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Suppressing amplitude damping in trapped ions: Discrete weak measurements
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The idea of exploiting maximally entangled states as a resource lies at the core of several modalities of
quantum information processing, including secure quantum communication, quantum computation, and quantum
sensing. However, due to imperfections during or after the entangling gates used to prepare such states, the
amount of entanglement decreases and their quality as a resource gets degraded. We introduce a low-overhead
protocol to reverse this degradation by partially filtering out a specific type of noise relevant to many quantum
technologies. We present two trapped-ion schemes for the implementation of a nonunitary probabilistic filter
against amplitude damping noise, which can protect any maximally entangled pair from spontaneous photon
scattering during or after the two-qubit trapped-ion entangling gates. This filter can be understood as a protocol
for single-copy quasidistillation, as it uses only local operations to realize a reversal operation that can be
understood in terms of weak measurements.
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I. INTRODUCTION

Entanglement allows for new ways of processing and
transmitting information in the quantum-mechanical realm,
including quantum teleportation as a paradigmatic example
[1]. Given the important role of entanglement in diverse
quantum-information protocols [2], it has become a gen-
uine resource. For instance, maximally entangled states can
be used for secure quantum communications [3–6], and for
quantum sensing and metrology [7–9], both of which aim
at beating the limitations imposed by the laws of classical
physics. In the context of quantum computing, maximally
entangled states between pairs of qubits in a quantum register
can be prepared using gates drawn from a universal gate
set. Improving the quality of these gates above a so-called
fault-tolerance threshold is crucial to scale up these quantum
computers [2,10–12]. Unfortunately, the quality of these en-
tangled states, or the gates that produce them, gets degraded
by small imperfections in the experimental controls as well as
by the unavoidable coupling of the system to its surrounding
environment. Therefore, a central goal across many quantum
technologies is the development of techniques to create, store,
and distribute maximally entangled states in the presence of
decoherence and noise.

Amplitude damping is an important mechanism of deco-
herence arising from energy relaxation [2] that is common
to many platforms. An example relevant to the present work
is that of trapped-ion optical qubits [13–16], where spon-
taneous emission of photons from a metastable level leads
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to amplitude damping. This is summarized by the T1 time,
which sets the ultimate decoherence limit for optical qubits
when all other sources of technical noise are suppressed.
For trapped-ion hyperfine or Zeeman qubits [17,18], where
the information is encoded in the ground state manifold,
spontaneous photon scattering during storage vanishes. How-
ever, such photon scattering becomes relevant when creating
and manipulating the entangled states, e.g., when using two-
photon Raman transitions via auxiliary excited states, during
which a residual emission of photons can contribute unfa-
vorably to the gate fidelities [19,20]. Spontaneous emission
can also be a limitation in Rydberg-atom quantum processors,
where in order to achieve high two-qubit gate fidelities, long
coherent ground-Rydberg state Rabi oscillations are needed.
However, the presence of spontaneous emission decay chan-
nels from the intermediate excitation state to the ground
manifold, and from the target Rydberg state to lower-n Ry-
dberg states, with n the principal quantum number, limit the
coherence and population times [21–23].

To fight against amplitude damping or, indeed any source
of decoherence, one may redundantly encode the quantum-
information into logical qubit by using more physical qubits.
The theory of quantum error correction (QEC) shows that it
is possible to exploit multipartite entanglement among the
encoded physical qubits to actively detect and correct the
errors that have occurred on the logical qubits without actually
perturbing the encoded information [2,24–26]. In recent years,
we have witnessed a remarkable progress in experimental
QEC, especially in trapped-ion and superconducting-circuit
platforms. We have seen how one logical qubit can be pro-
tected from an arbitrary error using 7 physical qubits for the
color QEC code [27–29], or 9 [30,31], and 25 physical qubits
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[32] for the surface QEC code. Moreover, the advantage of
using fault-tolerant designs has also been demonstrated in
Ref. [29,33]. This has allowed, for the first time, to real-
ize a full universal gate set at the logical level, including
transversal gates that create a logical entangled state using
14 physical qubits [29,33]. QEC strategies are known to pro-
vide a scalable solution to build large fault-tolerant quantum
computers [34–36] that starts to become practically relevant
as the experimental technologies increase the possible qubit
redundancy. However, to achieve a significant advantage of
quantum encoding when the noise and control errors lie in
the vicinity of the aforementioned fault-tolerance threshold,
even the most promising schemes of quantum error correc-
tion (QEC) [25,26,37] typically require a very high degree of
redundancy which leads to large overheads in the number of
physical qubits [35]. Thus there is still a long road ahead for
truly large-scale QEC. In the meantime, it is important to de-
velop alternative schemes that reduce the effect of noise with
a lower qubit overhead. Moreover, some of these noise miti-
gation techniques could be eventually combined with QEC.

Some of these alternative strategies work best for specific
types of noise. For instance, dynamical decoupling [38] refo-
cuses the effects of dephasing noise caused by external fields
with sufficiently slow fluctuations, whereas decoherence-free
subspaces [39] exploit symmetric subspaces that are immune
to external fields with sufficiently global fluctuations. In the
context of QEC, the qubit overhead can also be reduced if
one focuses on a set of errors that is believed to be the main
noise source in a specific platform. Thus, one may devise
channel-adapted QEC codes for amplitude damping by using
four qubits to correct for one error [40,41]. In this work, we
explore a different error suppression strategy that is framed in
the context of entanglement distillation [42], which includes
schemes for entanglement concentration and entanglement
purification as specific limits, and will allow us to further
minimize the qubit overhead. Such schemes are particularly
relevant when the entanglement is distributed between a pair
of spatially separated physical qubits.

For bipartite systems under realistic gates and channels,
the prepared maximally entangled pairs are neither per-
fectly transformed under quantum operations nor perfectly
distributed to distant parties. Entanglement distillation aims
at exploiting local operations and classical communication
(LOCC) to improve the fidelity of a collection of noisy
partially entangled mixed states with respect to a target max-
imally entangled pure state [43]. We note that this question
is not only of practical relevance in some applications, e.g.,
quantum repeaters for quantum communications over large
distances [44], but has also played a key role in the de-
velopment of the current understanding of entanglement via
resource theories. Specifically, in a theoretical framework one
considers extracting m(n) maximally entangled pairs |�AB〉
from n copies of a partially entangled mixed state ρAB, by
using a suitable LOCC protocol E ∈ LOCC. The efficiency of
the distillation protocol is specified by the asymptotic ratio
m(n)/n → ξD in the limit of an infinite number of copies
n → ∞. This allows us to define the so-called distillable
entanglement ED(ρAB) = supE∈LOCC{ξD}, which corresponds
to the optimal efficiency for all conceivable distillation pro-
tocols. This yields an operational measure of entanglement

[45,46], quantifying the amount of entanglement in a state
by the efficacy with which one can perform a particular task,
namely, to distill perfect maximally entangled pairs from it.

From this theoretical perspective, distillation protocols aim
at producing maximally entangled pairs with unit fidelity in
such an asymptotic limit. In a seminal work [43], Bennett et al.
showed that collective measurements on the qubits belonging
to each of the parties separately, allow for a LOCC scheme
that can distill a nonvanishing number of maximally entangled
pairs from n → ∞ copies, provided that the initial fidelity of
the noisy mixed state is above 1/2. It was then shown that
this constraint on the initial state can be lifted, provided that
one has previously applied a filtering operation to each of the
separate copies [47]. This raised the question of exploring the
capabilities of single-copy distillation schemes, which would
thus reduce the large overhead in the number of partially
entangled copies. To our knowledge, the first such scheme
finds its root in the work on entanglement concentration for
pure states by filtering [48], the so-called Procrustean method,
which also applies to certain partially entangled mixed states
[49]. We note that this single-copy distillation scheme has
been realized in photonic experiments [50], where one aims
at achieving the highest-possible fidelities by postselecting
on the experimental outcomes of a generalized measurement
[51]. In this context, the aforementioned theoretical limit of a
perfect distilled state is unreachable, as the postselection prob-
ability drops to zero. In any case, since the filtering operations
are always noisy in a practical experiment, the limit of perfect
distillation is an idealization even for multicopy distillation
schemes.

