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We consider bipartite quantum state discrimination using positive-partial-transpose measurements and show
that minimum-error discrimination by positive-partial-transpose measurements is closely related to entanglement
witness. By using the concept of decomposable entanglement witness, we establish conditions on minimum-error
discrimination by positive-partial-transpose measurements. We also provide conditions on the upper bound of
the maximum success probability over all possible positive-partial-transpose measurements. Finally, we illustrate
our results using examples of multidimensional bipartite quantum states.
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I. INTRODUCTION

Quantum nonlocality is a fascinating phenomenon that
occurs in multipartite quantum systems [1–3]. In discriminat-
ing multipartite quantum states, quantum nonlocality occurs
when optimal state discrimination, which gives the maximum
success probability overall possible measurements, cannot be
realized only by local operations and classical communica-
tion (LOCC) [4–8]. Orthogonal quantum states can always
be perfectly discriminated using appropriate global mea-
surement. However, there exist some multipartite orthogonal
quantum states that cannot be perfectly discriminated only
by LOCC measurements [9,10]. Moreover, some multipartite
nonorthogonal quantum states cannot be optimally discrimi-
nated using only LOCC measurements [11,12]. Nonetheless,
characterizing local discrimination of quantum states is still a
hard task due to the lack of good mathematical structure for
LOCC.

The first nonlocal phenomenon in quantum state discrimi-
nation was shown through nine 3 ⊗ 3 pure orthogonal product
states [9]. On the other hand, it was shown that nonlocality
does not occur in discriminating any two multipartite pure
states [13,14]. Since then, there have been several studies fo-
cused on local indistinguishability or local distinguishability
of mutually orthogonal states [15–18]. In particular, the lo-
cal distinguishability of two 2 ⊗ 2 pure orthogonal entangled
states has been experimentally demonstrated [15]. It was also
shown that the nonlocality of the N-fold quantum state en-
semble can disappear asymptotically [16]. Recently, an upper
bound of the maximum success probability overall separable
measurements was established in the optimization for local
unambiguous discrimination of multipartite quantum states
[17]. Moreover, necessary conditions for perfect discrimina-
tion by asymptotic LOCC were established in discriminating
orthogonal pure states [18].

The quantum nonlocal phenomenon also arises in the cor-
relations of a multipartite quantum system. Entanglement is a
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well-known quantum correlation that cannot be realized using
only LOCC [1]. The nonlocal property of entanglement can
be used as a useful resource in various quantum information
processing tasks such as quantum cryptography, teleporta-
tion, and local discrimination of multipartite quantum states
[19–22]. For this reason, much attention has been shown for
characterizing quantum entanglement [23–25].

An important task of characterizing quantum entanglement
is to design ways to detect the existence of entanglement.
Entanglement witness (EW) is an observable having non-
negative mean value for any separable state, but negative for
some entangled states [26–29]. As EW detects the existence
of entanglement that is an important quantum nonlocality, it
is natural to ask whether EW can also be used to characterize
the limit on local discrimination of quantum states, another
important quantum nonlocality.

Here, we provide an answer to the question by establish-
ing a specific relation between the properties of EW and
positive-partial-transpose (PPT) measurements, a mathemat-
ically well-structured set of measurements having LOCC
measurements as special cases. By using the concept of de-
composability of operators, we show that the minimum-error
discrimination of bipartite quantum states using PPT mea-
surements strongly depends on the existence of decomposable
entanglement witness (DEW). More precisely, we establish
conditions on minimum-error discrimination by PPT mea-
surements in terms of DEW. We also provide conditions on
the maximum success probability over all possible PPT mea-
surements. Finally, we illustrate our results using examples of
multidimensional bipartite quantum states.

Because PPT measurements have LOCC measurements as
special cases, our results provide a useful method to detect
the nonlocality arising in quantum state discrimination. More-
over, our results can be applied to any ensemble of bipartite
states in an arbitrary dimension, whereas the previous results
[15,16,18] are only valid for some restricted cases with certain
conditions. We also note that our results provide a systematic
way to construct a bipartite quantum state ensemble showing
nonlocality in quantum state discrimination.
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This paper is organized as follows. In Sec. II, we first recall
the definitions and some properties about PPT measurements
and DEW. We also recall the definition of minimum-error
discrimination as well as some useful properties of the optimal
measurements. In Sec. III, we provide conditions on the maxi-
mum success probability over all possible PPT measurements
(Theorems 1 and 2). In Sec. IV, we provide conditions on
minimum-error discrimination by PPT measurements in terms
of DEW (Theorems 3 and 4). Finally, we illustrate our results
using examples of multidimensional bipartite quantum states.
In Sec. V, we summarize our results with possible applications
and future works. We also discuss a systematic way to con-
struct a bipartite quantum state ensemble showing nonlocality
in quantum state discrimination.

II. PRELIMINARIES

For a bipartite Hilbert space H = Cd1 ⊗ Cd2 , let H be
the set of all Hermitian operators acting on H. A bipartite
quantum state is expressed by a density operator that is ρ ∈ H
with positive semidefiniteness ρ � 0 and unit trace Trρ = 1.
A measurement is represented by a positive operator-valued
measure that is {Mi}i ⊆ H satisfying positive semidefiniteness
Mi � 0 for all i and the completeness relation

∑
i Mi = 1,

where 1 is the identity operator in H. When a measurement
{Mi}i is performed on the quantum state ρ, the probability of
obtaining the measurement outcome corresponding to Mj is
Tr(ρMj ).

