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Quantum coherence enhancement by the chirality-induced spin selectivity effect
in the radical-pair mechanism
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This work investigates the effect of chirality-induced spin selectivity (CISS) on quantum coherence in the
radical-pair (RP) mechanism of avian magnetoreception. Additionally, we examine the correlation of global and
local coherence measures with the yield of the signaling state in the RP model. We find that both relative entropy
of global coherence and local coherence in the radical pair increase with CISS. However, only global coherence
shows a strong correlation with the signaling state yield and thus indicates a plausible utilitarian role for the
avian compass. We also analyze the interplay of dipolar and exchange interaction with the CISS and their effect
on the coherence of the radical-pair spin. Further, we analyze the effect of environmental decoherence along with
CISS. We conclude that a high CISS results in a high correlation of global coherence with signaling state yield.
We propose that CISS might play an important role in developing quantum technologies by sustaining coherence
in radical-pair-like quantum systems.
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I. INTRODUCTION

Quantum coherence is a resource for quantum technolo-
gies. But its existence in biological systems in ambient
conditions and its functional utility in biophysical pro-
cesses have been extremely intriguing and debatable subjects
[1,2]. Avian magnetoreception is one such biological process
wherein the radical-pair spin dynamics have been investigated
from several aspects, wherein part of the focus has been to un-
derstand the role and utility of quantum coherence in it [3–10].
Interestingly, a unitary-dilation-based quantum algorithm ap-
proach has been used recently to study the radical-pair spin
dynamics, giving a new tool to examine the avian compass
[11]. The radical-pair mechanism is based on a spin-sensitive
chemical reaction that is mediated by the cryptochrome pro-
tein molecule [12,13]. Owing to the chirality of protein
molecules, the chirality-induced spin selectivity (CISS) ef-
fect might play an important role in the electron transport
part of the reaction. The origin of CISS is attributed to the
spin-orbit interaction and the electrostatic potential provided
by the chiral molecules [14–18]. It was shown by Fay et al.
[19] that chirality in conjunction with spin-orbit interaction
in electron transfer reactions generates coherence locally. It
was done for the electron spin-echo experiment. It was also
shown in Ref. [20] that the prerequisite for forming a radical
pair for avian magnetoreception is the transfer of electrons.
Owing to growing evidence of the role of chirality-induced
spin selectivity in electron transfer and charge reorganization
mechanisms [14,15,21–25], we investigate the plausible ram-
ifications of CISS in the radical-pair mechanism. To probe the
relationship between CISS and quantum coherence, we quan-
tify the coherence based on standard quantifiers. These are
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based on the offdiagonal (coherence) elements of the density
matrix of the quantum state [26–30]. It has been suggested
in Refs. [3,31] that global coherence rather than local or
electronic coherence might enhance the compass sensitivity.
Therefore, we correlate the yield of the spin-selective chemi-
cal reaction with the coherence measures in a chiral medium
for the avian magnetoreception.

In this work, we make use of relative entropy of coherence
[26] and total coherence [5] measures as coherence quan-
tifiers to answer the following questions: (i) how does the
CISS affect the local and global coherence measures in the
radical-pair mechanism, (ii) how do dipolar and exchange
interactions in conjunction with CISS affect the total local and
global coherence measures, (iii) how does the environmental
decoherence affect the multinuclei radical-pair mechanism,
and, more importantly, (iv) is the quantum coherence related
to the yield of the radical-pair mechanism? If yes, in what
form? We have considered cases up to four nuclei each on
flavin adenine dinucleotide FAD·− and tryptophan TrpH·+
radicals. The FAD acts as an electron acceptor, whereas TrpH
acts as an electron donor. The hyperfine interaction values of
these nuclei have been taken from Ref. [12] and are given in
Appendix A.

The manuscript has been organized as follows: Section II
discusses the methodology followed for the analysis. Sec-
tion III discusses the results, wherein Sec. III A discusses
the effect of CISS on quantum coherence measures and
Sec. III B explores the impact of electron-electron interactions
on system sensitivity along with its interplay with CISS. Sec-
tion III C illustrates an increase of coherence due to CISS
at various rate constants. Section IV demonstrates the effect
of environmental decoherence on the system. Section V ex-
amines the correlation of the quantum coherence with the
reaction yield of the radical-pair model. We have used QUTIP

[32] for our calculations.
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FIG. 1. The schematic for the CISS-assisted radical-pair mecha-
nism, where D denotes the donor molecule, A represents the acceptor
molecule, D·+ is the donor radical, A·− is the acceptor radical, kF

is the protonation rate constant to the signaling state, and kR is
the recombination rate constant to the ground state. The red arrows
represent the role of CISS in the reaction pathways.

