � 5
at transition points β∗

1 = 1
2T 1

c
and β∗

2 = 1
2T 2

c
, it fails to show

the critical points β∗
1 and β∗

2 . Indeed, the fidelity suscepti-
bility for |Kd (β )〉 similar to the heat capacity for the clock
model does not show a detectable singularity at transition
points when d � 5. The peak positions of the heat capac-
ity do not correspond to the critical transition temperatures
in the clock model. Therefore, it is relevant to ask which
quantities are reasonable for characterizing critical points in
the KT QPTs. In particular, regarding the well-known role
of multipartite entanglement in studying different types of
quantum phase transitions, we expect that various measures of
multipartite entanglement should be useful in the KT QPTs.
In the following sections, we consider the above important
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issue by studying GE as a known measure of multipartite
entanglement.

III. GLOBAL ENTANGLEMENT

In this section, we consider GE and G̃E as measures of
multipartite entanglement to study QPTs occurring in |Kd (β )〉.
GE and G̃E are defined by

GE = d

d − 1

(
1 − 1

N

N∑
i=1

Tr
(
ρ̂2

i

))
(11)

and

G̃E = d2

d2 − 1

⎛⎝1 − 2

N (N − 1)

∑
(i, j)

Tr
(
ρ̂2

i, j

)⎞⎠, (12)

where ρ̂i (ρ̂i, j) is the one- (two-) qudit reduced density matrix
corresponding to qudit(s) i (i, j). Note that it is possible to
interpret GE (G̃E) as average linear entropy of one (two)
qudit(s), respectively [20], where Tr(ρ̂2

i ) and Tr(ρ̂2
i, j ) are the

purities of the quantum states ρ̂i and ρ̂i, j .
In this regard, we consider two particular qudits denoted

by a, b and find reduced density matrices ρ̂a and ρ̂a,b which
are obtained by taking the partial trace of |Kd (β )〉〈Kd (β )|. To
this end, we write ρ̂a and ρ̂a,b in the following form:

ρ̂a = 1

Z
∑

{αl =0,1,...,d−1|l �=a}

× 〈α1, α2, ..., αN |e β

2

∑
i[Ẑi+Ẑ−1

i ]|Kd〉
× 〈Kd |e

β

2

∑
i[Ẑi+Ẑ−1

i ]|α1, α2, ..., αN 〉. (13)

ρ̂a,b = 1

Z
∑

{αl =0,1,...,d−1|l �=a,b}

× 〈α1, α2, ..., αN |e β

2

∑
i[Ẑi+Ẑ−1

i ]|Kd〉
× 〈Kd |e

β

2

∑
i[Ẑi+Ẑ−1

i ]|α1, α2, ..., αN 〉. (14)

Interestingly, ρ̂a and ρ̂a,b are diagonal matrices, because it
is impossible to have a closed loop which acts solely on one
or two qudit(s). Therefore, ρ̂a and ρ̂a,b are simplified to

ρ̂a = 1

Z
(
Za

0 |0〉〈0| + Za
1 |1〉〈1| + · · · + Za

d−1|d − 1〉〈d − 1|),
(15)

ρ̂a,b = 1

Z
(
Zab

00 |00〉〈00| + Zab
01 |01〉〈01| + · · ·

+ Zab
(d−1)(d−1)|(d − 1)(d − 1)〉〈(d − 1)(d − 1)|),

(16)

where Za
m/Z (Zab

mm′/Z ) is the sum of the squares of probabil-
ity amplitudes of configurations in which the state of qudit(s)
a (a, b) is |m〉 (|mm′〉). According to the quantum-classical
mapping described above, we can construct a relation between
Za

m/Z (Zab
mm′/Z ) and classical quantities in the clock model.

