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Thermal entanglement and quantum coherence of a single electron
in a double quantum dot with Rashba interaction
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In this work, we study the thermal quantum coherence and fidelity in a two-level system with spin-orbit
coupling. The proposed model involves a single electron in a double quantum dot with Rashba spin-orbit
coupling in the presence of an external magnetic field. In our scenario, the thermal entanglement of the single
electron is driven by the charge and spin qubits, the latter controlled by Rashba coupling. Analytical expressions
are obtained for thermal concurrence and correlated coherence using the density matrix formalism. The main
goal of this work is to provide a good understanding of the effects of temperature and several parameters in
quantum coherence. In addition, our findings show that we can use the Rashba coupling to tune the thermal
entanglement, quantum coherence, and the thermal fidelity behavior of the system. Moreover, we focus on the
role played by thermal entanglement and correlated coherence responsible for quantum correlations. We observe
that the correlated coherence is more robust than the thermal entanglement in all cases, so quantum algorithms
based only on correlated coherence may be stronger than those based on entanglement.
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I. INTRODUCTION

Quantum resource theories have been identified as an im-
portant field of research over the past few years [1,2]. In
particular, quantum coherence and quantum entanglement
represent two fundamental features of nonclassical systems
that can each be characterized within an operational resource
theory for quantum technological applications in the context
of quantum information process [3–5] and emerging fields
such as quantum metrology [6,7], quantum thermodynam-
ics [8,9], and quantum biology [10]. Furthermore, over the
past decade, the manipulation and generation of quantum
correlations has been widely investigated on various quan-
tum systems such as Heisenberg models [11–14], trapped
ions [15], cavity quantum electrodynamics [16,17], and so on.

One of the most promising physical systems for imple-
menting quantum technologies, particularly quantum com-
puting, is solid-state quantum dots (QDs) [18,19]. There are
proposals for QDs devices using either charge- [20] or spin-
like [21–23] qubits, or even both simultaneously [24,25].
These quantum systems are of great interest because of
their easy integration with existing electronics and scalabil-
ity advantage [26,27]. Moreover, in Refs. [28,29], quantum
dynamics and the entanglement of two electrons inside
the coupled double quantum dots were addressed, while in
Refs. [30–33] aspects related to the quantum correlations
and the decoherence were investigated. Furthermore, several
other properties have been investigated: quantum teleportation
based on the double quantum dots [34], quantum noise due to
phonons inducing steady state in a double quantum dot charge
qubit [35], multielectron quantum dots [36], and thermal
quantum correlations in two coupled double semiconductor
charge qubits [37]. More recently, a conceptual design of
quantum heat machines has been developed using two coupled
double quantum-dot systems as a working substance [38].

In recent years, the spin-orbit interaction (SOI) in quan-
tum dots has attracted much attention both theoretically and
experimentally due to its potential roles in the quantum co-
herent manipulation of spin qubits and spintronics [39,40].
There are two different types of SOI in a semiconduc-
tor material, i.e., the Rashba SOI using structural inversion
asymmetry [41] and Dresselhauss SOI using bulk inversion
asymmetry [42].

Interest in the SOI process has been increased in recent
years as a set of potential applications of the SOI process
was recently reported. For example, the spin-orbit-coupled
quantum memory of a double quantum dot was investigated in
Ref. [43]. Recently, Li et al. reported the influence of Rashba
coupling in qubit gates with simultaneous transport in double
quantum dots [44], and the transport of the spin shuttling
between neighboring QDs is affected by the spin-orbit inter-
action [45].

On the other hand, quantum coherence arising from quan-
tum superposition is a fundamental feature of quantum
mechanics, and it has been widely recognized as the essence
of bipartite and multipartite quantum correlations. The frame-
work for quantifying coherence is based on taking into
account an incoherent basis and defining an incoherent state
as one which is diagonal on that basis. Several measurements
have been proposed, and their properties have been investi-
gated in detail over the years (see Refs. [46–48], for instance).
More recently, a measure called correlated coherence [49,50]
has been introduced to investigate the relationship between
quantum coherence and quantum correlations. Quantum cor-
related coherence is a measure of coherence with removed
local parts; that is, all system coherence is stored entirely in
quantum correlations.