II. METHODOLOGY

In the radical-pair model of the avian magnetoreception, an
electron is photoexcited in the acceptor molecule, creating a
vacancy in the ground state. Another electron from a neigh-
boring donor molecule travels in the chiral medium to fill this
vacancy. It results in the formation of a radical pair. The spin
operator of the electron on the donor molecule is ŜD and on
the acceptor molecule is ŜA [20,33]. Therefore, the spin state
of the above-formed radical pair is governed by the following
Hamiltonian [20,34,35]:

Ĥ = ω(ŜA + ŜD) +
∑

i∈D,A

∑
k

ŜiAik Îik

− J (2ŜAŜD + 0.5) + ŜADŜB, (1)

where ω = gμ̄BB̄, B̄ = B0[(sin θ cos φ)x̄ + (sin θ sin φ)ȳ +
(cos θ )z̄]. B0 corresponds to the Earth’s magnetic field, θ and
φ correspond to the orientation of the magnetic field with
respect to hyperfine tensor [6], J and D are the exchange and
dipolar interactions, and A is the hyperfine tensor depicting
interactions between electrons and neighboring nuclear spins.

The spin state of the radical pair evolves under the Zee-
man and hyperfine interactions. Along with this evolution, the
radical pair also recombines back, as shown in Fig. 1. The
recombination either happens back to the ground state or to
the signaling state (via protonation with H+ of the acceptor
radical; cf. Fig. 1). The CISS effect plays a role in the for-
mation and recombination of the radical pair as it involves
electron transport through the chiral protein molecule. There-
fore, the action of CISS is captured by the initial state PI and
recombination state PR, shown with red arrows in Fig. 1. The
signaling state does not involve the transfer of electrons (only
H+ involved); therefore, CISS is not involved in its formation
(shown with the blue arrow in Fig. 1). We define [20]

|ψI〉 = 1√
2

[sin(0.5χ ) + cos(0.5χ )]|↑D↓A〉

+ 1√
2

[sin(0.5χ ) − cos(0.5χ )]|↓D↑A〉. (2)

Then the initial state density matrix is given as PI =
|ψI〉〈ψI | ⊗ I

Z , where I
Z corresponds to the mixed state of the

nuclei, and Z is the size of the nuclear Hilbert space. The
recombination operator PR = |ψR〉〈ψR| accounts for recombi-
nation to the ground state, where |ψR〉 is

|ψR〉 = − 1√
2

[sin(0.5χ ) − cos(0.5χ )]|↑D↓A〉

− 1√
2

[sin(0.5χ ) + cos(0.5χ )]|↓D↑A〉. (3)

The CISS parameter χ ∈ [0, π
2 ] depends on the spin selec-

tivity of the protein medium, with χ = 0 corresponding to no
CISS and χ = π/2 corresponding to the maximum CISS. The
master equation governing the state evolution of the system is
given as

d ρ̂

dt
= −i[Ĥ, ρ̂(t )] − 1

2
kR{PR, ρ̂(t )} − kF ρ̂(t ), (4)

where kF is the protonation rate constant (corresponding to
the signaling state) and kR is the recombination rate constant
(back to the ground state) [20,33]. [A, B] = AB − BA corre-
spond to the commutator, whereas {A, B} = AB + BA is the
anticommutator.

III. RESULTS

This section is divided into three parts. In the first part, we
scrutinize the effect of CISS on the local and global coherence
measures in the radical-pair mechanism. Interestingly, we ob-
serve that the CISS enhances both local and global coherence
measures. In the second part, we examine the effect of the
dipolar interaction on the global and local coherence measures
along with their interplay with the CISS. In the last part, we
study the coherence measures in the radical-pair (RP) system
as a function of recombination and protonation rate constants
(kR and kF ).

A. Effect of CISS on quantum coherence measures

To quantify the coherence in the radical-pair system, we
use the von Neumann entropy S(ρ), given as

S(ρ) = −Tr[ρln(ρ)], (5)

where Tr represents the trace of a matrix. The von Neumann
entropy has a minimum value of zero for pure states and
a maximum value of ln(d ), where d is the dimension of
the Hilbert space of the system. The maximum value cor-
responds to the maximally mixed state of the system. With
the von Neumann entropy, the coherence quantifier of the RP
system can be defined by the relative entropy of local and
global coherence, as given in Eq. (6) and Eq. (7), respectively,
as [26]

CL(ρ) = S
(
ρel

diag

) − S(ρel ), (6)

CG(ρ) = S(ρdiag) − S(ρ). (7)

The relative entropy of local coherence only accounts for
the coherence in the electron pair of the radicals, while the
relative entropy of global coherence is the measure of the
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FIG. 2. (a) Relative entropy of global coherence CG at (kF , kR ) =
(106, 108) s−1 for five distinct values of χ corresponding to varying
degrees of spin selectivity due to CISS [0 (black, circle), π