The link between quantum error suppression and entan-
glement distillation derives from the fact that single-copy
distillation methods fall in the class of probabilistic quan-
tum error detection (pQED) [52]. After the measurement,
one can infer whether an error, e.g., amplitude-damping, has
occurred or not, and then keep those outcomes where the
encoded information can be probabilistically recovered by
simply reversing the effect of the measurement [52,53]. The
first proof-of-principle demonstrations of such pQED was
performed in photonic systems using projective measurements
implemented via photon absorption [50,54–56]. As remarked
in Ref. [57], this absorptive measurement destroys the quan-
tum state, such that the distilled entanglement cannot be used
for any subsequent quantum-information task. In contrast, the
trapped-ion experiment of Ref. [57] allowed demonstration
of a two-copy distillation protocol that improves the qual-
ity of a single entangled pair which is not destroyed and
thus remains available for further posterior processing. In a
subsequent trapped-ion experiment [58], a shelving mecha-
nism using additional states of the trapped-ion level structure
was exploited to detect leakage without disturbing the qubit
computational states. In the current work, we are interested
in designing single-copy distillation schemes to fight against
amplitude damping and protect any maximally entangled Bell
pair created using trapped-ion technologies.

Although generic mixed states are not useful for perfect
distillation [59,60], there are certain families of them that
can be distilled arbitrarily close to the limit of unit fideli-
ties [61]. This so-called quasidistillation is closer in spirit to
the experimental situation, where the filtering operations are
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never perfect. As shown in Ref. [62], one can find optimal
single-copy quasidistillation protocols with specific filtering
operations that correspond to generalized measurements and
depend on the form of the initial mixed state. These optimal
strategies thus require prior information about the initial state,
a property that is shared with the original Procrustean methods
[48,49] and subsequent works [50,63,64]. In this work, we
are interested in single-copy quasidistillation schemes where
the filtering requires a priori information that is independent
of the maximally entangled state one wants to distill. We
show that this is possible for specific noise channels, where
the prior information now depends on the noise. We present
a low-resource probabilistic method to protect an unknown
entangled pair against amplitude damping, which acts as a
noise filter and is related to the Procrustean method of en-
tanglement concentration [48]. The scheme presented here
exploits a specific form of measurement reversal with origins
in the context of weak measurements [65,66]. In addition to
the focus on explicit mitigation of errors due to amplitude
damping rather than on entanglement concentration in gen-
eral, a technical difference from Ref. [48] is that the present
scheme does not require any prior knowledge of the target
state, which can be any of the maximally entangled states, but
instead requires as an input parameter the T1 time associated
with the amplitude-damping noise. This can be determined
from previous calibration experiments [13,14], and then fed
into the probability of amplitude damping p for each qubit
[67], namely

p = 1 − e− t
T1 . (1)

We provide two possible schemes for a trapped-ion imple-
mentation of this quasidistillation protocol. The first one is
related to the idea of quantum logic spectroscopy [68] and
exploits unitaries between the qubits and some of the com-
mon vibrational modes of the ion crystal holding them. The
second method, on the other hand, exploits phonon-mediated
entangling gates [69–71] to map the relevant information from
the physical qubits onto the ancillas. The latter approach turns
out to be more robust with respect to thermal fluctuations in
the common vibrational modes. As noted above, this method
can protect any unknown entangled pair, or even be applied at
the level of the full entangling unitary that prepares such en-
tangled pairs. Both methods exploit a measurement in which
the physical qubit effectively interacts with an ancilla qubit,
such that the ancilla gets flipped when an amplitude-damping
error occurs, and can be used to design an operation that
reverses the amplitude damping. The probabilistic character
arises from the fact that we keep (postselect) those states for
which the ancilla measurement signals “no error.” The method
can thus also be viewed as acting as an amplitude-damping
noise filter.

The remainder of the article is organized as follows: In
Sec. II A, we present the general scheme to show how the
filtering protocol based on quantum measurement reversals
for amplitude damping can be used to distill single-copy
entangled states. In Sec. III we then propose two different
schemes for the experimental implementation of the quantum
measurement reversals in trapped-ion platforms. Adapted to
the trapped-ion native logic operations, the first method in

FIG. 1. Amplitude-damping reversal for single-copy distillation.
We consider a pair of physical or system qubits s1, s2, which can
be prepared in a maximally entangled Bell pair (2) via a Hadamard
gate H and an entangling CNOT gate, as shown in the circuit. The
system qubits are then subjected to uncorrelated amplitude damping
channels, Eq. (3), which may model the main error source during the
gate or the primary source of environmental noise during a waiting
period t . The resulting partially entangled mixed state can be distilled
into a state with a higher fidelity with respect to the targeted Bell pair
via the reversal operations Mr,1, Mr,2, Eq. (6), which act as nonunitary
filters and must be implemented by coupling the qubits to ancillary
degrees of freedom a1, a2, and postselecting on specific outcomes of
subsequent measurements.

Sec. III A relies on quantum logic spectroscopy techniques
mediated by common vibrational modes. The second method
in Sec. III B consists on a sequence of one and two-qubit
gates, both of which are quite robust to the thermal mo-
tion of the ions. Finally, in Sec. IV, we benchmark both
schemes while highlighting the power to protect any entan-
gled state by calculating the average gate fidelity and discuss
their practical limitations under more realistic conditions.
Section V summarizes and presents an outlook for further
development.

II. NOISE FILTERING AGAINST AMPLITUDE DAMPING

A. General scheme

Consider a pair of qubits s1, s2 that can be prepared in any
Bell pair by a maximally entangling unitary Uid. Using the
first two unitary gates of the circuit displayed in Fig. 1 with
Uid = UCNOT, we have

Uid|±〉s1
⊗ |0〉s2

= |�±〉 = 1√
2

(|0〉s1
⊗ |0〉s2

± |1〉s1
⊗ |1〉s2

)
,

Uid|±〉s1
⊗ |1〉s2

= |�±〉 = 1√
2

(|0〉s1
⊗ |1〉s2

± |1〉s1
⊗ |0〉s2

)
.

(2)

As outlined in the introduction, we aim at designing a
probabilistic filtering method that, in contrast to previous
entanglement concentration schemes [43,57] can protect any
of these maximally entangled states and requires prior in-
formation about the noise instead of the particular state. We
note that this entangling operation might be any other uni-
tary gate native to the specific experimental setup. In fact,
the scheme can also be applied to quantum network scenar-
ios where entanglement between distant qubits is heralded
via photonic interconnects, as has been demonstrated for
trapped ions [72–78]. In that case, the scheme below serves to
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quasidistill a specific target entangled pair from the heralded
two-qubit state.

Our scheme thus serves to protect the full entangling uni-
tary ρid = Uidρ0U

†
id against an amplitude damping channel

ρid �→ ρ̃id = ε(ρid ) = εs1 ◦ εs2 (ρid ), (3)

which is represented by the shaded clouds in Fig. 1. Here we
have defined

εsq (ρid ) = K0,sq
ρidK†

0,sq
+ K1,sq

ρidK†
1,sq

, (4)

in terms of the Kraus operators K0,s1 = K0 ⊗ I2, K0,s2 = I2 ⊗
K0, K1,s1 = K1 ⊗ I2, K1,s2 = I2 ⊗ K1, with

K0 =
(

1 0
0

√
p̄

)
, K1 =

(
0

√
p

0 0

)
, (5)

where p is the probability of an amplitude damping error and
p̄ = 1 − p is the probability that no amplitude-damping error
occurs, with p dependent on the T1 time via Eq. (1). These
single-qubit Kraus operators defined in the computational
basis represent the amplitude damping noise channel [2,41].
This is an asymmetric channel since the qubit states |1〉sq

are transformed to |0〉sq
with probability 0 < p � 1, while

the |0〉sq
states never transform into |1〉sq

, regardless of the
value of p. As noted above, the amplitude-damping proba-
bility can be related to the natural lifetime of the qubit, due,
e.g., to photon scattering from a metastable level in trapped-
ion optical qubits, or to the residual photon-scattering when
the entangling gate is mediated by two-photon processes via
far-detuned dipole-allowed transitions.

If the decoherence due to amplitude damping is caused
by photon emission into the electromagnetic (EM) environ-
ment, we can effectively understand the decay channel as
a partial (often referred to as a weak) measurement of the
photon number exerted by the aforementioned environment
[67]. The partial collapse of the amplitudes from the excited
to the ground state can then be seen as the result of weak
measurements performed by the independent EM modes that
can absorb the emitted photon by each of the system qubits.
In contrast to the more common von Neumann projections
[2], a weak measurement does not fully collapse the quantum
state into an eigenstate of the operator being measured, and is
thus reversible [52,79,80]. Therefore, for decay probabilities
0 < p < 1, a secondary weak measurement can be applied to
reverse the partial collapse, leading to a quantum measure-
ment reversal of the aforementioned errors [80].