The aim of this work is to address fundamental problems
in quantum physics. Specifically, we are investigating the role
of thermal entanglement and quantum correlated coherence in
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FIG. 1. Schematic representation of the double quantum dot; the
physical model includes the Rashba interaction α. The spin of an
electron is represented by the small sphere delocalized between two
quantum dots.

a single electron spin in a double quantum dot in the presence
of an external magnetic field. This electron contributes to
tunneling, coupling the QDs, and spin-flip tunneling caused
by a Rashba spin-orbit coupling. We assume that the system
is isolated from its respective electronic reservoirs, which
remain in the strong Coulomb blockade regime, where one
electron is permitted in a double quantum dot. We obtained
analytical solutions, which allowed us to explore in detail
the concurrence at zero temperature as well as the perfor-
mance of the thermal entanglement; it is also possible to
study the thermal evolution of the populations and thermal
fidelity of the model. We also derived an analytical expres-
sion for the quantum correlated coherence and the differences
between concurrence and quantum correlated coherence are
investigated. In addition, thermal entanglement is compared
with quantum correlated coherence. Last but not least, the
framework provided by correlated coherence allows us to
retrieve the same concepts of quantum discord and quantum
entanglement, providing a unified view of these correlations,
where quantum discord is a measure of the quantum cor-
relations going beyond entanglement [51,52]. Note that, for
a multipartite system, if the coherence of the global state
is a resource that cannot be increased, the cost of creat-
ing discord can be expressed in terms of coherence [53,54].
In this paper, we study these quantifiers in a thermal
bath.

The outline of this paper is as follows. Section II defines the
physical model and the method to treat it. Section III briefly
describes the definition of the concurrence (C) and the cor-
related coherence (Ccc). Thus, the analytical expressions for
them are found. In Sec. IV, we discuss some of the most inter-
esting results like entanglement, populations, and correlated
coherence taking into account the temperature effects, Rashba
coupling, and the tunneling parameter. Finally, in Sec. V, we
present our conclusions.

II. THE MODEL

We use a silicon device that consists of a double quantum
dot, filled with a single electron and two charge configura-
tions, with the electron located either on the left (L) or right
(R) dot corresponding to position states labeled by |L〉 and |R〉
respectively, which is depicted in Fig. 1. The Hamiltonian of
the double quantum dot [44] is given by

H = �

2
(I ⊗ σz ) + t (τx ⊗ I) − α(τy ⊗ σx ), (1)

where τx,y are the Pauli matrices in the {|L〉, |R〉} basis, σx,z are
the Pauli matrices describing the single electronic spin states
{|0〉, |1〉}, and I is the 2×2 identity matrix. Here � is the
Zeeman splitting generated by a constant external magnetic
field along the z axis, t is the strength of the tunneling coupling
between the two quantum dots, while the α is the spin-flip
tunnel coupling due to the Rashba SOI [41] contribution.

The four eigenvectors of Hamiltonian (1) in the natural
basis {|L0〉, |L1〉, |R0〉, |R1〉} are

|ϕ1〉 = A+[ia+(|L0〉 + |R0〉) − |L1〉 + |R1〉],
|ϕ2〉 = A−[ia−(|L0〉 + |R0〉) − |L1〉 + |R1〉],
|ϕ3〉 = B+[ib+(|L0〉 − |R0〉) + |L1〉 + |R1〉],
|ϕ4〉 = B−[ib−(|L0〉 − |R0〉) + |L1〉 + |R1〉], (2)

where A± = 1√
2
√

a2±+1
, a± = �+±

√
�2++4α2

2α
, B± = 1√

2
√

b2±+1
,

b± = �−±
√

�2−+4α2

2α
, �± = � ± 2t , and the corresponding

eigenvalues are

ε1,2 = ± 1
2

√
�2+ + 4α2, (3)

ε3,4 = ± 1
2

√
�2− + 4α2. (4)

The system state in the thermal equilibrium is described
by ρ(T ) = exp(−βH )

Z , where β = 1/kBT , where kB is the
Boltzmann’s constant, T is the absolute temperature, and
the partition function of the system is defined by Z =
Tr[exp(−βH )].