6 (orange,
triangle), π

4 (blue, diamond), π

3 (pink, pentagon), π

2 (red, square)].
(b) Relative entropy of global coherence CG at (kF , kR ) = (106, 108)
s−1 for two extreme cases χ [0 (black, circle), π

2 (red, square)]
showing an increase in coherence time. The calculations have been
done for an eight-nuclei (4N-4N) cryptochrome-based radical-pair
system with values B0 = 50 µT, D = 0, J = 0, θ = 0, φ = 0.

electron+nuclear system. Therefore, in Eq. (6), ρel is the den-
sity matrix of the electrons that is obtained after partial trace
of ρ(t ) [obtained from Eq. (4)] over the nuclear spin subspace.
ρel

diag is the density matrix of the electron pair without the
off-diagonal terms. In Eq. (7), ρ is the density matrix of the
combined (electrons+nuclei) system, and ρdiag is the com-
bined system’s density matrix without the off-diagonal terms.
ρdiag = ∑

n |n〉〈n|ρ|n〉〈n| maps the local(ρel )/global(ρ) quan-
tum state into an incoherent state in any basis [10]. We also use
a quantifier called the total coherence measure defined in [5]
that captures the coherence summed over the entire evolution
period. It is given as

Mi(ρ) =
∫ ∞

0
Ci(ρ(t ))dt . (8)

Here, i ∈ {L, G} corresponds to the local and global coherence
measures, respectively.

In Fig. 2, we have plotted the relative entropy of global
coherence CG(ρ) with respect to time at θ = 0 and φ = 0.
In Fig. 2(a), we have considered five distinct values of χ

showing varying degree of spin selectivity due to CISS (0,
π
6 , π

4 , π
3 , π

2 ). For analysis, we have considered a realistic rate
constants combination (kF , kR) = (106, 108) s−1 for an eight-
nuclei cryptochrome-based radical pair. In Fig. 2(b), we have
considered two extreme cases, i.e., χ = (0,π

2 ), highlighting
the increase in global coherence measure (magnitude and time
duration). A finite value of CG for a longer duration of time
was observed when χ = π

2 compared to χ = 0.
In Fig. 3, we have plotted the relative entropy of local

coherence [CL(ρ)] with respect to time. In Fig. 3(a), we
consider five distinct values of χ = (0, π

6 , π
4 , π

3 , π
2 ) for

a realistic rate constant of (kF , kR) = (106, 108) s−1 for an
eight-nuclei cryptochrome-molecule-based radical-pair sys-
tem. In Fig. 3(b), we have considered two extreme cases, i.e.,
χ = (0,π

2 ), highlighting the increment in the local coherence
measure with CISS. At t = 0, we observe the maximum value

FIG. 3. (a) Relative entropy of local coherence CL at (kF , kR ) =
(106, 108) s−1 for five distinct values of χ showing varying degree of
spin selectivity due to CISS [0 (black, circle), π

6 (orange, triangle),
π

4 (blue, diamond), π

3 (pink, pentagon), π

2 (red, square)]. (b) Relative
entropy of local coherence CL at (kF , kR ) = (106, 108) s−1 for two
extreme cases, i.e., χ = [0 (black, circle), π

2 (red, square)] exhibiting
sustained coherence. The calculations have been done for an eight-
nuclei (4N-4N) cryptochrome-based radical-pair system with values
B0 = 50 µT, D = 0, J = 0, θ = 0, φ = 0.

of CL at χ = 0. As the CISS parameter (χ ) increases, CL

decreases at t = 0. It can be attributed to the initial value
of ρ at t = 0, i.e., as χ increases, the nondiagonal elements
of the density matrix (ρ) associated with radical-pair local
coherence decrease. However, even though at t = 0, the sys-
tem is showing maximal local coherence (CL) at χ = 0, the
case of full CISS χ = π

2 shows sustained coherence over
the evolution. Hence, we deduce that CISS causes sustained
quantum coherence in the radical-pair system.

In our analysis of Figs. 2 and 3, it was observed that
an increase in CISS results in an enhancement in quantum
coherence measures. We further confirm this by making use
of Eq. (8) that captures the coherence over the entire duration
of the spin state evolution. We plot Mi as a function of CISS
parameter (χ ) in Fig. 4 at realistic rate constants of (kF , kR) =
(106, 108) s−1 for two-nuclei (black, square), four-nuclei (red,
circle), six-nuclei (blue, triangle), and eight-nuclei (pink,

FIG. 4. Relative entropy of (a) local coherence (ML) and
(b) global coherence (MG) at (kF , kR ) = (106, 108) s−1 for χ ∈
[0, π

2 ]. This has been done for two-nuclei (black, square), four-nuclei
(red, circle), six-nuclei (blue, triangle), and eight-nuclei (pink, pen-
tagon) cryptochrome-based radical-pair systems. The calculations
are done on values B0 = 50 µT, D = 0, J = 0, θ = 0, φ = 0.
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TABLE I. 
Mi for radical-pair model based on two, four, six,
seven, and eight nuclei from a cryptochrome-based radical-pair sys-
tem for the rate constant (kF , kR ) = (106, 108) s−1.