Definition 1. E ∈ H is called PPT if EPT � 0, where the
superscript PT is to indicate the partial transposition [30,31].
Similarly, we say that {Ei}i ⊆ H is PPT if Ei is PPT for all i.

We denote the set of all positive-semidefinite PPT opera-
tors in H as

PPT+ = {E ∈ H | E � 0, EPT � 0}, (1)

and its dual set as PPT ∗
+, that is,

PPT ∗
+ = {E ∈ H | Tr(EF ) � 0 ∀F ∈ PPT+}. (2)

A measurement is called a LOCC measurement if it can be
implemented by LOCC, and a measurement {Mi}i is called a
PPT measurement if Mi is PPT for all i. We note that every
LOCC measurement is a PPT measurement [4].

A. Decomposable entanglement witness

Definition 2. W ∈ H is called decomposable if it can be
written as a sum of a positive-semidefinite operator and a PPT
operator in H, that is,

W = P + QPT (3)

for some P � 0 and Q � 0.
The following proposition provides an equivalent condition

of the decomposability in Eq. (3) [28,29].
Proposition 1. W ∈ H is decomposable if and only if

W ∈ PPT ∗
+, (4)

where PPT ∗
+ is defined in Eq. (2).

A positive-semidefinite operator E ∈ H is called separable
if it can be expressed as a sum of positive-semidefinite product

FIG. 1. The relationship of the subsets of H. H+ is the set of
all positive-semidefinite operators and PPT is the set of all PPT
operators. PPT+ is the intersection of H+ and PPT . The shaded
area {W ∈ PPT ∗

+ |W /∈ H+} is the set of all DEWs.

operators, that is,

E =
∑

l

Al ⊗ Bl , (5)

where Al and Bl are positive-semidefinite operators on Cd1

and Cd2 of H, respectively. We denote the set of all positive-
semidefinite separable operators in H as

SEP = {E ∈ H | E � 0, E : separable}. (6)

We also denote the dual set of SEP as

SEP ∗ = {E ∈ H | Tr(EF ) � 0 ∀F ∈ SEP }. (7)

Definition 3. W ∈ H is called an EW if it is in SEP ∗ but
not positive semidefinite, that is,

W ∈ SEP ∗, W �� 0. (8)

In particular, an EW W ∈ H is called a DEW if it is decom-
posable.

From Proposition 1, we can see that W ∈ H is a DEW if
and only if

W ∈ PPT ∗
+, W �� 0. (9)

We note that PPT ∗
+ ⊆ SEP ∗ since SEP ⊆ PPT+. Figure 1

illustrates the relationship of the subsets of H.

B. Minimum-error discrimination of bipartite quantum states

For a bipartite quantum state ensemble,

E = {ηi, ρi}n
i=1, (10)

where the state ρi is prepared with the probability ηi ∈ [0, 1],
let us consider the situation of discriminating the states from E
using a measurement {Mi}n

i=1. Here, the detection of Mi means
that we guess the prepared state as ρi.
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The minimum-error discrimination of E is to achieve the
optimal success probability,

pG(E ) = max
measurement

n∑
i=1

ηiTr(ρiMi ), (11)

where the maximum is taken over all possible measurements
[32]. We note that a measurement {Mi}n

i=1 gives the optimal
success probability pG(E ) if and only if it satisfies the follow-
ing condition [33–36]:

n∑
j=1

η jρ jMj − ηiρi � 0 ∀i = 1, . . . , n. (12)

When the available measurements are limited to PPT mea-
surements, we denote the maximum success probability by

pPPT(E ) = max
PPT

measurement

n∑
i=1

ηiTr(ρiMi ), (13)

where the maximum is taken over all possible PPT measure-
ments. Similarly, we denote

pL(E ) = max
LOCC

measurement

n∑
i=1

ηiTr(ρiMi ), (14)

where the maximum is taken over all possible LOCC mea-
surements.

Because pPPT(E ) is the maximum value over the set of
all PPT measurements, which is a proper subset of the set
of all measurements, pPPT(E ) is a lower bound of pG(E ).
Moreover, pL(E ) is a lower bound of pPPT(E ) since every
LOCC measurement is a PPT measurement [4]. Thus, we have

pL(E ) � pPPT(E ) � pG(E ). (15)

As pL(E ) and pPPT(E ) have the same objective function to
maximize, the first inequality in (15) becomes an equality
if and only if there exists a LOCC measurement realizing
pPPT(E ). Similarly, the second inequality in (15) becomes
an equality if and only if there exists a PPT measurement
realizing pG(E ).

III. PPT MEASUREMENTS AND QUANTUM STATE
DISCRIMINATION

In this section, we provide the first main result of our paper.
We first consider an upper bound of pPPT(E ) in Eq. (13), and
show that this upper bound is equal to pPPT(E ). We further
provide conditions on the maximum success probability over
all possible PPT measurements. The results will be used to
obtain necessary and/or sufficient conditions for minimum-
error discrimination by PPT measurements in the next section.