A. Density operator

At thermal equilibrium, the double quantum dot density
operator ρ is described as

ρAB(T ) =

⎡⎢⎢⎢⎣
ρ11 ρ12 ρ13 ρ14

ρ∗
12 ρ22 ρ14 ρ24

ρ13 ρ∗
14 ρ11 −ρ12

ρ∗
14 ρ24 −ρ∗

12 ρ22

⎤⎥⎥⎥⎦. (5)

The elements of this density matrix, after cumbersome alge-
braic manipulation, are given by

ρ11 = A2
+a2

+e−βε1 + A2
−a2

−e−βε2 + B2
+b2

+e−βε3 + B2
−b2

−e−βε4

Z
,

ρ12 = i[−A2
+a+e−βε1 − A2

−a−e−βε2 + B2
+b+e−βε3 + B2

−b−e−βε4 ]

Z
,
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ρ13 = A2
+a2

+e−βε1 + A2
−a2

−e−βε2 − B2
+b2

+e−βε3 − B2
−b2

−e−βε4

Z
,

ρ14 = i[A2
+a+e−βε1 + A2

−a−e−βε2 + B2
+b+e−βε3 + B2

−b−e−βε4 ]

Z
,

ρ22 = A2
+e−βε1 + A2

−e−βε2 + B2
+e−βε3 + B2

−e−βε4

Z
,

ρ24 = −A2
+e−βε1 − A2

−e−βε2 + B2
+e−βε3 + B2

−e−βε4

Z
,

where Z = ∑
ie

−βεi .

Since ρAB(T ) represents a thermal state in equilibrium, the
corresponding entanglement is then called thermal entangle-
ment. In this paper, we consider a single electron spin in a
double quantum dot with Rashba interaction. We found that
the charge qubit controlled by the interdot tunneling and the
spin qubit driven by the Rashba interaction are responsible for
the thermal entanglement of the model.

III. QUANTUM CORRELATIONS

In this section, we give a brief review concerning the defini-
tion and properties of the thermal entanglement and quantum
coherence.

A. Thermal entanglement

In order to quantify the amount of entanglement associated
with a given two-qubit state ρ, we consider concurrence C
defined by Wootters [55,56]

C = max

{
0, 2max(

√
λi ) −

∑
i

√
λi

}
, (6)

where λi (i = 1, 2, 3, 4) are the eigenvalues in descending
order of the matrix

R = ρ(σ y ⊗ σ y)ρ∗(σ y ⊗ σ y), (7)

with σ y being the Pauli matrix. After straightforward calcula-
tions, the eigenvalues of the matrix R can be expressed as

λ1 = � + G +
√

+�+,

λ2 = � + G −
√

+�+,

λ3 = � − G +
√

−�−,

λ4 = � − G −
√

−�−, (8)

where

G = −2ρ14ρ12 + ρ11ρ24 − ρ13ρ22,

� = ρ11ρ22 − ρ13ρ24 + |ρ14|2 + |ρ12|2,
± = 2(ρ12 ± ρ14)(ρ22 ± ρ24),

�± = 2(ρ13 ∓ ρ11)(ρ14 ± ρ12).

Thus, the concurrence of this system can be written as [57]

C = max{0, |
√

λ1 −
√

λ3 | −
√

λ2 −
√

λ4}, (9)

In this case, the analytical expression for the thermal concur-
rence is too large to be explicitly provided here, but it easy to
recover following the above steps.

B. Correlated coherence

Quantum coherence is an important feature in quantum
physics and is of practical significance in quantum informa-
tion processing task. Quantum coherence in a bipartite system
can be contained both locally and in the correlations among
the subsystems. The difference between the amount of coher-
ence contained in the global state and the coherences that are
purely local, is called correlated coherence, Ccc [49]. For a
bipartite quantum system, it becomes

Ccc(ρAB) = Cl1 (ρAB) − Cl1 (ρA) − Cl1 (ρB), (10)

where ρA = TrB(ρAB) and ρB = TrA(ρAB). Here, A and B stand
for local subsystems.

In accordance with the set of properties that any appro-
priate measure of coherence should satisfy [46], a number
of coherence measures have been put forward. Here we are
concerned with the l1 norm; it is a bona fide measure of
coherence. The definition of the l1 norm of coherence Cl1 is

Cl1 (ρ) =
∑
i �= j

|〈i|ρ| j〉|. (11)

Quantum coherence is a basis-dependent concept, but we
can choose an incoherent one for the local coherence, which
will allow us to diagonalize ρA and ρB. From Eq. (5), the
reduced density matrix ρA(T ) will be given by

ρA(T ) =
(

ρ11 + ρ22 ρ13 + ρ24

ρ13 + ρ24 ρ11 + ρ22

)
. (12)