Nuclei system 
MG 
ML

1N-1N (two-nuclei) 7.97 6.59
2N-2N (four-nuclei) 3.33 6.57
3N-3N (six-nuclei) 2.86 7.83
4N-3N (seven-nuclei) 2.90 7.70
3N-4N (seven-nuclei) 2.88 7.97
4N-4N (eight-nuclei) 2.89 7.74

pentagon) cryptochrome-based radical-pair systems. As is
clear from Fig. 4, the total coherence Mi (i ∈ {L, G}) increases
with the degree of CISS. As expected, with the inclusion of
more nuclei, the total coherence of the system decreases for
a fixed value of χ . To better analyze this, we define another
quantity called 
Mi in Eq. (9) to quantify the change in total
coherence Mi due to CISS,


Mi = maxχ∈{0◦,90◦}(Mi )

minχ∈{0◦,90◦}(Mi)
. (9)

Table I gives the value of 
Mi for these four systems along
with two more cases where we have taken seven nuclei (the
first case is four on FAD·− and three on TrpH·+; the second
case is three on FAD·− and four on TrpH·+). We observe that
all values are greater than unity, signifying an increase in co-
herence in all systems. However, the value of 
MG decreases
as the number of nuclei increases up to six and saturates as
the number of nuclei are increased above six. In the above
analysis, though performed for θ = 0 and φ = 0, the increase
in coherence due to CISS was observed at all orientations of
the radical with respect to the Earth’s magnetic field.

B. Effect of dipolar interaction

This section examines the effect of spin dipolar interaction
along with CISS on coherence in the radical-pair system.
Dipolar interaction (D) is governed by Eq. (10), where r is
the distance between two electrons [36],

D(r) = −3

2

μo

4π

γ 2
e h̄2

r3
⇒ D(r)/μT = −2.78 × 103

(r/nm)3
. (10)

Figure 5 exhibits the effect of dipolar interaction on total
global and local coherence measures (MG and ML). We plot
MG [Fig. 5(a)] and ML [Fig. 5(b)] with respect to χ . We plot
for five distinct values of dipolar interaction, assuming there is
no exchange interaction for the six nuclei of the cryptochrome
molecule. We take realistic values of the rate constant, i.e.,
(kF , kR) = (106, 108) s−1, in our analysis.

From both plots in Fig. 5, we observe that the increase in
global coherence due to CISS (
MG) remains constant and
is unaffected due to dipolar interaction. However, 
ML is
affected by the dipolar interaction and decreases about 13% as
D increases from 0 to 0.4 mT. It is summarized and confirmed
in Table II. In Fig. 5(a), we observe that for intermediate
values of χ , having nonzero dipolar interaction increases the
total global coherence. To analyze this further, we define a
quantity called 
GD=i(χ ) and 
LD=i(χ ) given in Eq. (11)

FIG. 5. Relative entropy of (a) global coherence and (b) local
coherence at (kF , kR ) = (106, 108) s−1 for χ ∈ [0, π

2 ]. A total of
five values of D were assumed [0 (black, square), 0.1 mT (red,
circle), 0.2 mT (blue, triangle), 0.3 mT (pink, inverted triangle),
and 0.4 mT (green, diamond)]. The calculations have been done for
six nuclei (3N-3N) from the cryptochrome molecule at B0 = 50 µT,
J = 0, θ = 0, φ = 0.

and Eq. (12), respectively. 
GD=i(χ ) and 
LD=i(χ ) compute
the difference of total global (local) coherence when D = 0
and when D = i, where i ∈ {0.1 mT, 0.2 mT, 0.3 mT, 0.4 mT}
at a particular χ ,


GD=i(χ ) = MG,D=0(χ ) − MG,D=i(χ ), (11)


LD=i(χ ) = ML,D=0(χ ) − ML,D=i(χ ). (12)

In Fig. 6, we plot 
GD=i and 
LD=i as function of χ .
A horizontal reference line in Fig. 6 depicts 
GD=i = 0 and

LD=i = 0. Anything above this line shows that total coher-
ence is greater when D = 0 than D = i. Figure 6(a) plots

GD=i where, for intermediate values of χ , we observe a
negative value of 
GD=i. It signifies that dipolar interaction
enhances global coherence for these values of χ . The range
of values of χ for which we observe an increase in coherence
is approximately the same for all values of D. Figure 6(b) dis-
cusses 
LD=i, where we observe that 
LD=i is always positive
for all values of D. Hence for all values of dipolar interactions,
local coherence shows degradation in total local coherence
ML. The exchange interaction (J) further increases total global
coherence, which is discussed in detail in Appendix B.

