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General framework for genuine multipartite entanglement detection
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The design of detection strategies for multipartite entanglement stands as a central importance on our
understanding of fundamental quantum mechanics and has had a substantial impact on quantum information
applications. However, accurate and robust detection approaches are severely hindered, particularly when the
number of nodes grows rapidly like in a quantum network. Here we present a general and operational framework
that generates alternative entanglement witness for an arbitrary targeted state. The framework enjoys a systematic
and high-efficient character and allows to substantiate genuine multipartite entanglement for a variety of
states that arise naturally in practical situations and to dramatically outperform currently standard methods.
With excellent noise tolerance, our framework should be broadly applicable to witness genuine multipartite
entanglement in various practically scenarios and to facilitate the best use of entangled resources in the emerging
area of quantum network.
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I. INTRODUCTION

As a unique property in quantum theory, entanglement [1]
is recognized as a kind of quantum resource [2] and plays
a central role in numerous quantum computing and quan-
tum communication tasks [3–7]. The ability to generate an
increasing number of entangled particles is an essential bench-
mark for quantum information processing. In past decades,
considerable efforts were made to prepare larger and more
complex entangled states in various platforms [8–14], which
in experimental systems are currently evolving from several
qubits to noisy intermediate scale quantum system (NISQ)
[15].

The developments of quantum technologies raise imme-
diately important questions regarding the characterization of
quantum entanglement of underlying systems. In bipartite
systems, various theoretical works have contributed, such
as separability criterions [16–19] and entanglement mea-
sures [20–22], which provide standard tools for characterizing
bipartite entanglement. For some reviews, please refer to
Refs. [1,23,24]. When it comes to multipartite systems, the
problem is much more complicated. The entanglement struc-
ture becomes much richer for multipartite systems [25,26]
since the number of possible divisions grows exponentially
with the system size [1]. This leads to many types of multipar-
tite entanglement, ranging from nonfully separable to genuine
multipartite entanglement (GME). In the following, we focus
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on the detection of genuine multipartite entanglement, which
is an essential task for multipartite quantum communication
and quantum computing tasks. For the detection of GME,
many standard tools in the bipartite case, such as separability
criterions, become infeasible since they only detect entan-
glement between two partitions. Meanwhile, a tomographic
reconstruction of the quantum state required in these methods
becomes time consuming and computationally difficult in the
multipartite case.

For genuine multipartite entanglement detection, entangle-
ment witness (EW) [27–31] provides an elegant solution both
theoretically and experimentally without the need of having
full tomographic knowledge about the state. Moreover, it is
also known that the witness operator can be used to estimate
entanglement measures [32]. On account of the simplicity
and efficiency of entanglement witness, it has been widely
used for experimental certification of GME in many plat-
forms, such as trapped ions [33,34], photonic qubits [35–38],
and superconducting qubits [39]. Most available GME wit-
nesses are tailored towards some specific states, for instance,
the Greenberger-Horne-Zeilinger (GHZ) states [40], W states
[41], graph states [42,43], and so on. Despite a few general
methods for the construction of GME witness being proposed
[44–47], their performance is very limited, especially as the
size of the system grows. One major drawback is the lim-
ited scope of noise resistance. For example, the fidelity-based
method [44] is a canonical witness construction and widely
used nowadays. Its noise tolerance decreases dramatically as
the system size increases. In realistic NISQ systems, however,
the noise always inevitably grows with the system size. In fact,
it has been shown that the fidelity witnesses fail to detect a
large amount of mixed entangled states [48]. To find more
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robust GME witnesses, numerical methods were introduced
[45], which, however, suffered from expensive computational
costs as the system size grows. Hence, although it is known
that for any entangled state there exists some EW to detect it
[27], but how to construct a desirable EW to recognize a GME
state is still a formidable challenge.

In this work, we propose a general framework to design
robust GME witnesses by analytical and systematic construc-
tion. We start by introducing an operational method for lifting
any set of bipartite EWs to construct GME witnesses. This
establishes the link between the standard tools developed in
the bipartite case and the GME witness construction. We then
provide a well-designed class of optimal bipartite EWs that
allows to design robust GME witnesses for arbitrary pure
GME states. The performance of this framework on many
typical classes of GME states is further evaluated in terms
of white-noise tolerance. It can be shown that the framework
outperforms the most widely used fidelity-based method with
certainty and outperforms much better than the best-known
EWs in many cases. Finally, benefiting from the high robust-
ness of the resulting witnesses, we also demonstrate further
applications of the framework, such as to provide a tighter
lower bound on the genuine multipartite entanglement mea-
sures and detecting unfaithful GME states [48].