This reversal can be accomplished by a filtering operation.
In the case of amplitude damping, this corresponds to the last
pair of operations depicted in Fig. 1, which read

ρ̃id �→ Mr,2Mr,1ρ̃idMr,1Mr,2,

Mr,q = 1√
Prq

(√
p̄rq 0
0 1

)
. (6)

Note that these reversal operations are applied to each of
the physical qubits forming the partially entangled pair. As
discussed in detail below, to implement such a nonunitary
filter, the physical qubits must be coupled to an ancillary
subsystems, which must then be measured. In Eq. (6), Prq is
the postselection success probability. We note that the fidelity

of the recovery process will never be strictly equal to one, as
it is a nontrace-preserving map [52,65].

Let us illustrate how the filtering method works for a par-
ticular entangled state. Consider the circuit shown in Fig. 1
with the system qubits initialized in the tensor product state
|1〉s1

⊗ |1〉s2
such that the Hadamard gate on the first qubit

and the unitary Uid = UCNOT create the pure maximally en-
tangled state ρid = Uidρ0U

†
id = |�−〉〈�−|. The system qubits

can undergo amplitude damping either during the gate, or
after a subsequent memory time t . Assuming that both qubits
are identical and subjected to the same uncorrelated noise
environments, the decay probabilities can be considered to be
the same, p1 = p2 = p, and the density matrix evolves to the
partially mixed entangled-state

ρid �→ ρ̃id = p|0, 0〉〈0, 0| + p̄ρid. (7)

Recalling that p̄ = 1 − p, we see that with probability p the
amplitudes of the excited states on the entangled pair decay
to the two-qubit tensor product ground state |0, 0〉 = |0〉s1

⊗
|0〉s2

, while with probability 1 − p, the system remains in the
pure maximally entangled state. The unfiltered state infidelity
in this situation is equal to p, i.e.,

εunf = 1 − Funf = 1 − 〈�−|ρ̃id|�−〉 = p. (8)

We now use the amplitude damping filtering protocol to
distill a single-copy and increase the fidelity with the target
entangled state. As emphasized above, our scheme is inde-
pendent of the initial maximally entangled state and it is also
valid for any entangling gate, in particular for the Mølmer-
Sørensen (MS) gates of trapped ion architectures that we will
use later on. The reason for this generality is that the protocol
focuses on removing the additional amplitude that decayed
from the excited states to the ground states. The amount that
needs to be removed is proportional to the decay probability
of Eq. (1) and thus it is only the specific value of T1 that is
required as prior information to implement the single-copy
distillation. The decay removal procedure is carried out by
applying a quantum measurement reversal on each qubit, with
equal strengths pr1 = pr2 = pr , such that the density matrix
transforms according to Eq. (6). This leads to

ρ̃id �→ ρf = 1

Pr

(
p̄2

r p|00〉〈00| + p̄r p̄ρid
)
, (9)

where Pr = p̄2
r p + p̄r p̄ is a normalization constant that repre-

sents the success probability of the measurement reversal. The
probability of decaying to the common ground state is now
p̄2

r p/Pr , and the probability of remaining in the maximally
entangled state is now p̄r p/Pr . By setting the strength of the
reversal operation equal to the probability of amplitude decay
[Eq. (1)], namely, pr = p, we get

ρf = 1

p̄2(p + 1)
( p̄2 p|00〉〈00| + p̄2ρid ). (10)

We see that the probability of decaying to the ground state has
now been effectively reduced by a factor of 1/(1 + p). This
increases the filtered fidelity by the same factor, so that

εf = 1 − Ff = p

1 + p
. (11)
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This example illustrates how the filtering protocol can be
used for single-copy quasidistillation. The distillation power
increases with increasing p, i.e., with increasing time t ,
since the infidelity ratio εf/εunf = 1/(1 + p) decreases with
p. However, the probability of successful filtering, Pr , also
decays with time according to its dependence on p [see below
Eq. (10)]. For instance, after two different combinations of
gate or memory times, such as t/T1 = 1/10 and t/T1 = 1
with associated decay probabilities of p(1/10) = 0.01 and
p(1) = 0.63, the corresponding probabilities of quasidistilla-
tion success will be Pr ≈ 0.90 and Pr ≈ 0.20, respectively.
This clearly shows how the probabilistic nature of the method
arises, as well as the trade-off between a higher quality dis-
tillation and a more frequent distillation. For a number of
repetitions N = 100, we will be filtering out part of the am-
plitude damping correctly in 90 instances for the first case,
while for the second case, the correct instances reduce to 20.
Consequently, for a given number N of experimental runs,
the greater the amplitude decay probability p, the fewer the
successful events where the noise is suppressed.

Having presented and illustrated the scheme in this section,
the remaining task is to describe how one can implement such
filtering operations in practical setups. In the context of weak
measurements, employing a quantum measurement reversal to
reverse the effect of noise can be realized by first applying a
weak measurement and then applying the reversal operation.
This idea has been previously addressed both theoretically
and experimentally for single qubits, in solid-state systems
[65], superconducting qubits [81–83], trapped ions [58,84]
and photonic systems [85,86]. However, the reversal of a
partial collapse on entangled states has only been considered
for photonic systems [66,85,87–89]. In the next section we
develop a filtering scheme based on weak quantum measure-
ment reversal for single-copy distillation of any entangled
state for trapped-ion platforms. We point out that the proce-
dure described here also provides protection against amplitude
damping for single trapped-ion qubits. In fact, the quantum
measurement reversal operation in Eq. (6) is defined as the
tensor product of a quantum measurement reversal on each of
the qubits. Therefore, the two measurement reversal schemes
presented in this work can be readily adjusted to fight against
amplitude damping in single qubits by substituting one of
the quantum measurement reversals by the identity operator.
Our primary interest here, however, focuses on single-copy
distillation of any entangled state for trapped-ions and on
increasing the fidelity of the full two-qubit entangling unitary.
In current trapped-ion implementations, two-qubit gates are
the major bottleneck to perform quantum error correction
codes near pseudothresholds or to achieve a high-fidelity log-
ical state preparation. The low qubit overhead of our scheme
makes it interesting as an alternative to standard QEC, since
it can effectively suppress the effect of noise on platforms
and/or applications which at present are only capable of
manipulating a relatively small number of qubits. Moreover,
it is also practical for communication situations, where the
physical qubits are held by distant parties, and conventional
QEC is not straightforward.

The full protocol to implement this nonunitary filter is
based on the construction of asymmetric positive operator-
valued measure (POVM) operators followed by postselection

on ancilla qubits. Section III introduces two different schemes
to perform the necessary asymmetric POVMs. The first
scheme builds on the work presented in Ref. [84], where a
theoretical formalism to implement symmetric POVMs for
trapped ions using quantum logic spectroscopy (QLS) oper-
ations [68] was discussed. Here, we extend this QLS scheme
to the design of asymmetric POVM operators, which will be
crucial to exploit them as nonunitary filters for single-copy
distillation against amplitude damping. The main difference
between symmetric and asymmetric POVMs is that, while in
the symmetric case one always recovers the projectors onto
computational basis for the extremal cases with pr = 0 and
pr = 1, in the asymmetric case one recovers either the identity
r a single projection operator in these limits, but never two
projectors.

As discussed in detail in Sec. III A, this QLS scheme
exploits common vibrational modes between the system and
ancillary qubits, which should be previously laser cooled to
the vibrational ground state. This makes nonunitary filtering
susceptible to thermal fluctuations in the common vibrational
mode, compromising in this way the efficacy of the distillation
method. We present a detailed account of this error source
below. In Sec. III B we then present the second scheme that
is not ultimately restricted to the ions operating in the vacuum
vibrational mode. Similarly inspired by the case of symmetric
POVMs [84], we show that now the asymmetric reversal of
amplitude damping can be implemented in terms of single and
two-qubit gates [90], which are far more robust to the spe-
cific motional state of the ions. As discussed in detail below,
these gates must be followed by projective measurement and
postselection on the ancilla qubits. In Sec. IV we compile the
resulting circuits into native trapped-ion gates and compare
the average gate fidelities of a two-qubit gate in the presence
and absence of the filtering process.

III. IMPLEMENTATION OF QUANTUM MEASUREMENT
REVERSAL FOR TRAPPED IONS

In this section, we give a detailed account of the two
schemes for implementation of asymmetric POVMs in
trapped ion architectures and discuss how these connect to the
nonunitary filters of Eq. (6) for single-copy quasidistillation.
Common to both schemes is the need to use one ancilla qubit
per system qubit in order to perform the probabilistic error
detection. Thus, for the two-qubit maximally entangled state,
two ancilla qubits must be added to the qubit register. We
now discuss how the common vibrational modes, togther with
projective measurements on the ancillas, can be exploited to
perform the desired POVM.