To this end, remind that corresponding to neighboring clas-
sical spins we defined an edge variable of m in the clock
model. In this regard, similar to the definition of the partition
function in Eq. (9), Za

m (Zab
mm′ ) is also the sum of Boltzmann

weights of spin configurations of the classical clock model,
where the absolute value of the edge variable(s) corresponding
to edge(s) a (a, b) is (are) fixed to m (m, m′). Therefore, we
can finally write GE and G̃E in the following way:

GE = d

d − 1

(
1 − 1

N

N∑
a=1

[(
Pa

0

)2 + (
Pa

1

)2 + · · · + (
Pa

d−1

)2])
(17)

and

G̃E = d2

d2 − 1

⎛⎝1 − 2

N (N − 1)

∑
(a,b)

[(
Pab

00

)2 + ... + (
Pab

(d−1)(d−1)

)2]⎞⎠, (18)

where Pa
m = Za

m/Z (Pab
mm′ = Zab

mm′/Z ) is equal to the probabil-
ity that the classical system in the temperature of T chooses
spin configurations wherein the absolute of edge variable(s)
of a particular link(s) a (a, b) has (have) the value(s) of m
(m, m′).

By the above mapping, we are able to calculate GE and
G̃E for our quantum model to see if they are capable of
characterizing the QPTs induced in |Kd (β )〉. To achieve this
aim, we simulate the d-state clock model from d = 7 to d = 9
for different system sizes up to N = 3200. We find that while
both quantities behave monotonically, the derivatives of GE
and G̃E do not peak at or near the critical points. For d = 9,
the maximum of the derivative of GE occurs at 0.26 while the
derivative of G̃E peaks at 0.24. This is while the first critical
point has been obtained at T 1

c ≈ 0.34 [42]. Figure 3 shows the
behavior of GE, G̃E, and their derivatives for d = 9. Similar
figures are also obtained for d = 8 and d = 7. In the case of
d = 8, the peak position of dGE/d (2β )−1 is at 0.32 and the
maximum of dG̃E/d (2β )−1 occurs at 0.30. In comparison,
the first transition point is at T 1

c ≈ 0.42 [42]. When d = 7,
dGE/d (2β )−1 becomes maximum at 0.42 and dG̃E/d (2β )−1

peaks at 0.38, whereas it has been shown that the first critical
point is at T 1

c ≈ 0.54 [42]. These results suggest that both GE
and G̃E are not able to detect KT QPTs.

Regarding the above results for GE and G̃E, it becomes an
important task to consider which other measure of multipartite
entanglement is able to capture a KT QPT. In particular, in
Ref. [31] it has been shown that a conditional version of global
entanglement Q, which is equal to the difference between G̃E
and GE, is a good measure for characterizing TQPTs. In this
regard, we study this quantity for the KT QPT.

IV. CONDITIONAL GLOBAL ENTANGLEMENT

As seen in the previous section, both GE and G̃E show
monotonic behavior versus the control parameter (2β )−1.
Their derivatives do not also peak near the critical points and
hence they fail to quantify the transition points in the KT
QPT. On the other hand, as it has been shown in Ref. [31] it
seems that it is the presence of long-range entanglement in the
topological phase which leads to the monotonic behavior of
GE. However, the quantity Q = G̃E − GE is able to cancel out
the effect of long-range entanglement and peaks at the critical
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(a) (b)

(c) (d)

FIG. 3. d = 9 (a) GE (global entanglement) vs 2β−1 (dimensionless control parameter). (b) The first-order derivative of GE. The maximum
of dGE/d (2β )−1 occurs at 0.26. (c) G̃E (generalized global entanglement) vs (2β )−1. (d) The first-order derivative of G̃E. The derivative of
G̃E peaks at 0.24. It has been shown that the first critical point occurs at T 1

c ≈ 0.34 [42]. System sizes are indicated by different colors. N is
the total number of qudits in the quantum model and N/2 is the total number of spins in the classical clock model. No significant finite-size
effect is observed at the resolution studied which is consistent with previous studies on heat capacity in Refs. [43,44].

point in the case of ordinary TQPT. In this regard, we intend
to study the behavior of Q for |Kd (β )〉 and ask if it is still a
reasonable indicator of KT QPT.

To this end, we use the classical-quantum mapping and
calculate Q by simulating the d-state clock model. We con-
sider Q in terms of (2β )−1 for 7 � d � 9 up to system sizes
N = 3200. Interestingly, as shown in Fig. 4, Q develops a
peak near the first critical point. However, the peak position
of Q, denoted hereafter by TQ, is slightly different from the
transition point which is obtained from very recent large-scale
simulation of clock model [10,42,45]. To illustrate the effect
of small system size, we obtain transition points by evaluat-
ing a cumulant Um [43] with the use of system sizes up to
N = 3200 and compare the results with TQ. The parameter
Um is

Um = 1 − 〈m4
φ〉

2〈m2
φ〉2

, (19)

where φ = tan−1(σy/σx ), σx = ∑N/2
i=1 cos θi, σy = ∑N/2

i=1 sin θi,
and mφ = 〈cos(dφ)〉 is the effective order parameter. Then,
the transition point is characterized from the intersection of
Um for various N . The inset in Fig. 4 shows Um versus T for
7 � d � 9.