In a similar way, we obtain

ρB(T ) =
(

2ρ11 0
0 2ρ22

)
. (13)

In order to analyze the correlated coherence, we perform a
unitary transformation in the reduced density matrix ρA(T ).
Thus, the unitary matrix results in

U =
(

cos θ −eiϕ sin θ

e−iϕ sin θ cos θ

)
. (14)

So, let us have ρ̃A(T ) = U ρA(T )U †. For ρB(T ), it is not
necessary to perform any transformation; the operator ρB(T )
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is already incoherent. On the other hand, the unitary trans-
formation of the bipartite quantum state ρAB(T ) is given by
ρ̃AB(T ) = Ũ ρAB(T ) Ũ †, where Ũ = U ⊗ I.

The unitary transformation will show the relationship be-
tween the global coherence and the local coherence for several
choices of θ and ϕ parameters. In particular, by setting (θ =
π
4 , ϕ = 0) in Eq. (14), we obtain a matrix that diagonalize
ρA(T ). This step provide us the basis set, where A is locally
incoherent. Thus, by inserting Eq. (14) into Eq. (10), fixing
θ = π

4 and ϕ = 0, we obtain an explicit expression for corre-
lated coherence, that is,

Ccc(ρAB(T )) = |ρ14 + ρ12| + |ρ14 + ρ∗
12| + |ρ12 − ρ14|

+ |ρ∗
12 − ρ14|. (15)

C. Fidelity of thermal state

The mixed-state fidelity can be defined as [58,59]

F (ρ1, ρ2) = Tr
√

ρ
1/2
2 ρ1ρ

1/2
2 . (16)

This quantity measures the degree of distinguishability be-
tween the two quantum states ρ1 and ρ2. Conversely, the
quantum fidelity between the input pure state and the output
mixed state is defined by

F = 〈ψ |ρ|ψ〉, (17)

where |ψ〉 is the pure state and ρ is the density operator state.
This measurement provides the information of the overlap
between the pure state |ψ〉 and the mixed state ρ. In the our
case, we will study the thermal fidelity between the ground
state |ϕ2〉 and the state of the system at temperature T . After
some algebra, one finds

F (T ) = [a2
+(ρ11 + ρ13) + (ρ22 − ρ24) + 2ia+(ρ12 − ρ14]

[a2+ + 1]
.

(18)
Although this work is theoretical, a possible implementation
of the device of a single electron in a double quantum dot
with Rashba interaction is to consider the introduction of
micromagnets in the device for spin-orbit interaction (SOI);
see Refs. [60,61]. The units for parameters �, t and α are
µeV, as indicated in Refs. [19,28].

IV. RESULTS AND DISCUSSION

In this section, we discuss the main results obtained in the
foregoing section.

A. Concurrence at zero temperature

First, we investigate the influence of the tunneling coeffi-
cient t and Rashba coupling α on the energy levels in zero
temperature. The energy levels versus Zeeman splitting � is
plotted in Fig. 2. Initially, we show in the same graph the
two energies, each twofold degenerate, for t = 0 and α = 0
as indicated by dashed lines, red (ε1 = ε3) and blue (ε2 = ε4),
respectively. On the other hand, for the solid curves, the tun-
neling between quantum dots (t = 2) breaks the degeneracy
at � = 0. Meanwhile, the Rashba coupling (α = 0.1) induces
two anticrossing points in � = 4 for energy levels ε3 and ε4,

FIG. 2. Spectrum energy of the double quantum dot (DQD)
Hamiltonian H as a function of �, for fixed t = 2 and α = 0.1 (solid
curves). The dashed blue line and dashed red line show the energy
levels for t = 0 and α = 0.

and in � = −4 for energy levels ε1 and ε2. From the above
analysis, it is easy to see that there is a strong correlation be-
tween interdot tunneling rates and degeneracy breaking of the
eigenstates. One clear signature of the spin-orbit interaction
is the formation of anticrossing points in the electron energy
spectrum.