A. Scheme A: Asymmetric positive operator-valued measures
via quantum logic spectroscopy

The scheme to realize an asymmetric POVM consists of a
series of unitary operations applied to the system and ancilla
ions, followed by a final projective measurement on the an-
cilla qubits that postselects certain outcomes. The underlying
idea is similar to that of quantum logic spectroscopy (QLS)
[68], in which information stored in the system qubits can
be coherently transferred onto the ancilla ions through the
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FIG. 2. Amplitude-damping reversal by quantum logic spectroscopy. The system s1, s2 and ancillary a1, a2 subsystems of Fig. 1 are
composed of both internal and motional levels. In the left-hand side, we include the two lowest Fock states for the vibrational ladder of
states associated with each of the system and ancilla qubits. Note that the vibrational Fock levels of s1, a1 (and of s2, a2) correspond to the
same common mode. (i) The initial state has no internal or motional excitation. Using the trapped-ion native gates, (ii) an entangled pair
is generated by the entangling gate XX (π/2) (12), which is followed by (iii) the amplitude-damping channels ε1(t ), ε2(t ) (4), depicted by
two clouds, that act during a time t that sets the error rate (1). The resulting effect, summarized in (iv), is to shuffle the amplitudes, as
depicted by the dashed blue circles of the subsequent column. The reversal or filtering operations that are then carried out to distill a better
entangled state and reverse the environmental noise are depicted inside the following two boxes, which correspond to the sequence of carrier
(v) and sideband pulses [vi and vii], followed by (viii) a projective measurement, and (ix) postselection on the ancillas. As discussed in the
text, by adjusting the duration of the pulses (14), and postselecting on the measurement outcomes (20), one obtains the desired nonunitary
filter (6).

common vibrational modes provided by the Coulomb inter-
action between the ions. The procedure ends with a projective
measurement of the ancilla qubits that induces a POVM on
the system qubits. The optimal implementation would use
ancilla ions from a different atomic species or isotope, which
reduces the effect that light scattering during a fluorescence-
enabled measurement of the ancillas can have on the system
qubits. Alternatively, ion shuttling could be used to transport
the ancilla ions to a measurement trapping region located far
away from the system qubits [91,92]. We note that another
possibility to implement an asymmetric POVM without ancil-
las is to use more internal states of the ions, as discussed in
Refs. [58,93].

The initial stage of construction of our asymmetric POVMs
proceeds by analogy to the symmetric case [84] and thus
exploits three different levels from the atomic level structure
of the ions. We denote these by {|0〉sq

, |1〉sq
, |r〉sq

} for the
ions q = {1, 2} that store the two system or data qubits (see
Fig. 1). The state |r〉sq

is an auxiliary metastable excited state
that connects the qubits states in a lambda configuration. The
two ancillary subsystems a1, a2 also shown in Fig. 1 are
provided by additional ions, each of which contributes with

a pair of internal levels, which are initially prepared in the
state ρa(t0) = |0〉〈0|a1 ⊗ |0〉〈0|a2 . The system and ancilla ions
form a linear chain aligned along the null of the rf-field of
a Paul trap that confines the ion register. Accordingly, their
Coulomb interaction couples the small vibrations around the
ion crystal equilibrium position, giving rise to the common vi-
brational modes. We select two specific vibrational modes, m1

and m2, each of which describes specific collective vibrations
along a particular axis direction k1 and k2. Assuming initial
laser-cooling conditions to the ground state of both modes, the
motional state can be described by the tensor product of two
Fock states with no vibrational quanta, ρm(t0) = |0〉〈0|m1 ⊗
|0〉〈0|m2 . The initial state of the scheme is then written as the
tensor product state ρ(t0) = ρs(t0) ⊗ ρa(t0) ⊗ ρm(t0), where
ρs(t0) represents the internal state of the system qubits that,
after being subjected to the entangling gate depicted in Fig. 2,
is close to one of the four maximally entangled pairs, i.e., the
four Bell states.

We assume that the remaining vibrational modes do not
intervene in the protocol and thus act as mere spectators. We
also assume that the heating on each of the vibrational modes
is vanishingly small. Using a trapped-ion native gate set, we
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can remove the Hadamard gate in Fig. 1 by using a Mølmer-
Sørensen (MS) gate [94,95] instead of the CNOT gate, specified
by

Uid = XX
(π

2

)
= 1√

2

(
I − iσ x

s1
σ x

s2

)
. (12)

This entangling gate, represented by XX (π/2) in Fig. 2, read-
ily generates four maximally entangled pairs on the system
qubits that are locally equivalent to the Bell states of Eq. (2).
In the left-hand side of this figure, step (i) represents an
initial state with the system and ancilla qubits initialized in
|0〉. Note that we also draw the two lowest vibrational Fock
levels for the corresponding common modes, which will be
used in subsequent steps. In step (ii), the MS gate produces
the entangled pair (|0〉s1

⊗ |0〉s2
− i|1〉s1

⊗ |1〉s2
)/

√
2 for the

system qubits. In step (iii), this unitary is followed by the
amplitude decay channel described by Eq. (3), leading to a
partially entangled mixed state ρid = Uidρ(t0)U †

id �→ ρ̃id. As
a consequence of spontaneous emission, the probabilities to
find the system qubits in either of the two possible states will
now no longer be equal, which is depicted in step (iv) by the
different size of the shaded blue balls of the corresponding
levels.

We now show how to construct an asymmetric POVM that
can reverse the amplitude damping. This requires a sequence
of gates to implement Mr,q in Eq. (6), which is depicted inside
the two rectangular boxes on the right of Fig. 2. The scheme
starts with three consecutive unitary operations, steps (v)–
(vii). The first one, step (v), is O1 = Rc

s1
(θ1, φ1) ⊗ Rc

s2
(θ1, φ1),

and consists of a carrier pulse on each system ion in resonance
with the transition |0〉sq

→ |r〉sq
[96]. This reads

Rc
sq

(θ1, φ1) = exp

{
i
θ1

2

(
eiφ1σ+

sq
+ e−iφ1σ−

sq

)}
, (13)

where σ+
sq

= |r〉〈1|sq
(σ−

sq
= |1〉〈r|sq

) are the spin raising (low-
ering) operators. This carrier pulse, represented by the green
arrows of the first carrier pulse in the boxes of Fig. 2, must act
for a specific duration

t1 = 2

�c
1

cos−1(
√

1 − pr ). (14)

We set φ1 = 0 in Eq. (13), and define the pulse area θ1 = �c
1t1

in terms of the carrier Rabi frequency �c
1, which depends

on a parameter pr that controls the strength of the reversal
operation. In Fig. 2, the effect of this carrier is depicted by a
partial transfer of the shaded blue amplitude to the auxiliary r
level.

In step (vi) we then apply a red-sideband pulse O2 =
Rrsb

s1,m1
(θ2, φ2) ⊗ Rrsb

s2,m2
(θ2, φ2) to each of the system ions [96].

This corresponds to the unitary

Rrsb
sq,mq

(θ2, φ2) = exp

{
i
θ2

2

(
eiφ2σ+

sq
amq + e−iφ2σ−

sq
a†

mq

)}
,

(15)
where amq (a†

mq
) are the annihilation (creation) operators of

phonons in the common vibrational mode mq. This side-
band is resonant with the transition |r〉sq

⊗ |n〉mq
→ |0〉 ⊗sq

|n + 1〉mq
, which increases the phonon number of the cor-

responding vibrational Fock state. To map the relevant

information into the common mode, we set the phase to φ2 =
0, and the pulse area to θ2 = π , such that the pulse duration is

t2 = π

�rsb
2

. (16)

Here, we use the definition of the red-sideband Rabi fre-
quency �rsb

2 = η�c
2, where �c

2 is the carrier Rabi frequency of
this second pulse, η = (h̄kL/2Mmωmq )1/2 is the Lamb-Dicke
parameter defined in terms of the frequency of the mth vibra-
tional mode ωmq , and the mass of the ions Mm determines the
contribution of the ion q to the specific normal mode.

In Fig. 2, the effect of this sideband pulse is depicted by
green lines pointing down, which partially transfer the shaded
blue amplitude of the r level onto the vibrational Fock state.

At this stage, we make use of the ancillary qubits by
mapping the amplitude of the common vibrational Fock state
onto the internal states of the ancilla qubits. For the third
operation in step (vii), O3 = Rrsb

a1,m1
(θ3, φ3) ⊗ Rrsb

a2,m2
(θ3, φ3),

we thus apply another red-sideband pulse to each ancilla qubit

Rrsb
aq,mq

(θ3, φ3) = exp

{
i
θ3

2

(
eiφ3σ+

aq
amq + e−iφ3σ−

aq
a†

mq

)}
.