For a bipartite quantum state ensemble E in Eq. (10), we
define HPPT(E ) as

HPPT(E ) = {H ∈ H | H − ηiρi ∈ PPT ∗
+

for any i ∈ {1, . . . , n}}, (16)

where PPT ∗
+ is defined in Eq. (2). In other words, HPPT(E )

is the set of all H such that H − ηiρi is decomposable in H,
for all i = 1, . . . , n. We further define

HDEW(E ) = {H ∈ HPPT(E ) | H − η jρ j is a DEW

for some j ∈ {1, . . . , n}}, (17)

that is, a subset of HPPT(E ) satisfying H − η jρ j �� 0 for some
j ∈ {1, . . . , n}. From the argument after Definition 3, we can
see that

H ∈ HPPT(E ) \ HDEW(E ) (18)

if and only if

H − ηiρi � 0 ∀i = 1, . . . , n. (19)

Now, let us consider the minimum quantity

qPPT(E ) = min
H∈HPPT(E )

TrH, (20)

which is an upper bound of pPPT(E ) [37], that is,

pPPT(E ) � qPPT(E ). (21)

The following theorem shows that pPPT(E ) in Eq. (13) is equal
to qPPT(E ) in Eq. (20). The proof of Theorem 1 is given in
Appendix A.

Theorem 1. For a bipartite quantum state ensemble E =
{ηi, ρi}n

i=1,

pPPT(E ) = qPPT(E ). (22)

For a given ensemble E = {ηi, ρi}n
i=1, the following theo-

rem provides a necessary and sufficient condition for a PPT
measurement {Mi}n

i=1 and H ∈ HPPT(E ) to realize pPPT(E )
and qPPT(E ), respectively.

Theorem 2. For a bipartite quantum state ensemble E =
{ηi, ρi}n

i=1, a PPT measurement {Mi}n
i=1, and H ∈ HPPT(E ),

{Mi}n
i=1 realizes pPPT(E ) and H provides qPPT(E ) if and only

if

Tr[Mi(H − ηiρi )] = 0 ∀i = 1, . . . , n. (23)

Proof. Let us suppose that {M}n
i=1 and H give pPPT(E )

and qPPT(E ), respectively. From Mi ∈ PPT+ and H − ηiρi ∈
PPT ∗

+ for all i = 1, . . . , n, we have

Tr[Mi(H − ηiρi )] � 0 ∀i = 1, . . . , n. (24)

We note that

n∑
i=1

Tr[Mi(H − ηiρi )] = TrH −
n∑

i=1

ηiTr(ρiMi )

= qPPT(E ) − pPPT(E ) = 0, (25)

where the first equality is from
∑n

i=1 Mi = 1, the second
equality is due to the assumption of H and {Mi}n

i=1, and the
last equality is by Theorem 1. Inequality (24) and Eq. (25)
lead us to condition (23).
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Conversely let us assume that {Mi}n
i=1 and H satisfy condi-

tion (23). This assumption implies

qPPT(E ) = pPPT(E ) �
n∑

i=1

ηiTr(ρiMi )

=
n∑

i=1

ηiTr(ρiMi ) +
n∑

i=1

Tr[Mi(H − ηiρi )]

= TrH � qPPT(E ), (26)

where the first equality follows from Theorem 1, the second
equality is from condition (23), the last equality is due to∑n

i=1 Mi = 1, and the first and second inequalities are from
the definitions of pPPT(E ) and qPPT(E ), respectively. Inequal-
ity (26) leads us to

n∑
i=1

ηiTr(ρiMi ) = pPPT(E ), TrH = qPPT(E ). (27)

Thus, {Mi}n
i=1 and H give pPPT(E ) and qPPT(E ), respectively.�

We note that H ∈ HPPT(E ) giving qPPT(E ) is generally not
unique (see Example 2 in Sec. IV B). However, the following
corollary states the case that H ∈ HPPT(E ) providing qPPT(E )
is unique.

Corollary 1. For a bipartite quantum state ensemble E =
{ηi, ρi}n

i=1, we have

pPPT(E ) = η1, (28)

if and only if

η1ρ1 − ηiρi ∈ PPT ∗
+ ∀i = 2, . . . , n. (29)

In this case, η1ρ1 is the only element of HPPT(E ) providing
qPPT(E ).

Proof. Let {Mi}n
i=1 be the measurement that M1 = 1 and

M2, . . . , Mn are the zero operator in H. We first assume
Eq. (28) and consider H ∈ HPPT(E ) providing qPPT(E ). Since
{Mi}n

i=1 is obviously a PPT measurement giving pPPT(E ),
it follows from Theorem 2 that Tr(H − η1ρ1) = 0. From
H − η1ρ1 ∈ PPT ∗

+ and Lemma 1 in Appendix A, we have
H = η1ρ1. Thus, H ∈ HPPT(E ) together with the definition of
HPPT(E ) leads us to condition (29).

Conversely, let us suppose condition (29) and consider
H = η1ρ1. Condition (29) implies H ∈ HPPT(E ). The PPT
measurement {Mi}n

i=1 and H ∈ HPPT(E ) satisfy condition
(23). Therefore, we have

pPPT(E ) = qPPT(E ) = TrH = η1, (30)

where the first equality is from Theorem 1 and the second
equality follows from Theorem 2. �

When Eq. (28) of Corollary 1 holds, the maximum success
probability pPPT(E ) can be achieved without the help of mea-
surement, simply by guessing ρ1 is prepared. As we can check
in the proof of Corollary 1, the choice of ρ1 in Corollary 1 can
be arbitrary. That is, any of {ρi}n

i=1 can be used to play the role
of ρ1 in Corollary 1.