C. Coherence in RP mechanism for various rate constant

In this section, we ascertain the enhancement in coherence
with CISS at different rate constants. We present Tables III
and IV that show an increase in total coherence due to CISS

TABLE II. 
Mi for radical-pair model based on six nuclei (3N-
3N) from the cryptochrome molecule for rate constant (kF , kR ) =
(106, 108) s−1.

Dipolar interaction 
MG 
ML

D = 0 2.86 7.82
D = 0.1 mT 2.86 7.50
D = 0.2 mT 2.86 6.90
D = 0.3 mT 2.86 6.31
D = 0.4 mT 2.86 5.81
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FIG. 6. (a) 
GD=i and (b) 
LD=i, where i is 0.1 mT (black,
square), 0.2 mT (red, circle), 0.3 mT (blue, triangle), and 0.4 mT
(pink, inverted triangle) at (kF , kR ) = (106, 108) s−1 for χ ∈ [0, π

2 ].
The horizontal dotted line is the reference line depicting when

GD=i = 0 and 
LD=i = 0. Anything above this line shows that
total coherence is greater for the case when D = 0 than when D = i.
The calculations have been done for six nuclei (3N-3N) from the
cryptochrome molecule at B0 = 50 µT, J = 0, θ = 0, φ = 0.

(through 
MG and 
ML) for a wide range of rate constants.
We find that the maximum value of 
MG is at (kF , kR) =
(104, 108) s−1 and 
ML is at (kF , kR) = (104, 106) s−1 (i.e.,
maxima occur at a different rate constant combination). How-
ever, interestingly, a lower kF (protonation rate constant) is
key to achieve a greater increase in coherence due to CISS.

IV. EFFECT OF ENVIRONMENTAL DECOHERENCE

In this section, we take into consideration the decoherence
effect of the surrounding system. We modify Eq. (4) to add
spin decoherence operators in the Lindblad formalism,

d ρ̂

dt
= −(C + R + D)

= −i[Ĥ , ρ̂(t )] − 1

2
kR{PR, ρ̂(t )} − kF ρ̂(t )

+ k
∑

n

1

2
{2Cnρ(t )C†

n − ρ(t )C†
nCn − C†

nCnρ(t )}.
(13)

In Eq. (13), D corresponds to the spin decoherence oc-
curring due to the surrounding environment. C corresponds
to the coherent evolution term, and R corresponds to the
recombination term. Mathematically, we take six decoherence
operators [6]: C1 = σx ⊗ IE2 ⊗ IN , C2 = σy ⊗ IE2 ⊗ IN , C3 =
σz ⊗ IE2 ⊗ IN , C4 = IE1 ⊗ σx ⊗ IN ,C5 = IE1 ⊗ σy ⊗ IN , and
C6 = IE1 ⊗ σz ⊗ IN . IE1 corresponds to the mixed state of

TABLE III. 
MG for global coherence for radical-pair model
based on six nuclei (3N-3N) from the cryptochrome molecule for
various rate constant combinations at D = 0 and J = 0.

kR ↓, kF → 104 s−1 105 s−1 106 s−1 107 s−1 108 s−1

104 s−1 0.98 0.87 0.86 0.84 0.68
105 s−1 1.57 0.98 0.86 0.84 0.68
106 s−1 2.44 1.57 0.98 0.86 0.68
107 s−1 2.78 2.50 1.61 0.99 0.71
108 s−1 3.82 3.74 2.86 2.01 0.98

TABLE IV. 
ML for local coherence for radical-pair model
based on six nuclei (3N-3N) from the cryptochrome molecule for
various rate constant combinations at D = 0 and J = 0.

kR ↓, kF → 104 s−1 105 s−1 106 s−1 107 s−1 108 s−1

104 s−1 4.53 2.83 2.52 1.51 0.33
105 s−1 13.76 4.52 2.66 1.52 0.33
106 s−1 19.49 13.33 4.13 1.58 0.33
107 s−1 18.56 16.98 10.04 2.10 0.33
108 s−1 9.10 8.82 7.82 2.88 0.37

electron on the FAD·− radical, while IE2 corresponds to the
mixed state of electron on the TrpH·+ radical. IN is the
combined mixed state of the surrounding nuclei and k is the
decoherence rate constant.

In Fig. 7, we plot total global (MG) and local (ML) coher-
ence as a function of the CISS parameter (χ ). This calculation
has been done at (kF , kR) = (106, 108) s−1 and J = 0 and
D = 0. We observe that at full CISS, both coherence mea-
sures achieve maxima even under the effect of environmental
decoherence. We have also listed 
MG and 
ML with various
decoherence rate constant (k) values in Table V. We observe
a reduction in the value of 
MG and 
ML as the decoherence
rate constant k increases. However, interestingly, we observe
an increment in coherence due to CISS, even at high decoher-
ence rate values.