II. CONSTRUCTION OF ROBUST GME WITNESS

A. Preliminaries

To start with, we first give the precise definition of bisep-
arable, genuine multipartite entanglement, and entanglement
witness. A pure state is called biseparable if it can be written
as a tensor product of two state vectors, i.e., |ψA〉 ⊗ |ψĀ〉.
Then a mixed state is called biseparable if it can be decom-
posed into a mixture of pure biseparable states, formally,

ρbs =
∑
A|Ā,i

pA|Ā,i

∣∣ψ i
A

〉〈
ψ i

A

∣∣ ⊗ ∣∣ψ i
Ā

〉〈
ψ i

Ā

∣∣, (1)

where the summation can be performed over different biparti-
tions A|Ā of the entire system. A state that is not biseparable
is referred to as genuine multipartite entangled. To detect
the GME states, the most widely used method is to find
an observable WGME that is nonnegative for all biseparable
states and has a negative expectation value on at least one
GME state. Then, for some multipartite quantum state ρ, the
fact that Tr(WGMEρ) < 0 will reveal the existence of genuine
multipartite entanglement and the WGME is called a GME
witness. Moreover, given two EWs W1 and W2, if there ex-
ists λ > 0 such that W1 − λW2 is positive-semi-definite, i.e.,
W1 � λW2, we say that W2 is finer than W1 [29]. The finer
witness operator W2 detects more entangled states than W1.
An EW is optimal if no finer EW exists.

B. Design GME witness from a complete set of bipartite EWs

Due to its nonnegativity over all biseparable states, a GME
witness WGME also serves as bipartite EW with respect to
each possible bipartition of the entire system. In other words,
there exists a complete set of bipartite EWs {WA|Ā} satisfying
WGME � WA|Ā for each bipartition A|Ā. This fact, from the
opposite point of view, indicates that the GME witness WGME

is designed based on the set {WA|Ā} according to the constraint
WGME � WA|Ā. This naturally provides a general framework
for constructing GME witnesses from a complete set of bipar-
tite EWs. Remarkably, the set {WA|Ā} itself cannot be directly
used to detect GME states as there exist biseparable states that
are entangled with respect to every possible bipartition [23].
While there are two crucial issues with such a framework. The
first one is how to find the operator satisfying WGME � WA|Ā
and the second one is to decide which set of bipartite EWs
should be used. The optimal solution to these two problems
is hard, in general, and there have been only a few previous
related studies on these issues [46,49,50]. In Ref. [46], an
alternative solution was proposed to establish a connection
between positive maps and multipartite EWs, where EWs de-
tecting the multipartite bound entangled state were obtained.
While in the following, we present an alternative solution that
is capable of constructing robust GME witnesses.

C. Operational framework for GME witness construction

Any mixed GME state contains at least one pure GME
state as a component, while the remaining components can be
treated as noises. To detect mixed GME states with linear EW,
it is natural to employ a witness operator for the pure GME
component that is sufficiently robust to noise from the other
components. In fact, the set of all optimal GME witnesses for
all pure GME states will be sufficient to detect all GME states.
However, finding all optimal GME witnesses is naturally a
formidable task. Therefore, to advance a solution to this prob-
lem, we propose an operational framework to construct a class
of robust GME witnesses for all pure GME states.

To address the problem of lifting any given set of bipartite
EWs to multipartite, we can accomplish it in two steps. (1)
For the first step, each bipartite EW WA|Ā is decomposed into
some projectors. Note that the entanglement witness is de-
signed for some pure entangled state |ψ〉. Hence we extract a
term −|ψ〉〈ψ | before the decomposition. That is, the bipartite
EWs are rewritten as WA|Ā = OA|Ā − |ψ〉〈ψ | and a spectral
decomposition of OA|Ā = WA|Ā + |ψ〉〈ψ | is performed