Table I compares TQ and the intersection position of Um

which is denoted by TUm .

Despite our limited system sizes, the results show good
consistency in characterizing the first transition points.

Now let us move to the second critical point. As can be
seen from Fig. 4, the behavior of Q within the KT phase
differs from the topological phase. One can readily fit a linear
function to Q in the KT phase. In comparison, a power-law
curve fits well to the data in the topological phase. In order
to capture the starting position of the change of behavior
of Q, we plot the fitted linear and the power-law function
and consider their intersection point. In this approximation,
which is clearly vulnerable to numerical uncertainty, we ob-
tain (2β )−1 ≈ 0.97 (d = 9), (2β )−1 ≈ 0.99 (d = 8), and
(2β )−1 ≈ 0.99 (d = 7). In previous studies with large system
sizes, the second transition points for d = 9, 8 and d = 7 are
reported as T 2

c ≈ 0.91 [10,42]. Therefore, Q seems to capture
the second transition point as well.

TABLE I. The second column corresponds to the transition
points which are obtained from the intersection of Um (cumulant).
Third column shows TQ (the peak position of Q).

d TUm TQ

7 0.513(2) 0.492(7)
8 0.405(2) 0.393(3)
9 0.326(2) 0.322(5)
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Q (Conditional global entanglement) vs (2β )−1 (dimensionless control parameter) for (a) d = 9, (b) d = 8, and (c) d = 7. The
insets show Um (cumulant) vs T (temperature) in the clock model. Q and the fitted functions for (d) d = 9, (e) d = 8, and (f) d = 7 when
N = 3200. For d = 9 the fitted functions are y = −0.097x + 0.2312 and y = 0.1018x−2.358 + 0.02804. For d = 8 the fitted functions are y =
−0.1013x + 0.2359 and y = 0.1047x−2.321 + 0.02879. For d = 7 the fitted functions are y = −0.1031x + 0.2404 and y = 0.1067x−2.289 +
0.02943. System sizes are indicated by different colors. N is the total number of qudits in the quantum model and N/2 is the total number
of spins in the classical clock model. No significant finite-size effect is observed at the resolution studied which is consistent with previous
studies on heat capacity in Refs. [43,44].

On the other hand, it is known that the behavior of a suit-
able measure of multipartite entanglement should be affected
by the divergence of the correlation length at the critical point.
It particularly leads to the expectation that a multipartite mea-
sure should be maximum at the critical point. However, for KT
phase transitions the problem is more interesting because the
correlation length diverges in the entire KT phase. In particu-
lar, in Ref. [10] it has been shown that the correlation length
in the clock model is maximum at the first transition point and
it decreases monotonically with the increase of temperature.
This kind of behavior is similar to the behavior of Q within
the KT phase in our model. Consequently, it suggests that Q
is a suitable measure for studying multipartite entanglement
in QPTs.

V. CONCLUDING REMARKS

It has been shown that GE and G̃E are able to detect the
transition point in the TQPT [31]. Therefore, one might expect
that they can also serve as reasonable tools for detecting KT
QPTs. However, our work shows that they are not sensitive at
transition points of KT QPTs. Despite GE and G̃E, Q works

relatively well for not only detecting transition points in KT
QPTs, but also for distinguishing different phases by showing
noticeably different behavior in each phase. Particularly, the
monotonic decrease of Q within the KT phase is generally
similar to the behavior of the correlation length in the clock
model [10]. Hence, it is possible to regard Q as a suitable
measure of multipartite entanglement to characterize QPTs
[31].

We also note that we studied the behavior of Q, GE, and
G̃E for d = 5, 6 wherein the system undergoes KT QPTs. The
results are similar to those given by d = 7, 8, 9. However,
there exists more discrepancy between TUm and TQ in these
cases. Considering the fact that KT QPTs for d = 5, 6 are
somewhat controversial and challenging to consider numer-
ically [46–53], such discrepancy might be expected for finite
system sizes considered in our study. However, we expect that
more detailed and computationally expensive studies in the
future can elucidate the importance of Q in various QPTs.