IV. MINIMUM-ERROR DISCRIMINATION
BY PPT MEASUREMENTS

In this section, we provide another main result of our paper
showing that the minimum-error discrimination of bipartite
quantum states using PPT measurements strongly depends on
the existence of DEW. More precisely, we establish necessary
and/or sufficient conditions for minimum-error discrimina-
tion by PPT measurements in terms of DEW.

For a bipartite quantum state ensemble E in Eq. (10), the
minimum-error discrimination can be realized by PPT mea-
surements if and only if

pPPT(E ) = pG(E ), (31)

where pG(E ) and pPPT(E ) are defined in Eqs. (11) and (13),
respectively. Here, we provide necessary and/or sufficient
conditions for Eq. (31) in terms of DEW.

A. Necessary condition for pPPT(E ) = pG(E )

Theorem 3. For a bipartite quantum state ensemble E =
{ηi, ρi}n

i=1, if pPPT(E ) = pG(E ), then there does not exist PPT
measurement {Mi}n

i=1 satisfying
n∑

i=1

ηiρiMi ∈ HDEW(E ), (32)

where HDEW(E ) is defined in Eq. (17). Moreover, if {Mi}n
i=1 is

a PPT measurement satisfying condition (32), we have

pPPT(E ) =
n∑

i=1

ηiTr(ρiMi ). (33)

Proof. Let us suppose {Mi}n
i=1 is a PPT measurement sat-

isfying condition (32), and consider

H =
n∑

i=1

ηiρiMi. (34)

Equation (33) holds because
n∑

i=1

ηiTr(ρiMi ) � pPPT(E ) = qPPT(E )

� TrH =
n∑

i=1

ηiTr(ρiMi ), (35)

where the first and second inequalities follow from the defini-
tions of pPPT(E ) and qPPT(E ), respectively, the first equality is
due to Theorem 1, and the second equality is from the defini-
tion of H . This proves the second statement of our theorem.

Now, assume pPPT(E ) = pG(E ). If there exists a PPT
measurement {M ′

i }n
i=1 satisfying condition (32), the second

statement of our theorem implies that {M ′
i }n

i=1 gives the op-
timal success probability pG(E ) due to Eq. (33). From the
optimality condition in Eq. (12), we have

n∑
j=1

η jρ jM
′
j − ηiρi � 0 ∀i = 1, . . . , n, (36)

which contradicts condition (32). Thus, there does not exist
PPT measurement satisfying condition (32). This proves the
first statement of our theorem. �
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Example 1. For any integer d � 2, let us consider the
two-qudit state ensemble E = {η(k,l )

i, j , ρ
(k,l )
i, j }i, j,k,l consisting of

2d (d − 1) mixed states with equal prior probabilities,

η
(k,l )
i, j = 1

2d (d − 1)
, ρ

(k,l )
i, j = λ

3

(
�

(k)
i, j + �

(l )
i, j

) + (1 − λ)σ,

i, j ∈ {0, 1, . . . , d − 1} with i < j, k, l ∈ {1, 2}, (37)

where σ is an arbitrary two-qudit state, 0 < λ � 1, and

�
(1)
i, j = 1

2 (|ii〉 + | j j〉)(〈ii| + 〈 j j|),
�

(2)
i, j = 1

2 (|ii〉 − | j j〉)(〈ii| − 〈 j j|),
�

(1)
i, j = |ii〉 〈ii| + | j j〉 〈 j j| ,

�
(2)
i, j = |i j〉 〈i j| + | ji〉 〈 ji| . (38)

For a PPT measurement {M (k,l )
i, j }i, j,k,l with

M (1,1)
i, j = M (2,1)

i, j = 1

2(d − 1)
�

(1)
i, j ,

M (1,2)
i, j = M (2,2)

i, j = 1

2
�

(2)
i, j , (39)

we show that condition (32) holds with respect to the en-
semble in Eq. (37) and the measurement in Eq. (39). It is
straightforward to verify that⎡
⎣ ∑

i′, j′,k′,l ′
η

(k′,l ′ )
i′, j′ ρ

(k′,l ′ )
i′, j′ M (k′,l ′ )

i′, j′ − η
(k,1)
i, j ρ

(k,1)
i, j

⎤
⎦

PT

= λ

4d (d − 1)

[
�

(5−k)
i, j + 1

3
�

(k+2)
i, j + �̂

(1)
i, j + 2

3
�̂

(2)
i, j

]
� 0,

×
∑

i′, j′,k′,l ′
η

(k′,l ′ )
i′, j′ ρ

(k′,l ′ )
i′, j′ M (k′,l ′ )

i′, j′ − η
(k,2)
i, j ρ

(k,2)
i, j

= λ

4d (d − 1)