OA|Ā =
∑

|�vi,A|Ā〉∈SA|Ā

ci,A|Ā|�vi,A|Ā〉〈�vi,A|Ā|, (2)

with SA|Ā being the set of eigenvectors and ci,A|Ā being the cor-
responding eigenvalues. All these eigenvectors are collected
into a set S = ∪A|ĀSA|Ā. (2) For the second step, the obtained
set S is divided into m subsets {Sk}m

k=1 such that the vectors
from different subsets are orthogonal with each other. Denote
Ĩk as the identity operator on the subspace Vk spanned by
the state vectors from subset Sk and ck = max|�vi,A|Ā〉∈Sk ci,A|Ā
as the maximal coefficient attached to the state vectors in Sk .
With the above preparation and notation, we proceed to the
following theorem.

Theorem 1. Given any pure GME state |ψ〉 and a set of
bipartite EWs {WA|Ā} detecting |ψ〉 for all possible A|Ā, the
following operator Ŵ

Ŵ =
m∑

k=1

ck Ĩk − |ψ〉〈ψ |, (3)
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is nonnegative over all biseparable states, where the ck and Ĩk

are defined above.
Proof. To prove the statement, it suffices to observe

Ŵ − WA|Ā =
m∑

k=1

ck Ĩk − OA|Ā

=
m∑

k=1

⎛
⎝ck Ĩk −

∑
|vi,A|Ā〉∈Sk∩SA|Ā

ci,A|Ā|�vi,A|Ā〉〈�vi,A|Ā|
⎞
⎠

�
m∑

k=1

ck

⎛
⎝Ĩk −

∑
|vi,A|Ā〉∈Sk∩SA|Ā

|�vi,A|Ā〉〈�vi,A|Ā|
⎞
⎠

� 0, (4)

where the inequalities can be derived directly from the defini-
tions of ck and Ĩk . �

The above construction can be interpreted geometrically.
That is, noise from different subspaces has different degrees
of influence on the entanglement properties of the target state.
The influence is characterized by the coefficients ck and a
small ck indicates that noise from this subspace hardly affects
the entanglement property of the target state. Therefore, Theo-
rem 1 can be seen as a robust GME witness construction with
the help of some prior knowledge of the target state, which
comes from the set of bipartite EWs {WA|Ā}.

Remarkably, Theorem 1 itself cannot be used as an oper-
ational framework for GME witness construction since the
resulting operators can be positive-semi-definite and fail to
detect any GME state. In fact, we can hardly expect a non-
trivial result when the set of bipartite EWs WA|Ā are chosen
randomly. Fortunately, standard tools exist for constructing
bipartite EWs based on positive maps. In the following, to
obtain an operational and general framework for GME witness
construction, we provide a promising choice on the set of
bipartite EWs, which is designed for the target states based
on partial transposition.

Under any given bipartition A|Ā, the target state |ψ〉
can be written in a Schmidt decomposition form |ψ〉 =∑rA−1

i=0

√
λi, A|Ā|iAiĀ〉, with rA being the corresponding Schmidt

rank. Note that here the local dimension of the Hilbert space
need not be fixed. Then we introduce a class of bipartite EWs
Wo,A|Ā to use them in the construction of GME witness

Wo,A|Ā =
rA−1∑
i, j=0

√
λi, A|Āλ j, A|Ā|iA jĀ〉〈iA jĀ| − |ψ〉〈ψ |. (5)

The choice of Wo,A|Ā is mainly based on two considerations.
First, Wo,A|Ā + |ψ〉〈ψ | naturally takes the decomposition
form in the Eq. (2). Second, the above Wo,A|Ā are a class of
optimal bipartite EWs. For a detailed illustration and discus-
sion on the Wo,A|Ā, please refer to Appendix A.

These bipartite EWs, together with Theorem 1, promise a
general framework to construct GME witnesses with certainty.
The explicit procedure is as follows.

(1) First, find the set S. For each bipartition M|M̄, calcu-
late the Schmidt decomposition of |ψ〉 with respect to M|M̄,

|ψ〉 =
rM|M̄−1∑

i=0

λi,M|M̄ |ϕi,M〉|ϕi,M̄〉, (6)

with rM|M̄ being the Schmidt rank under this bipartition. A
total of r2

M|M̄ vectors will be added to the set S, and each of
them given a corresponding coefficient. This is denoted by

{(
√

λi,M|M̄λ j,M|M̄ , |ϕi,M〉|ϕ j,M̄〉)}rM|M̄−1
i, j=0 . (7)

After going through all possible bipartitions, we will end up
with a set of vectors S as well as their corresponding coeffi-
cients.