V. ON CORRELATION OF QUANTUM COHERENCE
WITH SIGNALING STATE YIELD

In this section, we correlate coherence measures to the
signaling state (forward reaction) yield of the radical-pair
reaction (cf. Fig. 1 for signaling state yield), demonstrating the
utilitarian role of coherence. We use the correlation coefficient
to show a statistical correlation between signaling state yield
and the radical-pair spin coherence measures (both local and
global). We use numerous orientations of the radical pair with
respect to the external magnetic field to show this correla-
tion in a four-nuclei system at (kF , kR) = (106, 108) s−1. The

FIG. 7. (a) MG(χ ) and (b) ML (χ ) where k is the decoherence rate
constant: k = 0 s−1 (black, square), k = 104 s−1 (red, circle), k =
105 s−1 (blue, triangle), k = 106 s−1 (pink, inverted triangle), and
k = 107 s−1 (green, diamond). The calculations have been done for
six nuclei (3N-3N) from the cryptochrome molecule at B0 = 50 µT,
J = 0, D = 0, θ = 0, φ = 0.
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TABLE V. 
Mi for radical-pair model based on six nuclei (3N-
3N) from the cryptochrome molecule for various relaxation rate
constants at D = 0 and J = 0 [(kF , kR ) = (106, 108) s−1].

Relaxation rate constant k 
MG 
ML

k = 0 s−1 2.86 7.82
k = 104 s−1 2.78 7.50
k = 105 s−1 2.76 7.40
k = 106 s−1 2.67 6.44
k = 107 s−1 2.32 2.93

signaling state yield is defined as

φF = kF

∫ ∞

0
PS (t )dt = kF

∫ ∞

0
Tr[ ˆρ(t )]dt, (14)

where ˆρ(t ) is the solution of the master equation [Eq. (4)], Tr
is the trace over the state density matrix ρ, and kF is the rate
constant associated with the signaling state.

In Fig. 8(a), we have plotted the total global coherence
(MG) and the signaling state yield (φF ) for 2500 combinations
of θ and φ. We have taken the values where θ ∈ {0◦, 180◦}
and φ ∈ {0◦, 360◦}. The calculation is performed for no CISS
case, i.e., χ = 0. Similarly, in Fig. 8(b), we have plotted the
total local coherence (ML) and signaling state yield (φF ).
The R value (red) corresponds to the correlation coefficient
between the coherence measures and signaling state yield. The
red line is the linear fit line corresponding to the scattered
points. Similar plots have been plotted for the intermediate
CISS case (i.e., χ = π

4 ) in Fig. 9 and the full CISS case (i.e.,
χ = π

2 ) in Fig. 10.
The total local coherence measure (ML) has no clear cor-

relation with the signaling state yield (φF ) for three values of
χ . The total global coherence (MG) shows a high correlation
with the yield of the forward signaling state, i.e., as the de-
gree of CISS increases, the correlation parameter R between
total global coherence and signaling state yield increases. In
the full CISS case, the value is near unity, showing a high
correlation of global coherence measure with the signaling
state yield. The signaling state is thought to be responsible
for sending signals to the brain. Hence, global coherence

FIG. 8. (a) MG vs φF and (b) ML vs φF , for various values of θ

and φ for χ = 0. The calculation is done at (kF , kR ) = (106, 108)
s−1. The red line corresponds to the linear fit and R (red) corre-
sponds to the correlation coefficient between the coherence measure
and signaling state yield. The calculations have been done for four
nuclei (2N-2N) from the cryptochrome molecule at B0 = 50 µT,
J = 0, D = 0, θ ∈ {0◦, 180◦}, φ ∈ {0◦, 360◦}.

FIG. 9. (a) MG vs φF and (b) ML vs φF , for various values of
θ and φ for χ = π

4 . The calculation is performed at (kF , kR ) =
(106, 108) s−1. The red line corresponds to the linear fit, and R
(red) corresponds to the correlation coefficient between the coher-
ence measure and signaling state yield. The calculations have been
done for four nuclei (2N-2N) from the cryptochrome molecule at
B0 = 50 µT, J = 0, D = 0, θ ∈ {0◦, 180◦}, φ ∈ {0◦, 360◦}.

measures indicate a strong correlation with the later stages
of avian magnetoreception. The idea of the utility of global
coherence in the radical-pair mechanism (RPM) was first ar-
gued in [3] for the RPM where no CISS was considered. In our
results, we demonstrate that CISS enhances global coherence,
which subsequently would augment the signaling state yield.
However, Luo et al. [20] have demonstrated that CISS may
result in high asymmetric anisotropy of reaction yield that
is at odds with behavioral experiments on avian magnetore-
ception where magnetic field inversion symmetry has been
observed [20,37–39]. Therefore, CISS may not be advanta-
geous to the birds for navigation. In addition, an earlier work
[33] has shown that another behavioral characteristic of the
avian compass, i.e., functional window property, may also not
be in consonance with CISS. This leaves us with a broader
question about the significance of CISS in radical-pair-based
avian navigation. We will leave it to further experiments if the
CISS prevails in a realistic cryptochrome-based radical-pair
mechanism. That would help in properly assessing the role of
CISS in migratory bird navigation.