[
�

(3−k)
i, j + 1

3
�

(k)
i, j + �̂

(1)
i, j + 2

3
�̂

(2)
i, j

]
� 0,

∀i, j ∈ {0, 1, . . . , d − 1}with i < j, ∀k ∈ {1, 2}, (40)

where

�
(3)
i, j = 1

2
(|i j〉 + | ji〉)(〈i j| + 〈 ji|),

�
(4)
i, j = 1

2
(|i j〉 − | ji〉)(〈i j| − 〈 ji|),

�̂
(1)
i, j =

d−1∑
i′=0

|i′i′〉 〈i′i′| − �
(1)
i, j ,

�̂
(2)
i, j =

d−1∑
i′, j′=0i′ �= j′

|i′ j′〉 〈i′ j′| − �
(2)
i, j . (41)

From the positivity in (40), we have∑
i′, j′,k′,l ′

η
(k′,l ′ )
i′, j′ ρ

(k′,l ′ )
i′, j′ M (k′,l ′ )

i′, j′ − η
(k,l )
i, j ρ

(k,l )
i, j ∈ PPT ∗

+

∀i, j ∈ {0, 1, . . . , d − 1}with i < j, ∀k, l ∈ {1, 2}. (42)

Furthermore, a straightforward calculation leads us to

Tr

⎡
⎣

⎛
⎝ ∑

i′, j′,k′,l ′
η

(k′,l ′ )
i′, j′ ρ

(k′,l ′ )
i′, j′ M (k′,l ′ )

i′, j′ − η
(k,1)
i, j ρ

(k,1)
i, j

⎞
⎠�

(k)
i, j

⎤
⎦

= − λ

12d (d − 1)

∀i, j ∈ {0, 1, . . . , d − 1}with i < j, ∀k ∈ {1, 2}.
(43)

From Eq. (43), we have∑
i′, j′,k′,l ′

η
(k′,l ′ )
i′, j′ ρ

(k′,l ′ )
i′, j′ M (k′,l ′ )

i′, j′ − η
(k,1)
i, j ρ

(k,1)
i, j �� 0

∀i, j ∈ {0, 1, . . . , d − 1} with i < j, ∀k ∈ {1, 2}. (44)

From Eqs. (42) and (44), the ensemble in Eq. (37) and the
measurement in Eq. (39) satisfy condition (32).

The second statement of Theorem 3 implies that pPPT(E )
is the expectation of the measurement in Eq. (39) about the
ensemble in Eq. (37):

pPPT(E ) = 6 + λ(2d − 3)(d + 2)

12d (d − 1)
. (45)

From the first statement of Theorem 3, we have

pPPT(E ) < pG(E ). (46)

We also note that the measurement in Eq. (39) is a LOCC
measurement because it can be implemented by performing
the same local measurement {|l〉 〈l|}d−1

l=0 on each party. Thus,
we have

pL(E ) = pPPT(E ) = 6 + λ(2d − 3)(d + 2)

12d (d − 1)
. (47)

B. Necessary and sufficient condition for pPPT(E ) = pG(E )

Theorem 4. For a bipartite quantum state ensemble E =
{ηi, ρi}n

i=1, pPPT(E ) = pG(E ) if and only if there exists H ∈
HPPT(E ) such that it provides qPPT(E ) but does not satisfy

H ∈ HDEW(E ), (48)

or equivalently, there is H ∈ H satisfying condition (18) and
TrH = qPPT(E ).

Proof. Let {Mi}n
i=1 be a PPT measurement providing

pPPT(E ). We first suppose pPPT(E ) = pG(E ) and consider

H =
n∑

i=1

ηiρiMi. (49)

Since the measurement {Mi}n
i=1 gives the optimal success

probability pG(E ) due to the assumption of {Mi}n
i=1 and

pPPT(E ) = pG(E ), we have from the optimality condition in
Eq. (12) that

H − ηiρi =
n∑

j=1

η jρ jMj − ηiρi � 0 ∀i = 1, . . . , n. (50)

Therefore, H satisfies condition (18). Moreover, we have

TrH =
n∑

i=1

ηiTr(ρiMi ) = pPPT(E ) = qPPT(E ), (51)
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where the first equality is from Eq. (49), the second equality
follows from the assumption of {Mi}n

i=1, and the last equality
is due to Theorem 1.

Conversely, let us assume H is an element of H satisfying
condition (18) and TrH = qPPT(E ). Thus, the positivity in (19)
is satisfied in terms of H . For each i = 1, . . . , n, the positive-
semidefinite operators Mi and H − ηiρi are orthogonal since
they satisfy condition (23) from Theorem 2.

The optimality condition in Eq. (12) holds for the measure-
ment {Mi}n

i=1 because

n∑
j=1

η jρ jMj − ηiρi

=
n∑

j=1

η jρ jMj +
n∑

k=1

(H − ηkρk )Mk − ηiρi

= H − ηiρi � 0 ∀i = 1, . . . , n, (52)

where the first equality is from the orthogonality of Mi and
H − ηiρi for each i = 1, . . . , n and the second equality is from∑n

i=1 Mi = 1. Thus, we have

pG(E ) =
n∑

i=1

ηiTr(ρiMi ) = pPPT(E ), (53)

where the second equality is due to the assumption of
{Mi}n

i=1. �
If pPPT(E ) = pG(E ), Theorem 4 implies that there must

exist H ∈ HPPT(E ) \ HDEW(E ) giving qPPT(E ). In this case,
there possibly exists another Hermitian operator H ′ satisfying
H ′ ∈ HDEW(E ) and TrH ′ = qPPT(E ), which is illustrated in
the following example.