(17)
In this case, the sideband is in resonance with the transition

|0〉aq
|n + 1〉mq

→ |1〉aq
|n〉mq

, and we set the phase and pulse
area to φ3 = 0 and θ3 = π , respectively. Accordingly, the time
duration is again

t3 = π

�rsb
3

, (18)

where all parameters are defined by analogy with the previous
red-sideband pulse.

Following the scheme of Fig. 2, this operation acts on the
ancillary subspaces depicted by gray circles inside the two
boxes, where the green lines point upwards and denote how
the vibrational Fock excitation is converted into an excitation
of the ancilla qubits.

The final step (viii), which is crucial to engineering the
POVM and the nonunitary filter, consists of a projective mea-
surement on each of the ancilla qubits. This is followed by
postselecting in step (ix) on the outcomes that are consistent
with the state |0〉aq

. Using the projectors

E
σaq

± = (I ± σ z
aq

)
/2, (19)

where σ z
aq

= |0〉〈0|aq − |1〉〈1|aq for q = {1, 2}, the reduced
density matrix for the system is equivalent to a POVM mea-
surement with the four possible outcomes

ρ̃id →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mr,2Mr,1ρ̃idMr,1Mr,2, if ancillas in |0〉a1
⊗ |0〉a2

,

Mr,2Mr,1ρ̃idMr,1Mr,2, if ancillas in |0〉a1
⊗ |1〉a2

,

Mr,2Mr,1ρ̃idMr,1Mr,2, if ancillas in |1〉a1
⊗ |0〉a2

,

Mr,2Mr,1ρ̃idMr,1Mr,2, if ancillas in |1〉a1
⊗ |1〉a2

.

(20)
Here, we have introduced the following operators Mr,1 =
Mr ⊗ I, Mr,2 = I ⊗ Mr , and similarly for Mr,1, Mr,2, where

Mr = 1√
Pr

(√
p̄r 0

0 1

)
, Mr = 1√

Pr

(√
pr 0

0 1

)
, (21)
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FIG. 3. Amplitude-damping reversal by system-ancilla entangling gates. In this scheme, the two blocks that realize the reversal operations
Mr,1, Mr,2 are modified from those in Fig. 2. Here, we perform a sequence of rotations on the ancilla qubits Y (±π/2) = e±iπσ

y
aq /4, and

Z (±π/2) = eiχcσ
z
aq /2, together with an entangling geometric phase gate U ZZ (−χc ) = eiχcσ

z
aq σ z

sq . The specific ordering is depicted in the two
shaded boxes, which also include the ancilla projective measurement and postselection.

and the probability for the outcomes is determined by Pr =
Tr{M†

r,iMr,iρs}, with Pr = 1 − Pr . These POVMs resemble
the Kraus operators for the asymmetric amplitude damping
channel of Eq. (5) are also manifestly asymmetric, since in
the limit pr → 1, the POVM operator Mr maps onto a von
Neumann projection, Mr → |1〉〈1|, which connects the rever-
sal operations with an infinitely sharp, i.e., a strong projective
measurement onto a single qubit state, while for pr → 0 the
POVM operator Mr maps to the identity matrix, which has
no effect on the qubit states. These POVMs thus represent an
asymmetric version of a weak measurement, in contrast to the
symmetric POVMs proposed for QLS in Ref. [84].

It is now a straightforward to see how this asymmetric
POVM can be used to reverse the asymmetric amplitude-
damping channel. By postselecting on those measurement
outcomes consistent with the |0〉aq

state, we are effectively ap-

plying the projection O4 = E
σa1+ E

σa2+ , and thereby introducing
the nonunitary character of the filtering process. The output
density matrix after all these consecutive steps reads

ρf = Mr,2Mr,1ρ̃idMr,1Mr,2, (22)

in accordance with Eq. (6). Note that the reversal parameter
pr can be fully controlled by modifying the timing of the
first carrier pulse (14). If we look at the effect of the original
amplitude-damping channel with Kraus operators (5), it is
clear that the reversal operator Mr in Eq. (21) can invert most
of the effect of the amplitude damping if one controls the time
duration of the carrier pulse such that

pr = p = 1 − e−t/T1 . (23)

Essentially, the nonunitary filter reduces the amplitude of
the |0〉sq

system qubit states to increase the fidelity with the
target entangled state, leading to a single-copy probabilistic
quasidistillation. The practical observation is that the prior
information required for this quasidistillation is no longer
related to the amplitudes of the initial entangled state, as in
the Procrustean method [48,49], but instead depends on the
T1 time of the noise channel (23) and can serve to protect
any maximally entangled pair. Let us also emphasize that
each of the blocks of Fig. 2, which lead to the corresponding

filters Mr,1 and Mr,2 are only composed of LOCC operations.
The two partially entangled qubits s1, s2 can thus be spatially
separated, and these LOCC operators serve to distill a state
with a larger fidelity with the target maximally entangled state,
as will be discussed with specific numerical simulations in the
following section.

B. Scheme B: Asymmetric positive operator-valued measures
via entangling gates

In this section, we introduce a different scheme that still
requires using two ancilla qubits, but no longer relies on mo-
tional Fock states with a single motional excitation. Instead,
it exploits two-qubit gates between system and ancilla qubits,
which are mediated by off-resonant excitations of the common
motional modes in a way that is considerably insensitive to
the thermal populations [96]. The scheme is summarized in
Fig. 3. The full unitary part of the scheme can be described by
the following operator

Uq = ei π
4 σ

y
aq ei χc

2 σ z
aq ei χc

2 σ z
aq σ z

sq e−i π
4 σ

y
aq , (24)

which must be applied to each separate pair sq, aq for
q = {1, 2}. This unitary combines single-qubit rotations on
the ancilla qubits with an entangling geometric phase gate [90]
between the ancilla and the corresponding system qubit. We
have found that in order to implement the asymmetric POVMs
(6), the geometric phase of the later must be

χc = cos−1(
√

1 − pr ), (25)

which is the analog of Eq. (14) in the previous QLS-based
scheme.

Following these operations, as depicted in Fig. 3, the final
step consists of a projective measurement and postselection
on the ancilla qubit in state |0〉aq

as in the previous scheme.
Finally, the output density matrix after these four consecutive
steps can be written as

ρf = Mr,2Mr,1ρ̃idMr,1Mr,2, (26)
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where we have introduced Mr,q = E
σaq

+ Uq/
√

Pr in terms of
the previous ancilla projectors E

σaq

+ , with the corresponding
postselection probabilities Pr = Tr{M†

r,qMr,qρ̃id}.
In the following section, we will show numerically that

this scheme also implements the desired nonunitary filter, and
that it is more robust than the scheme of Sec. III A to thermal
fluctuations of the vibrational mode that is used to mediate the
geometric phase gate.

IV. RESULTS

So far, we have presented the single-copy quasidistillation
protocol and discussed two possible schemes to realize the
protocol in trapped-ion platforms. We have also illustrated
how it can improve the fidelity of a specific mixed state
resulting from amplitude-damping noise (11). As remarked
already, an interesting property of the filtering scheme is that
it can work for any target entangled state. To show that this is
indeed the case, in this section, we present analytical and nu-
merical results showing that both schemes lead to the desired
single-copy quasidistillation, and also address some possible
practical limitations. The criterion to determine the success of
the nonunitary probabilistic filtering to protect any entangled
state against amplitude damping is dictated by the increase of
the average gate fidelity of the noisy implementation of the
unitary Uid.

In Sec. IV A we now present analytical formulas when the
whole filtering protocol is executed under ideal conditions and
numerical results validating the performance of the protocol
as a tool for suppression of errors due to amplitude damping.
In Secs. IV B and IV C we then show numerical results for
more realistic situations that could limit the performance of
the protocol for each scheme.

A. Ideal implementation of the filtering schemes

To compare an ideal unitary operation with its actual im-
plementation due to noise and experimental imperfections,
we use the measure provided by the average gate fidelity [2],
namely,

F̄g(Uid, ε) =
∫

d�0〈�0|U †
idε(ρ̃id )Uid|�0〉. (27)

Here Uid is the target unitary and ε(ρ̃id ) represents the evo-
lution of the system under imperfect implementations of the
unitary. Complete preservation of the quantum information
implies F̄g(Uid, ε) = 1, which corresponds to a perfect imple-
mentation of the unitary with ε = I, i.e., zero noise.