In Fig. 3, we plot the concurrence C versus Rashba
coupling α at zero temperature for fixed t = 0.1 (solid
curves) and t = 2 (dashed curves), assuming several values
of the �. For tunneling parameter t = 0.1, we observe a

FIG. 3. The concurrence C as a function of α, for fixed t = 0.1
(solid curves) and t = 2 (dashed curves) at zero temperature. Here
we choose � = 0.5 (green curve), � = 2 (red curve), and � = 4
(blue curve).
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FIG. 4. The concurrence C as a function of temperature T in the
logarithmic scale, for fixed � = 2, t = 1. Here, α = 1 (red curve),
α = 2 (green dashed curve), and α = 10 (blue curve).

vigorous increase of the concurrence until reaching C ≈
0.9993 for weak Zeeman splitting � = 0.5 and Rashba
coupling α = 10; in this case, a single nonzero eigenvector
that contributes to the entanglement is |ϕ2〉 ≈ −0.491i(|L0〉 +
|R0〉) + 0.508(−|L1〉 + |R1〉), whereas when we consider
α → ∞, the ground state reduces to |ϕ2〉 = −0.5i(|L0〉 +
|R0〉) + 0.5(−|L1〉 + |R1〉) and achieves maximum concur-
rence (C = 1). Moreover, the curves show that the entangle-
ment between the spin-charge qubits is smaller as the Zeeman
splitting increases. From the same figure, we can see that
as soon as the tunneling parameter increases, say t = 2, the
concurrence is weaker than for weak tunneling regime (see
dashed curves). Furthermore, still in same figure, it is ob-
served that the concurrence is null at α = 0 for each parameter
t and � considered. Here the unentangled ground state is
given by |ϕ2〉 = 1√

2
(−|L1〉 + |R1〉).

B. Thermal quantum coherence

First, we study how the concurrence C is affected by tem-
perature T . In Fig. 4, we depict the concurrence C as a function
of the temperature T in the logarithmic scale and for different
values of the Rashba coupling α, with � = 2 and t = 1. It is
clear to see that there are two different regimes: The first one
corresponds to a strong Rashba coupling α = 10 (blue curve),
where we can see the concurrence for T = 0 becomes C ≈
0.98. It is also observed that the concurrence monotonously
leads to zero at the threshold temperature Tth ≈ 4.558. For
α = 2 (green curve), the concurrence (C ≈ 1√

2
) is smaller

than to the previous case at low temperature. However, it
decreases quickly as temperature rises and finally vanishes
at threshold temperature Tth ≈ 1.728. The second one corre-
sponds to weak Rashba coupling strength, e.g., α = 1 (red
curve), where we obtain a weak entanglement at zero tem-
perature C ≈ 0.447, which remains almost constant at low

FIG. 5. The density plot of the thermal concurrence C (a) as a
function of T vs t with � = 2 and α = 1 and (b) as a function of
T vs � with t = 0.5 and α = 1. In these figures, red solid curve is
the contour between the entangled region (blue) and the disentangled
region (white).

temperature. Then, the concurrence monotonically decreases
with increasing temperature until it completely vanishes at the
threshold temperature Tth ≈ 1.224. This result shows that α

can be used for either tuning on or off the entanglement.
In Fig. 5(a), we illustrate the density plot of concurrence

C as a function of T and t , for fixed values of � = 2 and
α = 1. The blue color corresponds to the entangled region,
while the white color corresponds to the unentangled region.
One interesting feature observed here is that the system is
strongly entangled around t = 0 and at low temperatures.
There is a threshold temperature above which the entangle-
ment becomes zero. We also observed that the concurrence
gradually decreases with the increase of the tunnel effect
parameter, which indicates that the tunnel effects weakens the
quantum entanglement. Furthermore, a similar density plot
for the concurrence is reported in Fig. 5(b) as a function of
T and � for fixed values of t = 0.5 and α = 1. Still, in the
same panel, we can notice that when the Zeeman splitting
is null, the model is weakly entangled in a low-temperature
region. Quickly, the concurrence disappears due to the thermal
fluctuations as the temperature increases. Additionally, the
density plot also shows that the entanglement is strong for
weak Zeeman splitting values at zero temperature, but the
entanglement decreases as the Zeeman parameter increases.
On the other hand, when T increases, the concurrence C
decreases rapidly until achieving the threshold temperature,
above which the thermal entanglement becomes null.