Example 2. Let us consider the two-qubit state ensemble
E = {ηi, ρi}3

i=1 consisting of three pure orthogonal states with
equal prior probabilities,

η1 = 1
3 , ρ1 = |0〉 〈0| ⊗ |0〉 〈0| ,

η2 = 1
3 , ρ2 = |1〉 〈1| ⊗ |1〉 〈1| ,

η3 = 1
3 , ρ3 = �+, (54)

where

�± = |�±〉 〈�±| , |�±〉 = 1√
2

(|01〉 ± |10〉). (55)

Since the states ρ1 and ρ2 are product states, we have

pL(E ) = 1. (56)

We note that three 2 ⊗ 2 pure orthogonal states can be per-
fectly discriminated by a finite-round LOCC if and only if
at least two of them are product states [38]. Since pG(E )
is bounded above by 1, it follows from inequality (15) and
Eq. (56) that

pL(E ) = pPPT(E ) = pG(E ) = 1. (57)

Furthermore, we have

qPPT(E ) = pPPT(E ) = 1, (58)

where the first equality follows from Theorem 1 and the sec-
ond equality is due to Eq. (57).

Now, let us consider the Hermitian operator

H = 1

3
(�+ + �−) + 1 + t

6
�+ + 1 − t

6
�−, (59)

where �± is defined in Eq. (55), 0 � t � 1, and

�± = |�±〉 〈�±| , |�±〉 = 1√
2

(|00〉 ± |11〉). (60)

Equations (58) and (59) imply

TrH = 1 = qPPT(E ). (61)

A straightforward calculation leads us to

H − η1ρ1 = 1

3
ρ2 + 1 + t

6
�+ + 1 − t

6
�− � 0,

H − η2ρ2 = 1

3
ρ1 + 1 + t

6
�+ + 1 − t

6
�− � 0,

H − η3ρ3 = 1 + t

6
(�+ + �−) + 1 − t

3
�PT

− ∈ PPT ∗
+. (62)

Due to Eqs. (61) and (62), H is an element of HPPT(E ) giving
qPPT(E ) regardless of t ∈ [0, 1]. Moreover, H ∈ HDEW(E ) for
all t ∈ [0, 1) because

Tr[(H − η3ρ3)�+] = −1 − t

6
. (63)

For a bipartite quantum state ensemble E = {ηi, ρi}n
i=1 where

H is the only element of HPPT(E ) giving qPPT(E ), Theorem 4
tells us that pPPT(E ) = pG(E ) if and only if there is no DEW in
{H − ηiρi}n

i=1. From Corollary 1, η1ρ1 is the only element of
HPPT(E ) providing qPPT(E ) when condition (29) holds. Thus,
we have the following corollary.

Corollary 2. For a bipartite quantum state ensemble E =
{ηi, ρi}n

i=1 with condition (29), pPPT(E ) = pG(E ) if and only
if there is no DEW in {η1ρ1 − ηiρi}n

i=2.
Example 3. For any integer d � 2, let us consider the two-

qudit state ensemble E = {η1, ρ1} ∪ {η(k)
i, j , ρ

(k)
i, j }i, j,k consisting

of 1 + 2d (d − 1) states,

η1 = d

5d − 4
, ρ1 = 1

d2
1,

η
(k)
i, j = 2

d (5d − 4)
, ρ

(k)
i, j = (1 − λ)� (k)

i, j + λ

d2
1,

i, j ∈ {0, 1, . . . , d − 1} with i < j, k = 1, 2, 3, 4, (64)

where 0 � λ < 1 and �
(k)
i, j is defined in Eqs. (38) and (41).

From a straightforward calculation, we can verify that

η1ρ1 − η
(k)
i, j ρ

(k)
i, j

= 1

d3(5d − 4)

[
(d2 − 2λ)(1 − 1i, j ) + (d2 − 2λ)1i, j

− 2d2(1 − λ)� (k)
i, j

]
= 1

d3(5d − 4)

[
(d2 − 2λ)(1 − 1i, j ) + λ(d2 − 2)1i, j

+ 2d2(1 − λ)� (5−k)PT
i, j

] ∈ PPT ∗
+

∀i, j ∈ {0, 1, . . . , d − 1} with i < j, ∀k ∈ {1, 2, 3, 4}, (65)
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where

1i, j = (|i〉 〈i| + | j〉 〈 j|) ⊗ (|i〉 〈i| + | j〉 〈 j|), (66)

and the second equality in Eq. (65) is due to

1
21i, j − �

(k)
i, j = �

(5−k)PT
i, j

∀i, j ∈ {0, 1, . . . , d − 1} with i < j, ∀k ∈ {1, 2, 3, 4}.
(67)

From Corollary 1 and Eq. (65), we have

pPPT(E ) = η1 = d

5d − 4
. (68)

For each i, j, and k, we can easily see from the first equality
in Eq. (65) that η1ρ1 − η

(k)
i, j ρ

(k)
i, j � 0 if and only if

Tr
[(

η1ρ1 − η
(k)
i, j ρ

(k)
i, j

)
�

(k)
i, j

]
= 2λd2 − 2λ − d2

d3(5d − 4)
� 0. (69)