FIG. 10. (a) MG vs φF and (b) ML vs φF , for various values
of θ and φ for χ = π

2 . The calculation is performed at (kF , kR ) =
(106, 108) s−1. The red line corresponds to the linear fit, and R
(red) corresponds to the correlation coefficient between the coher-
ence measure and signaling state yield. The calculations have been
done for four nuclei (2N-2N) from the cryptochrome molecule at
B0 = 50 µT, J = 0, D = 0, θ ∈ {0◦, 180◦}, φ ∈ {0◦, 360◦}.
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VI. CONCLUSION

In conclusion, the chirality-induced spin selectivity (CISS)
effect causes quantum coherence to sustain in the radical-pair
mechanism. It hints towards the possibility that spin quantum
coherence might be sustained in a realistic system despite the
presence of multiple nuclei for significant time. Moreover, we
also observe that the global coherence in the CISS-assisted
avian compass is strongly correlated with the signaling state
yield and the correlation increases with the degree of CISS.
This indicates that unlike local coherence, global coherence
has an important link with the signal going to the avian brain.
We also observe that dipolar and exchange interactions are
generally detrimental to the quantum coherence in the radical-
pair mechanism, but their effect can be countered by the CISS
effect. All these conclusions confirm the significance of CISS
in the radical-pair mechanism. Interestingly, our results sug-
gest that CISS might help develop quantum technologies (e.g.,
quantum sensors) where quantum coherence is a resource by
sustaining it in engineered systems where a radical-pair-like
mechanism is in action. In the future, we plan to harness this
aspect of CISS in artificial systems.
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APPENDIX A: HYPERFINE TENSORS

The hyperfine tensors used in our study are based on the
work by Hiscock et al. [12,13]. The FAD and TrpH molecules
are drawn in Fig. 11. The nuclei considered in our simulations
on each molecule are marked in red. The hyperfine tensor of
all nuclei of the FAD·− radical considered in our simulations

FIG. 11. (a) FAD molecule and (b) TrpH molecule. The nuclei
marked in red are considered in our calculation.

is given below:

FN1(mT ) =
⎡
⎣−0.0989 0.0039 0

0.0039 −0.0881 0
0 0 1.7569

⎤
⎦,

FN2(mT ) =
⎡
⎣−0.0190 −0.0048 0

−0.0048 −0.0196 0
0 0 0.6046

⎤
⎦,

FH3(mT ) =
⎡
⎣−0.2569 −0.1273 0

−0.1273 −0.4711 0
0 0 −0.4336

⎤
⎦,

FH4(mT ) =
⎡
⎣0.4399 0 0

0 0.4399 0
0 0 0.4399

⎤
⎦.

The hyperfine tensor of all nuclei of the TrpH·+ radical
considered in our simulations is given below:

T N1(mT ) =
⎡
⎣−0.0336 0.0924 −0.1354

0.0924 0.3303 −0.5318
−0.1354 −0.5318 0.6680

⎤
⎦,

T H2(mT ) =
⎡
⎣−0.9920 −0.2091 −0.2003

−0.2091 −0.2631 0.2803
−0.2003 0.2803 −0.5398

⎤
⎦,

T H3(mT ) =
⎡
⎣−0.2843 0.1757 0.1525

0.1757 −0.2798 0.0975
0.1525 0.0975 −0.2699

⎤
⎦,

T H4(mT ) =
⎡
⎣−0.5596 −0.1956 −0.1657

−0.1956 −0.4020 0.0762
−0.1657 0.0762 −0.5021

⎤
⎦.

APPENDIX B: EFFECT OF THE EXCHANGE
INTERACTION

To understand the dynamics of exchange interaction, we
have simulated six-nuclei-based cryptochrome systems. We
assume a fixed value of D = 0.4 mT and consider four val-
ues of exchange interaction (J = 0, J = 0.1 mT, J = 0.2 mT,
J = 0.3 mT) [36].