In Fig. 6, the thermal effects on populations ρ11 (red curve),
ρ22 (green curve), and concurrence (black curve) are reported
for two values of the Rashba coupling. In this figure, the
blue dashed line shows the steady-region temperature going
from the region of constant concurrence to the region where
concurrence monotonously decreases as the temperature in-
creases; this the steady-region temperature also describes the
beginning of population change. In Fig. 6(a), for the Rashba
coupling α = 0.1. We have observed that for low tempera-
tures, the population and concurrence remain constant in a
small range of temperature; in this region, we find that the
populations are ρ11 ≈ 0.003 (red curve) and ρ22 ≈ 0.4996
(green curve). These results suggest that the weakly entangled
qubits are in the ground state |ϕ2〉 ≈ −0.017i(|L0〉 + |R0〉) −
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FIG. 6. The thermal effects on the population ρ and concurrence
C. Here, the red curve corresponds to ρ11, green curve corresponds
to ρ22, while black curve represents to C. The parameters are set as
� = 2, t = 1. (a) α = 0.1. (b) α = 10.

0.7068(−|L1〉 + |R1〉) for low temperature regimes, so the
concurrence is C ≈ 0.0499. In this figure, the blue dashed line
shows the steady-region temperature is Tsd ≈ 0.1777. Thus,
we found that quantum entanglement is sensitive to population
change as a consequence of increasing temperature. On the
other hand, in Fig. 6(b) for a strong Rashba coupling α = 10,
we observe a sudden increase of ρ11 which attains the value
ρ11 ≈ 0.2 (red curve) and a decrease for ρ22 ≈ 0.3 (green
curve), and the concurrence reaches the value C ≈ 0.9805
at low temperatures. This concurrence is constant until the
steady-region temperature Tsd ≈ 0.0191; see the blue dashed
line. Therefore, due to thermal fluctuations, the populations
undergo a change and concurrence decreases until it disap-
pears. In any case, with increasing temperature regardless
of the value of the Rashba coupling, the population corre-
sponding to the ρ11 state increases, while the population ρ22

decreases until at higher temperature the eigenstates are dis-
tributed equally, reaching the value 0.25.

In Fig. 7, we plot the fidelity F between the ground state
|ϕ2〉 and the thermal state ρAB(T ) as a function of temperature
T in the logarithmic scale. We can see that the mixed-state
fidelity approaches ground-state fidelity, i.e., F = 1, when
the temperature leads to zero. On the other hand, when the
temperature increases, the ground state mixes with the excited
states, allowing the fidelity to decrease monotonically as the
temperature increases. It is also observed that for T = 0, the
figure exhibits the change of the fidelity F = 0.5 (red curve),

FIG. 7. The thermal fidelity F as a function of temperature. Here,
the red curve corresponds to tunneling coupling t = 0, the green
curve corresponds to t = 3, while the blue curve represents the case
t = 15. The parameters are set as � = 2, α = 10.0.

since the ground states become the degenerate states |ϕ2〉 and
|ϕ4〉 for fixed tunneling parameter t = 0.

Finally, in Fig. 8, we give the plot of correlated coher-
ence and the concurrence as a function of temperature at a
fixed value of the tunneling parameter t = 1, Rashba coupling
α = 10, Zeeman parameter � = 2, and different values of
the parameter θ . Note that in these figures, we include the
curves of total quantum coherence Cl1 (ρAB) (black curve)
and the local quantum coherence Cl1 (ρA) + Cl1 (ρB) (black
dashed curve) for a better understanding of these amounts.
In Fig. 8(a), we plot the correlated coherence and the con-
currence as a function of temperature T , in the basis of the
eigenenergies, which corresponds to the angle θ = 0 and
ϕ = 0 in the transformation U [see Eq. (14)]. These curves
show that for T → 0, the correlated coherence Ccc (solid
blue curve) is higher than the thermal entanglement C (solid
red curve). The difference between them is the untangled
quantum correlation (quantum discord). We can also notice
the presence of a plateau in the correlated coherence in this
low-temperature regime, due to the fact that the correlated
coherence of the ground state (|ϕ2〉) is weakly affected by
thermal fluctuations in this regime. From this figure, it is also
easy to see that as the temperature increases, the entanglement
(red curve) decays up to threshold temperature Tth ≈ 4.5,
while the total quantum coherence gradually decreases as the
temperature increases. In Fig. 8(b), we repeat the analysis
for a starting angle of θ = π

8 . Here, we observed a decrease
in local quantum coherence that accompanies the lowering
of total quantum coherence, which follows as a consequence
of the reduction of correlated coherence. Interestingly, the
behavior of correlated coherence, as well as total and local
quantum coherence, qualitatively follows the same pattern as
in Fig. 8(a). In Fig. 8(c), we choose θ close to π