The integral in Eq. (27) must be performed over the Hilbert
space of all possible initial two-qubit states �0. Alternatively,
one can estimate F̄g(Uid, ε) by the entanglement fidelity
[51,61,97], which is defined for a single initial state |φm〉 that
is a maximally entangled state of the system with an auxiliary
quantum system, according to

F̄e(Uid, ε) = 〈φm|Id ⊗ U †
idε(|φm〉〈φm|)Id ⊗ Uid|φm〉. (28)

Here Uid is an N qubit (or qudit) unitary acting on the system
alone. This measure makes use of an initial state |φm〉 =∑d

α=1 |α〉 ⊗ |α〉/√d that is maximally entangled between two
subsystems. In our case these are first the N = 2 data qubits
where the information is encoded, and second an auxiliary

system with two spectator qubits. The dimension of the N-
qubit unitary is then d = 2N = 4. Both the unitary Id ⊗ Uid,
and the noise channel ε(|φm〉〈φm|) = Id ⊗ ε(ρ̃id ), only act on
the data qubits while the spectator qubits remain unaffected.

Remarkably, one can derive a simple formula connect-
ing the entanglement fidelity with the gate fidelity [51,61],
namely,

F̄g(Uid, ε) = dF̄e(Uid, ε) + 1

d + 1
. (29)

Since, F̄g � F̄e [97], the entanglement fidelity represents a
lower bound for the average gate fidelity.

We now derive analytical expressions for the entanglement
fidelity of our protocol in both the absence and presence of
the noise-filtering operations. The unitary gate we consider is
the two-qubit entangling gate Uid = XX ( π

2 ), Eq. (12), and the
noise evolution ε(ρ̃id ) is given in terms of the Kraus operators
for the uncorrelated noise channels of Eqs. (3) and (4). We
choose |α〉 ∈ {|00〉, |01〉, |10〉, |11〉} for the set of operator
basis states. Starting from Eq. (28), the entanglement fidelity
for the unfiltered evolution reduces to

F̄unf
e (Uid, ε) = 1

4d2

∣∣∣∣∣
1∑

i, j=0

Tr
{
Ki,s1 ⊗ Kj,s2

}∣∣∣∣∣
2

, (30)

with d = 4 for N = 2 system qubits, where we have made use
of the analysis in Ref. [98] to write the result in terms of the
Kraus operators.

Including the reversal and filtering operations to distill a
single-copy entangled state, and applying Mr = Mr,1 ⊗ Mr,2

in Eq. (6) via either scheme A (Sec. III A) or scheme B
(Sec. III B), modifies the entanglement fidelity to

F̄ f
e (Uid, ε) = 1

4d2Pr

∣∣∣∣∣
1∑

i, j=0

Tr
{
Mr
(
Ki,s1 ⊗ Kj,s2

)}∣∣∣∣∣
2

. (31)

Here Pr is the probability of success of the reversing operation,
given by Pr = Tr{M†

r Mrε(|φm〉〈φm|)}.
The implementation of Mr and hence the sequence of gates

employed for the realization of the protocol differs between
the QLS-based and entangling-based schemes presented in
Sec. III. In scheme A (Fig. 2), Mr takes the form

MA
r = MA

r,1 ⊗ MA
r,2 = O4O3O2O1, (32)

where the various operations Oi correspond to the set of
unitaries depicted inside the box of Fig. 2, applied to
each of the two parties. In particular, we use the car-
rier pulses O1 = Rc

s1
(θ1, φ1) ⊗ Rc

s2
(θ1, φ1) in Eq. (13), the

sidebands O2 = Rrsb
s1,m1

(θ2, φ2) ⊗ Rrsb
s2,m2

(θ2, φ2) in Eq. (15),
and O3 = Rrsb

a1,m1
(θ3, φ3) ⊗ Rrsb

a2,m2
(θ3, φ3) in Eq. (17). Finally,

O4 = E
σa1+ E

σa2+ are the projectors E
σaq

± = (I ± σ z
aq

)/2 onto the
|0〉aq

states for both ancilla qubits a1 and a2, that are used for
postselection.

For scheme B (Fig. 3), the reversal operation is instead
implemented by the sequence of unitaries

MB
r = MB

r,1 ⊗ MB
r,2 = U1 ⊗ U2, (33)

where U1 and U2 are described by the sequence of single and
two-qubit gates given in Eq. (24), which involve the ancilla-
system qubit pairs, {a1, s1} and {a2, s2}, respectively.
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FIG. 4. Average gate fidelities and success probability for ideal
case implementation of error reversal schemes A and B. Plotted lines
correspond to the analytical formulas from Sec. IV A as specified
below. Solid circles and cross symbols represent the results of the nu-
merical simulations of the process following scheme A and scheme
B, respectively. The black font y axis on the left represents the filtered
average gate fidelity and the blue y axis on the right represents the
success probability Pr . The x axis represents time in units of the
amplitude damping decay time T1. T1 = 0.8 s for the results shown
here. The black (upper) solid line is the expression for the analytical
average gate fidelity F̄ f

g (35) when the filtering protocol is imple-
mented after the unitary. Scattered green dots (lime crosses) on top of
the upper line represent the numerical simulations of the average gate
fidelities for scheme A (B), F̄ f,A

g (F̄ f,B
g ). The dashed black (middle)

line is the unfiltered average gate fidelity F̄ unf
g (34). Scattered maroon

dots (red crosses) on top of the middle line are the simulations of the
unfiltered average gate fidelity for scheme A (B), F̄ unf,A

g (F̄ unf,B
g ). The

blue (bottom) solid line is the success probability of the process given
by Pr = Tr{M†

r Mrε(|φm〉〈φm|)}. Scattered blue dots (cyan crosses) on
top of the bottom line are the simulations of the unfiltered average
gate fidelity for scheme A (B), Pr,A (Pr,B). The measurement reversal
operation, Mr , takes the form of Eqs. (32) and (33), for schemes A
and B, respectively.

For the ideal case scenario where the gates have no errors
and one assumes an initial motional ground state, numeri-
cal simulation of the performance of both nonunitary filters
against amplitude damping errors leads to the same result,
namely MA

r, j = MB
r, j = Mr, j in Eq. (6). This is confirmed

by numerical simulations of the protocol of scheme A and
scheme B using a full-density matrix formalism. Therefore,
in the ideal case, both schemes yield the same entanglement
fidelity, F̄ f

e = F̄ f,A
e = F̄ f,B

e , as is also evident from Eq. (30).
Using Eq. (29) then implies identical average gate fidelities,
which is verified in the numerical results plotted in Fig. 4.
However, we expect that in more realistic situations, e.g.,
when thermal fluctuations are present, this will not necessarily
be the case. This will be investigated in Secs. IV B and IV C
where we show the effect of nonzero vibrational excitation
in the initial state, n̄ > 0, when implementing MA

r, j and MB
r, j ,

respectively.
Before turning to such discussion of imperfections, we

continue here with the ideal case, considering the special
case of equal amplitude-decay probabilities on both ions,
p1 = p2 = p. In this case we can find an analytical expression
for the unfiltered average gate fidelity independently of the

scheme, which is given by

F̄unf
g = 1

5

(
1 + (1 + √

p̄)4

4

)
, (34)

and clearly depends only on the error probability. The analo-
gous quantity for the filtered case with identical strength of the
reversal operations on both ions set equal to the probability of
decay, i.e., pr = p is given by

F̄ f
g =1

5

(
1 + 16p̄2

4Pr

)
= 1

5

(
1 + 16

(2 + p)2

)
. (35)

Here the expression for the success probability that appears
in the denominator is Pr = p̄2(2 + p)2/4.

Figure 4 shows plots of the analytic expressions for gate
fidelity in the ideal case, together with the corresponding
numerical simulations as a function of the gate time, where
this is measured in units of t/T1. The dashed black (middle)
line represents the analytic unfiltered average gate fidelity
[Eq. (34)], while the black solid (upper) line is the analytical
average gate fidelity when the filtering is applied. The fidelity
under filtering always lies above the unfiltered case, and thus
shows the benefits of the weak measurement reversal. The
dot and cross markers represent the results for the numerical
simulations according to scheme A (QSL-based) and scheme
B (entangling based), respectively.

As mentioned in Sec. I, where we discussed an example
of quasidistillation into the Bell pair |�−〉, the advantage of
the proposed scheme is more significant at longer times. It is
interesting to note that in the limit of large t , the unfiltered
average gate fidelity drops below 1/2 and reaches the limit of
F̄unf

g = 0.25, while the filtered gate fidelity never drops below
the value F̄ f

g = 0.55. Note that, for any biseparable state,
the fidelity F � 1/2 whereas the fidelity is always greater
than one-half, F > 1/2, for entangled states [99,100]. Thus,
by applying the filtering operation, we can ensure that the
system qubits remain in an entangled state. This can be easily
characterized in current experiments using stabilizer-based
witnesses [101–103] without the need to measure the full
density matrix [2]. Despite these positive features, however,
the probability does always decrease with time, as depicted
by the blue solid (bottom) line in Fig. 4. So for large t , it is
unlikely that one can reverse the amplitude decay and recover
the maximally entangled states.