Therefore, it follows from Corollary 2 that pPPT(E ) = pG(E )
if and only if

λ � d2

2(d2 − 1)
. (70)

V. DISCUSSION

We have considered bipartite quantum state discrimination
and shown that the minimum-error discrimination of bipartite
quantum states using PPT measurements strongly depends
on the existence of DEW. We have established conditions
on minimum-error discrimination by PPT measurements, that
is, pPPT(E ) = pG(E ), in terms of DEW (Theorems 3 and 4).
We have also provided conditions on the maximum success
probability over all possible PPT measurements (Theorems
1 and 2). Our results have been illustrated by examples of
multidimensional bipartite quantum states.

Quantum nonlocality is a genuine phenomenon of mul-
tipartite quantum systems without any classical counterpart.
Quantum nonlocality is a key ingredient making quantum
states outperform the classical ones in various quantum in-
formation processing tasks such as quantum teleportation and
quantum cryptography [19,20]. It is also known that this
quantum nonlocality plays an important role in quantum al-
gorithms which are more powerful than any classical ones
[39,40]. Quantum nonlocality also occurs in discriminating
multipartite quantum states; in discriminating states from a bi-
partite quantum state ensemble E , quantum nonlocality occurs
when optimal state discrimination cannot be realized only by
LOCC measurement, that is, pL(E ) < pG(E ).

Our results here can be used to detect the occurrence of
nonlocality in quantum state discrimination. Violation of the
condition in Theorems 3 or 4 means pPPT(E ) < pG(E ), which
consequently implies pL(E ) < pG(E ). Thus, condition (32) of
Theorem 3 and condition (48) of Theorem 4 can be used as
sufficient conditions on pL(E ) < pG(E ).

Corollary 2 provides a useful method to make a bipartite
quantum state ensemble E = {ηi, ρi}n

i=1 showing nonlocal-
ity, that is, pL(E ) < pG(E ), by means of DEW: For a given
DEW W , let us consider the bipartite quantum state ensemble

E = {ηi, ρi}2
i=1 where

η1 = Tr(P + W )

Tr(2P + W )
, ρ1 = P + W

Tr(P + W )
,

η2 = TrP

Tr(2P + W )
, ρ2 = P

TrP
, (71)

with any positive-semidefinite operator P satisfying

P + W � 0. (72)

Since η1ρ1 − η2ρ2 is proportional to the DEW W ,
pPPT(E ) < pG(E ) holds from Corollary 2. Thus, inequality
(15) leads us to pL(E ) < pG(E ). In other words, Corollary 2
provides a systematic way to construct a bipartite quantum
state ensemble showing nonlocality in quantum state discrim-
ination.

Corollary 2 can also be used to construct a bipartite
quantum state ensemble E = {ηi, ρi}n

i=1 with n > 2 showing
nonlocality in quantum state discrimination. For a set of
DEWs {Wi}n

i=2, let us consider the bipartite quantum state
ensemble E = {ηi, ρi}n

i=1 where

η1 = Tr1

Tr
(
n1 − ∑n

j=2 λ jWj
) , ρ1 = 1

Tr1
,

ηi = Tr(1 − λiWi )

Tr
(
n1 − ∑n

j=2 λ jWj
) , ρi = 1 − λiWi

Tr(1 − λiWi)
, (73)

i = 2, . . . , n,

with any set of positive real numbers {λi}n
i=2 satisfying

1 − λiWi � 0 ∀i = 2, . . . , n. (74)

Because η1ρ1 − ηiρi is proportional to Wi for any i ∈
{2, . . . , n}, pPPT(E ) < pG(E ) holds from Corollary 2. Thus,
inequality (15) leads us to pL(E ) < pG(E ).

As our results establish a specific relation between the
properties of EW and PPT measurements, it is natural to inves-
tigate the relationship between EW and other measurements
such as the set of all separable measurements. It is also an
interesting future work to investigate if EW can be used for the
optimization of other state discrimination strategies besides
minimum-error discrimination.
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APPENDIX A: PROOF OF THEOREM 1

As we already have inequality (21), it is enough to show
that

pPPT(E ) � qPPT(E ). (A1)

Lemma 1. If E ∈ PPT ∗
+ and E �= 0H, then TrE > 0,

where 0H is the zero operator in H.
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Proof. The proof is by contradiction. We first note that
TrE = Tr(1E ) � 0 because 1 ∈ PPT+ and E ∈ PPT ∗

+.
Thus, let us suppose TrE = 0.