(2) Second, find the finest division of S such that vectors
from different subsets are orthogonal with each other. This can
be achieved with the following steps.

(i) Put the first element of S into an empty subset S1.
(ii) For every other vector in S − S1, if it is not orthogo-

nal with all vectors in the set S1, it is added into S1. Repeat
this step until no new vector can be added to S1.

(iii) For the rest of the vectors in S − S1, repeat the
above two steps to obtain S − S1 − S2, S − S1 − S2 − S3,
. . ., until all the elements of S are classified.

(iv) A division S = ∑m
k=1 Sk is obtained.

(3) Third, calculate the subspace spanned by the vectors
in subset Sk . By performing Schmidt orthogonalization of the
vectors in Sk , we can derive the subspace spanned by these
vectors and obtain the identity operator Ĩk on this subspace.

(4) Finally, for each subset Sk , find the maximal coeffi-
cients ck attached to the vectors in it and construct a GME
witness using Theorem 1.

There are two remarks to note about this method. First, the
resulting witness from the above procedure is always finer
than the commonly used GME fidelity witness WF = λI −
|ψ〉〈ψ | for |ψ〉, with λ = maxA|Ā λ0,A|Ā (here it is assumed
that the Schmidt coefficients λi,A|Ā are in decreasing order).
To illustrate this, note that if the bipartite EWs are chosen
as the bipartite fidelity witness WF,A|Ā = λ0,A|ĀI − |ψ〉〈ψ |,
by applying Theorem 1, the obtained operator is nothing
but the WF . Whereas by checking WF,A|Ā − Wo,A|Ā � 0, it is
straightforward to verify that the above Wo,A|Ā is finer than the
bipartite fidelity witness WF,A|Ā. Therefore, when Theorem
1 is applied to the set of Wo,A|Ā, the resulting GME witness
strictly outperforms the corresponding fidelity witness WF .
Second, we start from a complete set of bipartite EWs in
the above construction, leading to EWs that detect genuine
multipartite entanglement. While if one starts from a smaller
set of bipartite EWs, the method allows also for flexible appli-
cations in verifying other kinds of multipartite entanglement,
e.g., characterizing the entanglement depth.

III. EXAMPLES

To help obtain a better understanding as well as quan-
titatively investigating the robustness of the framework, we
proceed to some explicit examples, where the white-noise
tolerance is employed as a figure of merit to evaluate its
performance in practice. The white-noise tolerance of some
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witness operator W for |ψ〉 is the critical value of p such that
the mixed state pI/d + (1 − p)|ψ〉〈ψ | is not detected by W.

A. W state

To investigate the asymptotic behavior of this frame-
work with an increasing system size, we start with
the n-qubit W state |Wn〉 = (|00 · · · 01〉 + |00 · · · 10〉 + · · · +
|10 · · · 00〉)/

√
n, which is widely used in quantum informa-

tion processing tasks. For the W state, we find the GME
witness (see Appendix B 1 for a proof)

W|Wn〉 = n − 1

n
Pn

1 +
√�n/2�(n − �n/2�)

n

(
Pn

0 + Pn
2

)
− |Wn〉〈Wn|, (8)

with Pn
i = ∑

m πm(|0〉⊗n−i|1〉⊗i )πm(〈0|⊗n−i〈1|⊗i ), where the
summation m is over all possible permutations of |0〉⊗n−i|1〉⊗i.
The W|Wn〉 recovers a class of EWs presented in Ref. [51],
which are the most powerful ones for the W state presently. Its
white-noise tolerance also tends to 1 for an increasing number
of qubits. While for the fidelity witness, its white-noise toler-
ance is 1/[n(1 − 1/2n)], tending to 1/n for large n.

B. Graph state

Graph states are a class of genuine multipartite entangled
states that are of great importance for measurement-based
quantum computation [52], quantum error correction [53],
and so on. In Refs. [45,54], the authors developed power-
ful entanglement witnesses for graph states. Our framework
suggests that there is still much room for improvement in the
robustness of these existing results.