B. Limitation on scheme A: Warm vibrational modes

The QLS-based protocol, scheme A, was discussed above
in the limit of zero occupation number for both vibrational
modes. However, in current experimental architectures, one
commonly has n̄ > 0 and the motional modes should then
be described by the tensor product ρ th

{mq} = ρ th
m1

⊗ ρ th
m2

of two
Gibbs states of the form

ρ th
mq

=
∞∑

nmq =0

pmq

(
nmq

)∣∣nmq

〉〈
nmq

∣∣, (36)

where the probability pmq (nmq ) is given by the thermal mode
distribution

pmq

(
nmq

) = 1

1 + n̄mq

(
n̄mq

1 + n̄mq

)nmq

. (37)
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FIG. 5. Average gate fidelities and success probability for
scheme A with n̄ > 0. Numerical simulations of scheme A for two
motional modes with average phonon number n̄m = n̄m1 = n̄m2 > 0.
Instead of starting with two Fock states with n̄ = 0 as in the ideal
case, we initialize the motional modes using two Gibbs states (36)
with three different values of finite average phonon number: (a)
n̄m = 0.05, (b) n̄m = 0.09, and (c) n̄m = 0.125. The black font y axis
on the left represents the average gate fidelity and the blue y axis on
the right represents the success probability Pr . The x axis represents
time in units of the amplitude damping time T1. T1 = 0.8 s for the
results shown here. The black solid (top) lines represent the analytic
and ideal-case average gate fidelities when the filtering protocol is
implemented after the unitary, i.e., F̄ f

g . The dashed black (middle)
lines are the analytical and ideal-case unfiltered average gate un-
filtered fidelities, and the blue solid (bottom) lines are the result
of the success probabilities of the process simulated for different
occupation numbers. The scattered green (“filtered”), maroon (“un-
filtered”), and blue (“probability”) dots represent the numerically
simulated results under nonideal conditions for the filtered average
gate fidelity F̄ f

g , the unfiltered average gate fidelity F̄ unf
g , and the

success probability Pr , respectively.

Here n̄mq = 1/(ekBTmq /h̄ωmq − 1) is the Bose-Einstein distribu-
tion, ωmq is the frequency of the mq mode, and Tmq is an
effective temperature for the mode. The resulting thermal
fluctuations in the initial state will introduce errors in the
system-ancilla mapping, and hence in the subsequent post-
selected measurements on the ancillas, leading to imperfect
filtering. To characterize these deviations, we numerically
simulate the same sequence of unitaries discussed for the ideal
case, with the vacuum motional state replaced by the thermal
state (36).

Figure 5 shows how both the fidelity after the proba-
bilistic filtering, F̄ f

g (green dotted “filtered” line), and the
success probability Pr (blue dotted “probability” line) de-
crease as the mean number of vibrational excitations n̄
grows. Figures 5(a)–5(c), show the results obtained assuming
that the two vibrational modes exploited for QLS of each
system-ancilla ions have been sideband-cooled to the same
temperature, with different mean numbers of phonons n̄ =
0.05, n̄ = 0.09, and n̄ = 0.125, respectively. Comparing with
the results for the ideal case n̄ = 0 (black-solid lines), we
see how the filtered average gate fidelity F̄ f

g (scattered green
dots) degrades significantly for even a small increase in the
initial vibrational excitation number n̄0. It is interesting to
note that, when the amplitude decay is not too large, with this
imperfection the gate fidelity after noise filtering (green “fil-
tered” dotted line) can actually be worse than for the unfiltered
case (dashed black-lines and maroon “unfiltered” dots). This
is visible already for n̄ > 0.05, where the filtering method is
seen to provide no advantage for times t/T1 < 1/2—here the
unfiltered average gate fidelity (dashed black-lines and ma-
roon “unfiltered” dots) lies above the filtered one. This effect
becomes larger as the mean number of phonons n̄ increases.
For n̄ > 0.125, the filtering barely adds any advantage, and it
even drops below 1/2 when t → T1. The success probabili-
ties (blue dotted “probability” line) also drop with increasing
average phonon number, such that one would get a reduced
number of postselected events. These results clearly show how
sensitive the QLS-based scheme A is to thermal motion. For
this reason it is imperative to have an alternative method such
as the entanglement-based scheme B. In the next section we
discuss the performance of scheme B in the presence of its
most serious source of imperfections.

C. Limitation on entanglement based scheme B: Warm active
and spectator modes along the trap axis

As already mentioned previously, scheme B does not rely
on motional Fock states having a single motional excitation
like scheme A. Instead, scheme B exploits the two-qubit gates
U ZZ (−χc) = eiχcσ

z
aq σ z

sq between system and ancilla qubits, that
is significantly less sensitive to the thermal populations. The
U ZZ (−χc) gates implemented in the scheme are robust with
respect to thermal occupation of the active vibrational modes
in the ideal scenario described in Sec. III B. This ideal sce-
nario is the one in which the laser beams are perfectly aligned
along one out of the three branches of phonons (one branch
per trap symmetry axis α = x, y, z). With N ions, we have N
normal modes of oscillation per branch, each with an asso-
ciated normal-mode frequency ωα,mq and mq ∈ 1, . . . N . We
choose a particular axis of vibrational motion α, and mode mq

to implement the entangling gates. This is the active mode,
while the rest of the (N − 1) modes on that axis are considered
as spectator modes. In the ideal scenario, it is assumed that
the residual qubit-phonon coupling with the modes that do
not participate in the state-dependent force can be neglected.
There are, however, corrections of a higher order in the Lamb-
Dicke parameter, ηmq , which are not far off-resonant and must
be considered as a possible source of errors. Here, we study
how such coupling of the warm active and spectator modes
along the trap axis to the active entangling mode affect the
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performance of scheme B. The geometric phase χc of the
entangling gates between ancilla and system qubits relates
to the spin-spin coupling strength Jaq,sq and the gate time tg
according to Jaq,sq tg = −χc, with [104]

Uaq,sq (tg) = e−iJaq ,sq tgσ z
aq σ z

sq = eiχcσ
z
aq σ z

sq , (38)

where χc = cos−1(
√

1 − pr ). In the presence of warm modes,
the coupling strength takes the form

Jaq,sq = −
N∑
mq

2

δmq

∣∣�̃L,aq

∣∣∣∣�̃L,sq

∣∣
4

η2
mq

Maq,mq Msq,mq

×
(

1 − η2
mq

a†
mq

amq −
∑

m′
q =mq

η2
m′

q
a†

m′
q
am′

q

)
cos
(
φ◦

aq,sq

)
,

(39)

where �̃L,i = �Le− 1
2

∑
mq (ηmqMi,mq )2

includes the crossed-
beam AC-Stark shifts of the transition �L, multiplied by the
Debye-Waller factor [105,106], which accounts for a renor-
malization due to the zero-point fluctuations of the ions. Here
Mi,mq are the normal-mode displacements of ion i along a
given axis direction for the mqth mode [107], δmq are the
detunings of the laser frequency from the different mode fre-
quencies, amq (a′

mq
) is the annihilation operator for the active

(spectator) modes and a†
mq

(a′†
mq

) are the annihilation operators
of the active (spectator) phonons in the common vibrational
mode nmq , and ηmq is the Lamb-Dicke parameter.