ACKNOWLEDGMENTS

We would like to thank A. Ramezanpour for fruitful dis-
cussions.

[1] M. Kardar, Statistical Physics of Fields (Cambridge University
Press, Cambridge, UK, 2007).

[2] N. Goldenfeld, Lectures on Phase Transitions and the Renor-
malization Group (CRC Press, Boca Raton, FL, 2018).

[3] S. Sachdev, Quantum phase transitions, Phys. World 12, 33
(1999).

[4] L. Carr, Understanding Quantum Phase Transitions (CRC
Press, Boca Raton, FL, 2010).

[5] Y.-R. Zhang, Y. Zeng, T. Liu, H. Fan, J. Q. You, and F.
Nori, Multipartite entanglement of the topologically ordered
state in a perturbed toric code, Phys. Rev. Res. 4, 023144
(2022).

052412-6

https://doi.org/10.1088/2058-7058/12/4/23
https://doi.org/10.1103/PhysRevResearch.4.023144


CONDITIONAL GLOBAL ENTANGLEMENT IN A … PHYSICAL REVIEW A 107, 052412 (2023)

[6] A. Hamma, W. Zhang, S. Haas, and D. A. Lidar, Entanglement,
fidelity, and topological entropy in a quantum phase transition
to topological order, Phys. Rev. B 77, 155111 (2008).

[7] Y.-X. Chen and S.-W. Li, Quantum correlations in topological
quantum phase transitions, Phys. Rev. A 81, 032120 (2010).

[8] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[9] X.-G. Wen, Topological order: From long-range entangled
quantum matter to a unified origin of light and electrons, Int.
Scholarly Res. Notices 2013, 198710 (2013).

[10] Z.-Q. Li, L.-P. Yang, Z. Xie, H.-H. Tu, H.-J. Liao, and T. Xiang,
Critical properties of the two-dimensional Q-state clock model,
Phys. Rev. E 101, 060105(R) (2020).

[11] M. H. Zarei, Kosterlitz-Thouless phase and Zd topological
quantum phase, Phys. Rev. B 101, 235126 (2020).

[12] L. Justino and T. R. de Oliveira, Bell inequalities and entan-
glement at quantum phase transitions in the XXZ model, Phys.
Rev. A 85, 052128 (2012).

[13] M.-F. Yang, Ground-state fidelity in one-dimensional gapless
models, Phys. Rev. B 76, 180403(R) (2007).

[14] J. Zhang, Fidelity and entanglement entropy for infinite-order
phase transitions, Phys. Rev. B 104, 205112 (2021).

[15] G. Sun, A. K. Kolezhuk, and T. Vekua, Fidelity at Berezinskii-
Kosterlitz-Thouless quantum phase transitions, Phys. Rev. B 91,
014418 (2015).

[16] J. L. Beckey, N. Gigena, P. J. Coles, and M. Cerezo,
Computable and Operationally Meaningful Multipartite Entan-
glement Measures, Phys. Rev. Lett. 127, 140501 (2021).

[17] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[18] A. Bayat, Scaling of Tripartite Entanglement at Impurity
Quantum Phase Transitions, Phys. Rev. Lett. 118, 036102
(2017).

[19] T. R. de Oliveira, G. Rigolin, and M. C. de Oliveira, Genuine
multipartite entanglement in quantum phase transitions, Phys.
Rev. A 73, 010305(R) (2006).

[20] G. Rigolin, T. R. de Oliveira, and M. C. de Oliveira, Operational
classification and quantification of multipartite entangled states,
Phys. Rev. A 74, 022314 (2006).

[21] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Measur-
ing multipartite entanglement through dynamic susceptibilities,
Nat. Phys. 12, 778 (2016).

[22] T. R. de Oliveira, G. Rigolin, M. C. de Oliveira, and E. Miranda,
Multipartite Entanglement Signature of Quantum Phase Transi-
tions, Phys. Rev. Lett. 97, 170401 (2006).

[23] D. A. Meyer and N. R. Wallach, Global entanglement in multi-
particle systems, J. Math. Phys. 43, 4273 (2002).