Figure 12(a) exhibits the effect of exchange interaction on
total global and local coherence measures (MG and ML). We
plot MG [Fig. 12(a)] and ML [Fig. 12(b)] with respect to χ .
We plot for four distinct values of exchange interaction at
D = 0.4 mT for the six nuclei of the cryptochrome molecule.
We take realistic values of the rate constants, i.e., [(kF , kR) =
(106, 108) s−1] in our analysis,


GJ=i(χ ) = MG,J=0(χ ) − MG,J=i(χ ), (B1)


LJ=i(χ ) = ML,J=0(χ ) − ML,J=i(χ ). (B2)

The increase in global and local coherence for D = 0.4 mT
and various J values are shown in Table VI. In Figs. 12(c)
and 12(d), we plot 
GJ=i and 
LJ=i as a function of χ ,
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FIG. 12. Relative entropy of (a) MG and (b) ML at (kF , kR ) =
(106, 108) s−1 for χ ∈ [0, π

2 ]. A total of four values of J was assumed
[0 (black, square), 0.1 mT (red, circle), 0.2 mT (blue, triangle), and
0.3 mT (pink, inverted triangle)]. (c) 
GJ=i and (d) 
LJ=i, where
i is 0.1 mT (black, square), 0.2 mT (red, circle), and 0.3 mT (blue,
triangle) at (kF , kR ) = (106, 108) s−1. The horizontal dotted line is
the reference line depicting when 
GJ=i = 0 and 
LJ=i = 0. The
analysis has been done for six nuclei (3N-3N) at B0 = 50 µT, θ = 0,
φ = 0, and D = 0.4 mT.

respectively. A horizontal reference line in Figs. 12(c) and
12(d) depicts 
GJ=i = 0 and 
LJ=i = 0. Anything above
this line shows that total coherence is greater when J = 0
than J = i. Figure 12(c) plots 
GJ=i where, for interme-
diate values of χ , we observe a negative value of 
GJ=i.
It signifies that exchange interaction enhances global co-
herence for these values of χ . The range of values of χ

for which 
GJ=i is negative increases with J . Figure 12(d)
discusses 
LJ=i, where we observe that 
LJ=i is always pos-
itive for χ � 60◦. Hence, for χ � 60◦, exchange interactions
show degradation in total local coherence ML.

APPENDIX C: PARAMETER INFORMATION

This Appendix summarizes the number of nuclei used for
calculation in each figure. This is represented in Table VII.
The hyperfine values of each nucleus are given in Appendix A.
In Table VIII, we summarize the values of θ, φ, D, J, B0 cor-
responding to each figure. The alphabet V means that the
quantity has multiple (variable) values in that figure.

TABLE VI. 
Mi for radical-pair model based on six nuclei from
the cryptochrome molecule for the rate at D = 0.4 mT, (kF , kR ) =
(106, 108) s−1.

Exchange interaction 
MG 
ML

J = 0 2.86 5.81
J = 0.1 mT 3.12 6.29
J = 0.2 mT 3.11 6.03
J = 0.3 mT 2.95 5.42

TABLE VII. Table depicting information on the number of
nuclei considered in each system. The (i) 4N-4N systems have
FN1, FN2, FH3, FH4, T N1, T H2, T H3, T H4, (ii) 3N-3N systems
have FN1, FN2, FH3, T N1, T H2, T H3, (iii) 2N-2N systems have
FN1, FN2, T N1, T H2, and (iv) 1N-1N systems have FN1, T N1. The
“All Comb.” used cases of 4N-4N, 3N-3N, 2N-2N, and 1N-1N. The
hyperfine tensor A of each nuclei is given in Appendix A.

Figure No. nuclei (FAD·− nuclei - TrpH·+ nuclei)

2 4N-4N (eight nuclei)
3 4N-4N (eight nuclei)
4 All Comb.
5 3N-3N (six nuclei)
6 3N-3N (six nuclei)
7 3N-3N (six nuclei)
8 2N-2N (four nuclei)
9 2N-2N (four nuclei)
10 2N-2N (four nuclei)
12 3N-3N (six nuclei)

TABLE VIII. Table depicting values of the relevant parameters
for each figure. V depicts where the figure has the variable value of
that parameter.

Figure Parameter values

2 D = 0, J = 0, B0 = 50 µT, θ = 0, φ = 0
3 D = 0, J = 0, B0 = 50 µT, θ = 0, φ = 0
4 D = 0, J = 0, B0 = 50 µT, θ = 0, φ = 0
5 D = V, J = 0, B0 = 50 µT, θ = 0, φ = 0
6 D = V, J = 0, B0 = 50 µT, θ = 0, φ = 0
7 D = 0, J = 0, B0 = 50 µT, θ = 0, φ = 0
8 D = 0, J = 0, B0 = 50 µT, θ ∈ {0◦, 180◦}, φ ∈ {0◦, 360◦}
9 D = 0, J = 0, B0 = 50 µT, θ ∈ {0◦, 180◦}, φ ∈ {0◦, 360◦}
10 D = 0, J = 0, B0 = 50 µT, θ ∈ {0◦, 180◦}, φ ∈ {0◦, 360◦}
12 D = 0.4 mT, J = V, B0 = 50 µT, θ = 0, φ = 0
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