4 (θ = 0.95π
4 )

and ϕ = 0; for this choice of the θ parameters, we observed a
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FIG. 8. Correlated coherence Ccc (blue solid curve) and concur-
rence C (red solid curve) vs T in the logarithmic scale for different
values of θ . In particular, we set � = 2, t = 1, α = 10, and ϕ = 0.
(a) θ = 0, (b) θ = ( π

8 ), (c) θ = 0.95(π/4), and (d) θ = (π/4).

dramatic decrease in correlated coherence. In addition, we can
see that the local quantum coherence (dashed black curve) is
almost null. Then, it can be seen that the correlated coher-
ence almost entirely constitutes the total quantum coherence
(solid black curve) for this particular choice of θ . On the
other hand, for high temperatures and after the concurrence
and the local coherence have disappeared, the total quan-
tum coherence is composed solely of nonentangled quantum
correlations.

To recover the independence of the correlated coherence
basis, we choose the local natural basis of ρA, which is
obtained by choosing θ = π

4 and ϕ = 0 (the reduced den-
sity matrix ρB is already diagonal). Thus, in Fig. 8(d), the
concurrence and quantum coherence are analyzed for the in-
coherent basis θ = π

4 and ϕ = 0. It is interesting to note that
at low temperatures, the entangled quantum correlations of
the system are stored entirely in the quantum coherence; this
indicates that, in this case, the correlated coherence captures
all the thermal entanglement information. As the temperature
increases, the thermal fluctuations generate a slight increase
in quantum coherence, while the entanglement decays and
disappears at the threshold temperature, T ≈ 4.5. Finally, the
correlated coherence leads monotonically to zero.

V. CONCLUSIONS

In this paper, we investigate a fundamental problem in
quantum physics, which involves a single electron in a double
quantum dot subjected to a homogeneous magnetic field and
a spin-flip tunnel coupling induced by the Rashba spin-orbit
interaction in a thermal bath. The proposed theoretical model
was exactly solved and the effects of temperature on quantum
coherence were analyzed. First, the spectrum energy is dis-
cussed. It is shown that the tunneling parameter contributes
to breaking the energy degeneracy, while the Rashba cou-
pling induces anticrossing phenomena in the electron energy
spectrum. In this model, we have investigated the thermal
entanglement and correlated coherence. We show that thermal
entanglement for a single electron is possible via charge and
spin qubits in a silicon double quantum dot. Furthermore,
our results suggest that the Rashba parameter turns on the
thermal entanglement and can be tuned conveniently. We also
have investigated the influence of the Rashba coupling on the
population and concurrence. These results show that they are
sensitive to temperature and Rashba coupling; in particular,
in the regime of low temperatures, the concurrence and popu-
lations form plateaus. However, with increasing temperature,
the populations undergo changes in their behavior, while the
concurrence decreases; this is a consequence of thermal fluc-
tuations. Additionally, we present an analysis of the thermal
fidelity between the fundamental state and the thermal states,
and we showed that the fidelity is maximum for low tempera-
tures, while with increasing temperature, the fidelity decreases
monotonically due to the mixture between the ground state
and the excited states. Moreover, we found a direct connection
between entanglement and quantum coherence. We ultimately
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compare the concurrence with correlated coherence, which
is responsible for quantum correlations. Quantum coherence
is a base-dependent concept. We have chosen an incoherent
basis for the local coherence (θ = π

4 , ϕ = 0), obtaining the
correlated coherence. In particular, we reported that the cor-
related coherence measure is equal to the concurrence for
low temperatures. The thermal entanglement must then be
viewed as a particular case of quantum coherence. Further-
more, the model showed a peculiar thermally induced increase
of correlated coherence due to the emergence of nonentangled
quantum correlations as the entanglement decreased. When
T is high enough, the quantum entanglement disappears as
thermal fluctuation dominates the system. Overall, our results
highlight that the Rashba coupling can be used successfully to

enhance the thermal performance of quantum entanglement.
Then, we can safely conclude that quantum coherence is more
robust than entanglement under the effect of a thermal bath.
The results also suggest that correlated coherence may poten-
tially be a more accessible quantum resource in comparison
to entanglement, and this is something worth investigating in
future work.
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