[24] R. Radgohar and A. Montakhab, Global entanglement and
quantum phase transitions in the transverse XY Heisenberg
chain, Phys. Rev. B 97, 024434 (2018).

[25] A. Montakhab and A. Asadian, Multipartite entanglement
and quantum phase transitions in the one-, two-, and three-
dimensional transverse-field Ising model, Phys. Rev. A 82,
062313 (2010).

[26] A. Montakhab and A. Asadian, Dynamics of global entangle-
ment under decoherence, Phys. Rev. A 77, 062322 (2008).

[27] A. Lakshminarayan and V. Subrahmanyam, Multipartite en-
tanglement in a one-dimensional time-dependent Ising model,
Phys. Rev. A 71, 062334 (2005).

[28] V. K. Vimal and V. Subrahmanyam, Quantum correlations and
entanglement in a Kitaev-type spin chain, Phys. Rev. A 98,
052303 (2018).

[29] J. L. da C Filho, A. Saguia, L. F. Santos, and M. S. Sarandy,
Many-body localization transition through pairwise correla-
tions, Phys. Rev. B 96, 014204 (2017).

[30] H. Cui, Multiparticle entanglement in the Lipkin-Meshkov-
Glick model, Phys. Rev. A 77, 052105 (2008).

[31] E. Samimi, M. H. Zarei, and A. Montakhab, Global entangle-
ment in a topological quantum phase transition, Phys. Rev. A
105, 032438 (2022).

[32] M. H. Zarei and M. Nobakht, Foliated order parameter in a
fracton phase transition, Phys. Rev. B 106, 035101 (2022).

[33] J. I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, Ma-
trix product states and projected entangled pair states: Concepts,
symmetries, theorems, Rev. Mod. Phys. 93, 045003 (2021).

[34] Q.-Q. Shi, H.-L. Wang, S.-H. Li, S. Y. Cho, M. T. Batchelor,
and H.-Q. Zhou, Geometric entanglement and quantum phase
transitions in two-dimensional quantum lattice models, Phys.
Rev. A 93, 062341 (2016).

[35] C. Castelnovo and C. Chamon, Quantum topological phase
transition at the microscopic level, Phys. Rev. B 77, 054433
(2008).

[36] C. Castelnovo, C. Chamon, C. Mudry, and P. Pujol, From
quantum mechanics to classical statistical physics: Generalized
Rokhsar–Kivelson Hamiltonians and the stochastic matrix form
decomposition, Ann. Phys. 318, 316 (2005).

[37] M. H. Zarei and A. Montakhab, Phase transition in a noisy
Kitaev toric code model, Phys. Rev. A 99, 052312 (2019).

[38] M. H. Zarei and A. Montakhab, Dual correspondence between
classical spin models and quantum Calderbank-Shor-Steane
states, Phys. Rev. A 98, 012337 (2018).

[39] M. H. Zarei and A. Montakhab, Classical criticality establishes
quantum topological order, Phys. Rev. B 101, 205118 (2020).

[40] M. H. Zarei, Ising order parameter and topological phase transi-
tions: Toric code in a uniform magnetic field, Phys. Rev. B 100,
125159 (2019).

[41] M. H. Zarei and J. Abouie, Topological line in frustrated toric
code models, Phys. Rev. B 104, 115141 (2021).

[42] G. Li, K. H. Pai, and Z.-C. Gu, Tensor-network renormalization
approach to the Q-state clock model, Phys. Rev. Res. 4, 023159
(2022).

[43] S. Chatterjee, S. Puri, and R. Paul, Ordering kinetics in the Q-
state clock model: Scaling properties and growth laws, Phys.
Rev. E 98, 032109 (2018).

[44] M. S. S. Challa and D. P. Landau, Critical behavior of the
six-state clock model in two dimensions, Phys. Rev. B 33, 437
(1986).

[45] H. Chen, P. Hou, S. Fang, and Y. Deng, Monte carlo study
of duality and the Berezinskii-Kosterlitz-Thouless phase tran-
sitions of the two-dimensional Q-state clock model in flow
representations, Phys. Rev. E 106, 024106 (2022).

[46] C. M. Lapilli, P. Pfeifer, and C. Wexler, Universality Away from
Critical Points in Two-Dimensional Phase Transitions, Phys.
Rev. Lett. 96, 140603 (2006).