This analysis shows that thermal fluctuations on the vibra-
tional modes will lead to deviations from the target condition
Jaq,sq tg = −χc. Equation (39) predicts the leading error due to
thermal phonons on the active mode to be η2

mq
a†

mq
amq which

is O({η2
mq

}), and the leading error due to N − 1 warm spec-

tator modes along the same axis α to be
∑

m′
q =mq

η2
m′

q
a†

m′
q
am′

q

which is similarly O({η2
m′

q
}). These two corrections will add

fluctuations to the phase of the entangling gate. However,
the geometric phase closure conditions are not modified by
thermal fluctuations. The form of the phase-space distribution
may change, but the phase-space trajectory still closes after
the same time tg = 2πr/δmq , where r is the number of loops in
phase space. If we fix the laser intensities such that, after this
time, the area acquired in phase space leads to the desired χc,
we can estimate how scheme B gets affected by the average
number of phonons using the relation

−Ji, j
({

n̄mq

})
tg = χc = cos−1(

√
1 − pr )O

({
n̄mq

})
, (40)

where the leading corrections O({n̄mq}) due to warm phonons
on the trap axis direction are given by

O
({

n̄mq

}) = 1 − η2
m1

[
n̄m1 +

(
ωm1

ωm2

)
n̄m2

+
(

ωm1

ωm3

)
n̄m3 +

(
ωm1

ωm4

)
n̄m4

]
. (41)

Here n̄mq represent the average number of phonons on each
mode. This expression is specific to the N = 4 ion-chain de-
picted in Fig. 3. For a given axis α, we choose the active mode
to be the center-of-mass (COM) mode and set the frequency

FIG. 6. Effect of warm active phonons along the trap axis for
scheme B. Numerical results for simulation of scheme B following
the sequence from Fig. (3) with χc = cos−1(

√
1 − pr )O({n̄}) as the

strength of the measurement reversal, and O({n̄}) (41) the leading
corrections due to the warm phonons. The y axes represent the
average phonon number for each of the four modes which we set
to be equal n̄ = nm1 = nm2 = nm3 = nm4 while the x axis represents
the time in units of the amplitude damping time T1. For the results
shown in here we considered T1 = 0.8 s. The colormap sidebar on
the top panel represent the filtered or distilled average gate fidelity
for different n̄ and t/T1 units of time. The colormap on the bottom
panel does the same but for the probability of success.

of this as ωm1 = ωCOM. According to Ref. [108], the frequen-
cies for the remaining N − 1 axial modes in an N = 4 chain
are ωm2 = √

3ωm1 , ωm3 = √
5.81ωm1 , and ωm4 = √

9.308ωm1 .
Figure 6 shows the result of a numerical simulation of the re-
versal operation Mr = MB

r using the strength from Eq. (40) for
a linear chain with N = 4 ions of the same species confined
in a Paul trap having an axial COM frequency of ωCOM =
2π × 1.4 MHz and a Lamb-Dicke parameter of η1 ≡ ηCOM =
0.026. In the presence of warm axial phonons the measure-
ment reversal operation MB

r in scheme B can be written in the
general form as

MB
r = 1√

Pr

⎛
⎜⎜⎜⎜⎝

cos2(χc) 0 0 0

0 cos(χc) 0 0

0 0 cos(χc) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (42)
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where the geometric phase χc, Eq. (25), is now corrected
by the term O({n̄mq}) [see Eqs. (40) and (41)]. Pr is the
probability of success of the reversing operation, which is
given by

Pr = 1
4 [cos4(χc)(p + 1)2 + 2 cos2(χc) p̄(1 + p̄) + p̄2]. (43)

In the case where all axial modes are in the ground
state n̄ = 0, O({n̄mq}) = 1, we recover the ideal case for
which χc(t/T1, n̄ = 0) = cos−1(

√
1 − pr ) (25). For the limit-

ing cases t/T1 = 0 and t/T1 = 1, the geometric phase takes
the values χc(0, n̄ = 0) = 0 and χc(1, n̄ = 0) = 1.005, re-
spectively, yielding Pr (χc = 0) = 1 and Pr (χc = 1.005) =
0.151. Hence, for a fixed value of pr = p, the success proba-
bility Pr in Eq. (43), would be higher for smaller values of χc.
Now, in the presence of warm phonons n̄ > 0, O({n̄mq}) < 1.
Since η2

m1
� 1, the term O({n̄mq}) is closer to unity when n̄ is

small, while it is increasingly far from one as n̄ increases. Be-
cause of the definition of χc in (40), when t > 0, for the same
value of pr = p, the geometric phase becomes smaller in the
presence of warmer phonons, i.e., χc(n̄ > 0) < χc(n̄ = 0). All
terms with cos will then be closer to one for χc(n̄ > 0) values,
and consequently, the success probability gets higher in the
presence of warm phonons Pr (χc(n̄ > 0)) > Pr (χc(n̄ = 0)).
This behavior can be observed in the bottom panel of Fig. 6,
where the contour plot shows that the average success proba-
bility increases with n̄. Regarding the average gate fidelity, in
the presence of warm phonons, this can be written as

F̄ f
g =1

5

(
1 + | cos2(χc) + 2 cos(χc)

√
p̄ + p̄2|2

4Pr

)
(44)

Similarly to the success probability in (43), the numerator
in the second term of the right-hand side of Eq. (44) will
become greater with increasing values of n̄ since χc(n̄ > 0) <

χc(n̄ = 0). However, since the factor Pr in the denominator
also increases with n̄, the effect of warm phonons on the av-
erage gate fidelity is not as clear as in the success probability
case. The behavior of both, fidelity and success probability in
the presence of warm phonons is summarized in the top and
bottom panel of Fig. 6, respectively. The top panel presents
a contour plot for the simulated filtered gate fidelity F̄ f

g as
a function of the amplitude decay time T1 and the average
number of phonons n̄, where we considered the four modes to
have the same occupation phonon number n̄ = nm1 = nm2 =
nm3 = nm4 . We see that for times t/T1 < 1/2, the effect of
higher phonon numbers n̄ barely affects the filtered gate fi-
delity; all contour plot lines appear nearly vertical. In this
situation, the reversal operations following the implementa-
tion of scheme B are quite robust against thermal motion. On
the other hand, for longer decay times t → T1, the filtered
fidelity worsens slightly as one increases the average phonon
number n̄. Nevertheless, this scheme is considerably more
robust than scheme A. It is also noteworthy to discuss the
effect of increasing n̄ on the success probability Pr in the
bottom panel of Fig. 6. In this case, the chance of a correct
reversal increases with larger values n̄. The effect is most sig-
nificant for larger t/T1 but is still appreciable for shorter times
(t/T1 < 1/2). We conclude that the presence of warm active
and spectator phonons on the trap axis direction could limit
the distillation capabilities of scheme B when t → T1, but it

has almost no effect at shorter times (t/T1 < 1/2), even for
n̄ > 50. It is also interesting to note that in the case considered
here with η1 = 0.026, the error contribution due to thermal
modes in Eq. (41) is smaller than that resulting from larger
values of the Lamb-Dicke parameter [109]. However, even in
the presence of larger Lamb-Dicke parameters, the impact on
the performance of scheme B would not be qualitatively much
different. It would mainly be noticeable in the y-axis scale of
Fig. 6, where the average phonon number n̄ would take lower
values.

In the presence of warm phonons, for a small probability
of amplitude decay p, corresponding to large T1, Eq. (1), the
average gate fidelity is affected to a lesser extent than the
success fidelity (compare the leftmost side of both panels in
Fig. 6). This means that for small p, it is possible that working
with a finite temperature of phonons in the ion chain becomes
advantageous for scheme B, by increasing the chances of
applying the filtering protocol successfully with little effect
on the average gate fidelity.

V. CONCLUSIONS AND OUTLOOK

We have presented a method to perform probabilistic sup-
pression of amplitude damping to protect any maximally
entangled pair of trapped ion qubits from spontaneous photon
scattering taking place during or after two-qubit entangling
gates. The proposed method can be understood as a nonuni-
tary filter that allows for single-copy quasidistillation. It can
be applied to situations where the physical qubits are dis-
tant and where performing the conventional stabilizer readout
of encoded quantum states is not straightforward. We have
shown that such a filter can be obtained by postselecting on
a weak measurement implemented via ancillary ions. The
filter can be realized by either a QLS-based scheme or an
entangling-gate scheme. In both cases, the nonunitary filter
helps to reduce the overhead in the number of physical and an-
cillary qubits that is typically found in even the smallest QEC
codes [40,41]. It can therefore be visualized as an alternative
protection method that complements other error suppression
approaches such as dynamical decoupling or encoding into
decoherence-free subspaces. The method is clearly useful for
platforms that focus on a small number of trapped ions such as
clocks, sensors or quantum repeaters. We have also analyzed
the role of thermal fluctuations on the amplitude damping re-
versal, which generate a possible source of noise. We showed
that such fluctuations can constitute a limiting factor in the
QLS scheme, while the entangling gate scheme is not only less
sensitive to thermal fluctuations but may benefit from these
at longer operation times. Other possible limitations to long
storage times of trapped ions may stem from decay of the
auxiliary metastable excited |r〉 state in the lambda configu-
ration used in scheme A for the realization of the quantum
measurement reversal POVM, and from the choice of ancilla
qubits. These issues can be overcome by choosing |r〉 states
with larger relaxation times and using ancillas from a different
isotope or atomic species. Another limitation may be imposed
by the heating rate of the vibrational modes, especially for the
QLS-based method that requires the qubits to remain in the
ground-state of motion throughout the protocol. Future studies
directed towards laboratory implementation of the protocol
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should consider these additional error sources, as well as the
effects of control imperfections in the various pulses. Another
interesting application of the present amplitude damping re-
versal achieved by the nonunitary filter could be the detection
of qubit leakage.
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