For an arbitrary orthonormal product basis {|ei〉}D
i=1 of the

bipartite Hilbert space H = Cd1 ⊗ Cd2 , we have

D∑
i=1

Tr(E |ei〉〈ei|) = Tr(E1) = TrE = 0, (A2)

where D = d1d2. From E ∈ PPT ∗
+ and |ei〉〈ei| ∈ PPT+ for

all i = 1, . . . , D, we have

Tr(E |ei〉〈ei|) � 0 ∀i = 1, . . . , D. (A3)

Equation (A2) and inequality (A3) lead us to

Tr(E |ei〉〈ei|) = 0 ∀i = 1, . . . , D. (A4)

Since the choice of {|ei〉}D
i=1 can be arbitrary,

Tr(E |e〉〈e|) = 0 (A5)

for any product vector |e〉 ∈ H, therefore

Tr(EF ) = 0 ∀F ∈ SEP , (A6)

where SEP is defined in Eq. (6).
We note that SEP spans H. To see this, we first note that

the set of all positive-semidefinite operators on Cdk spans
the set of all Hermitian operators on Cdk for each k = 1, 2.
Moreover, every F ∈ H can be represented as a summation of
product Hermitian operators,

F =
∑

l

Al ⊗ Bl , (A7)

where Al and Bl are Hermitian operators on Cd1 and Cd2 ,
respectively. Therefore, Eq. (A6) leads us to

Tr(EF ) = 0 ∀F ∈ H. (A8)

Equation (A8) means E = 0H which contradicts the assump-
tion of the lemma. Thus, TrE > 0. �

Let us consider the set

S (E ) =
{(

n∑
i=1

ηiTr(ρiMi ) − p,1 −
n∑

i=1

Mi

)
∈ R × H

∣∣∣∣∣
p > pPPT(E ), Mi ∈ PPT+∀i = 1, . . . , n

}
, (A9)

where R is the set of all real numbers. We note that S (E )
is a convex set due to the convexity of PPT+ in Eq. (1).
Moreover, S (E ) does not have the origin (0, 0H) of R × H,
otherwise there is a PPT measurement {Mi}n

i=1 with

n∑
i=1

ηiTr(ρiMi ) > pPPT(E ), (A10)

and this contradicts the optimality of pPPT(E ) in Eq. (13). We
also note that the Cartesian product R × H can be considered
as a real vector space with an inner product defined as

〈(a, A), (b, B)〉 = ab + Tr(AB) (A11)

for (a, A), (b, B) ∈ R × H.

Since S (E ) and the single-element set {(0, 0H)} are dis-
joint convex sets, it follows from the separating hyperplane
theorem [41,42] that there is (γ , 
) ∈ R × H satisfying

(γ , 
) �= (0, 0H), (A12)

〈(γ , 
), (r, G)〉 � 0 ∀(r, G) ∈ S (E ). (A13)

Suppose

Tr
 � γ pPPT(E ), (A14)


 − γ ηiρi ∈ PPT ∗
+∀i = 1, . . . , n, (A15)

γ > 0. (A16)

From conditions (A15) and (A16), the Hermitian operator
H = 
/γ is an element of HPPT(E ) in Eq. (16). Thus, the
definition of qPPT(E ) in Eq. (20) leads us to

qPPT(E ) � TrH. (A17)

Moreover, condition (A14) implies

TrH � pPPT(E ). (A18)

Inequalities (A17) and (A18) complete the proof of inequality
(A1).

The rest of this section is to prove conditions (A14), (A15),
and (A16).

Proof of (A14). From Eq. (A11), inequality (A13) can be
rewritten as

Tr
 −
n∑

i=1

Tr[Mi(
 − γ ηiρi )] � γ p (A19)

for all p > pPPT(E ) and all {Mi}n
i=1 ⊆ PPT+. If Mi = 0H for

all i = 1, . . . , n, inequality (A19) becomes inequality (A14)
by taking the limit of p to pPPT(E ). �

Proof of (A15). For each j ∈ {1, . . . , n}, let us consider an
arbitrary Mj ∈ PPT+ and Mi = 0H for all i = 1, . . . , n with
i �= j. In this case, {Mi}n

i=1 is clearly a subset of PPT+, and
inequality (A19) becomes

Tr
 − Tr[Mj (
 − γ η jρ j )] � γ pPPT(E ) (A20)

by taking the limit of p to pPPT(E ).
Suppose 
 − γ η jρ j /∈ PPT ∗

+, then there is M ∈ PPT+
with Tr[M(
 − γ η jρ j )] < 0. We note that M ∈ PPT+ im-
plies tM ∈ PPT+ for any t > 0. Thus, {Mi}n

i=1 consisting of
Mj = tM for t > 0 and Mi = 0 for all i = 1, . . . , n with i �= j
is also a subset of PPT+.

Now, inequality (A20) can be rewritten as

Tr
 − Tr[tM(
 − γ η jρ j )] � γ pPPT(E ). (A21)

Since inequality (A21) is true for arbitrary large t > 0,
γ pPPT(E ) can also be arbitrarily large. However, this contra-
dicts that both γ and pPPT(E ) are finite. Thus, 
 − γ η jρ j ∈
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PPT ∗
+, which completes the proof of (A15). �

Proof of (A16). To show γ � 0, we assume γ < 0. Let us
consider {Mi}n

i=1 with Mi = 0H for all i = 1, . . . , n. Since
{Mi}n

i=1 ⊆ PPT+, inequality (A19) becomes

Tr
 � −∞ (A22)

by taking the limit of p to ∞. This contradicts that 
 is
bounded. Thus γ � 0.

Now, let us suppose γ = 0. In this case, conditions (A14)
and (A15) become

Tr
 � 0, 
 ∈ PPT ∗
+. (A23)

From Lemma 1 together with condition (A23), we have


 = 0H, (A24)

which contradicts condition (A12). Thus, γ > 0. �
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