[47] C.-O. Hwang, Six-state clock model on the square lattice:
Fisher zero approach with Wang-Landau sampling, Phys. Rev.
E 80, 042103 (2009).

[48] S. K. Baek, P. Minnhagen, and B. J. Kim, Comment on
six-state clock model on the square lattice: Fisher zero

052412-7

https://doi.org/10.1103/PhysRevB.77.155111
https://doi.org/10.1103/PhysRevA.81.032120
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1155/2013/198710
https://doi.org/10.1103/PhysRevE.101.060105
https://doi.org/10.1103/PhysRevB.101.235126
https://doi.org/10.1103/PhysRevA.85.052128
https://doi.org/10.1103/PhysRevB.76.180403
https://doi.org/10.1103/PhysRevB.104.205112
https://doi.org/10.1103/PhysRevB.91.014418
https://doi.org/10.1103/PhysRevLett.127.140501
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevLett.118.036102
https://doi.org/10.1103/PhysRevA.73.010305
https://doi.org/10.1103/PhysRevA.74.022314
https://doi.org/10.1038/nphys3700
https://doi.org/10.1103/PhysRevLett.97.170401
https://doi.org/10.1063/1.1497700
https://doi.org/10.1103/PhysRevB.97.024434
https://doi.org/10.1103/PhysRevA.82.062313
https://doi.org/10.1103/PhysRevA.77.062322
https://doi.org/10.1103/PhysRevA.71.062334
https://doi.org/10.1103/PhysRevA.98.052303
https://doi.org/10.1103/PhysRevB.96.014204
https://doi.org/10.1103/PhysRevA.77.052105
https://doi.org/10.1103/PhysRevA.105.032438
https://doi.org/10.1103/PhysRevB.106.035101
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/PhysRevA.93.062341
https://doi.org/10.1103/PhysRevB.77.054433
https://doi.org/10.1016/j.aop.2005.01.006
https://doi.org/10.1103/PhysRevA.99.052312
https://doi.org/10.1103/PhysRevA.98.012337
https://doi.org/10.1103/PhysRevB.101.205118
https://doi.org/10.1103/PhysRevB.100.125159
https://doi.org/10.1103/PhysRevB.104.115141
https://doi.org/10.1103/PhysRevResearch.4.023159
https://doi.org/10.1103/PhysRevE.98.032109
https://doi.org/10.1103/PhysRevB.33.437
https://doi.org/10.1103/PhysRevE.106.024106
https://doi.org/10.1103/PhysRevLett.96.140603
https://doi.org/10.1103/PhysRevE.80.042103


SAMIMI, ZAREI, AND MONTAKHAB PHYSICAL REVIEW A 107, 052412 (2023)

approach with Wang-Landau sampling, Phys. Rev. E 81,
063101 (2010).

[49] S. K. Baek and P. Minnhagen, Non-Kosterlitz-Thouless tran-
sitions for the Q-state clock models, Phys. Rev. E 82, 031102
(2010).

[50] S. K. Baek, H. Mäkelä, P. Minnhagen, and B. J. Kim, Residual
discrete symmetry of the five-state clock model, Phys. Rev. E
88, 012125 (2013).

[51] Y. Kumano, K. Hukushima, Y. Tomita, and M. Oshikawa,
Response to a twist in systems with Zp symmetry: The

two-dimensional p-state clock model, Phys. Rev. B 88, 104427
(2013).

[52] C. Chatelain, DMRG study of the Berezinskii–
Kosterlitz–Thouless transitions of the 2d five-state
clock model, J. Stat. Mech.: Theory Exp. (2014)
P11022.

[53] T. Surungan, S. Masuda, Y. Komura, and Y. Okabe,
Berezinskii–Kosterlitz–Thouless transition on regular and vil-
lain types of Q-state clock models, J. Phys. A: Math. Theor. 52,
275002 (2019).

052412-8

https://doi.org/10.1103/PhysRevE.81.063101
https://doi.org/10.1103/PhysRevE.82.031102
https://doi.org/10.1103/PhysRevE.88.012125
https://doi.org/10.1103/PhysRevB.88.104427
https://doi.org/10.1088/1742-5468/2014/11/P11022
https://doi.org/10.1088/1751-8121/ab226d