More specifically, we focus on a typical class of graph
state: the n-qubit (n � 4) linear cluster states |Cln〉 in this
example. The |Cln〉 can be expressed by a set of stabilizers
{gi}n

i=1, with gi = Zi−1XiZi+1 (2 � i � n − 1), g1 = X1Z2, and
gn = Zn−1Xn, respectively, where the X and Z are Pauli opera-
tors. All the common eigenstates of these stabilizers introduce
a complete basis, i.e., the graph-state basis. This basis can
be denoted by |�a〉Cln , with �a = a1a2 · · · an ∈ {0, 1}n, such that
gi|�a〉Cln = (−1)ai |�a〉Cln for i = 1, . . . , n. Specifically, the |Cln〉
corresponds to |00 · · · 0〉Cln . When applied to the linear cluster
state, our framework results in a GME witness which is diag-
onal under the graph state basis (for the explicit construction
process, we refer to Appendix B 2)

WCln =

n/3�∑
k=1

∑
�a∈Vk

1

2k − 1
|�a〉Cln〈�a| − |Cln〉〈Cln|. (9)

Here a vector �a belongs to Vk if there exist at most k for the
number of “1”s in �a, such that their distance with each other
are larger than 2 at the same time (for instance, 1 101 100
belongs to V2 while 1 001 011 belongs to V3). Its white-noise
tolerance pCln of the WCln is presented in Fig. 1. It is observed
that the WCln can outperform the best-known class of EWs
provided in the Ref. [45] for n > 5. Meanwhile, the white-
noise tolerance pCln exhibits a similar asymptotic behavior as
in the first example, that is, tending to 1 for large n. We remark
that while the resulting EWs are quite robust, they are not
optimal. In fact, the optimality of the bipartite EWs employed

4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

FIG. 1. In this figure we illustrate the performance of WCln by
showing its white noise tolerance for n-qubit cluster state up to 20
qubits. It is plotted with a blue line with diamonds. As a comparison,
the red circle line is the best-known result introduced in Ref. [45].
Remarkably, the result in this paper outperforms this existing EW
since the number of qubit is larger than 5. Both of their white-noise
tolerance tends to 1. For the widely used fidelity witness of |Cln〉,
its white-noise tolerance is given by the black line with filled circles
tending to 1/2 with an increasing qubit number.

in the construction is not sufficient to guarantee the optimality
of the resulting GME witness. For some explicit target states,
we may either analytically or numerically optimize the result.
However, a systematic and operational improvement of this
framework remains an open problem. A brief discussion on
this issue is provided at the end of Appendix B 2.

C. Multipartite states admitting Schmidt decomposition

In the above examples, we benchmark our method with
some well-studied states. Now we turn to other less-
investigated states, where this method remains powerful. A
typical class is the multipartite states admitting Schmidt de-
composition. Without loss of generality, such a state takes the
form |φs〉 = ∑d−1

i=0

√
λi|i〉⊗n, where the λi are in decreasing

order. This class of states includes high-dimensional GHZ
states |GHZd

n〉 = ∑d−1
i=0 |i〉⊗n/

√
d as a typical case when all

the Schmidt coefficients are equal. For the multipartite states
admitting Schmidt decomposition, our method leads to a class
of optimal EWs (see Appendix B 3 for a proof)

W|φs〉 =
d−1∑

i, j=0,
i< j

n−1∑
r=1

∑
m

√
λiλ jπm(|i〉⊗r| j〉⊗n−r )πm(〈i⊗r |〈 j|⊗n−r )

+
d−1∑
i=0

λi|i〉〈i|⊗n − |φs〉〈φs|, (10)

where πm(|i〉⊗r | j〉⊗n−r ) is a permutation of |i〉⊗r | j〉⊗n−r

and the summation of m is over all possible permu-
tations. The white-noise tolerance of W|φs〉 is pW|φs〉 =
(1 − ∑d−1

i=0 λ2
i )/{1 − ∑d−1

i=0 λ2
i + 2n−1−1

dn [(
∑d−1

i=0

√
λi )2 − 1)]}.
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FIG. 2. In this figure, we show how the white-noise tolerance of different EWs varies with an increasing qudit number n, with
d = 3, 4, 5, 6, respectively. The target states are d-dimensional GHZ states, which belong to the class of states in Example 1. In each
subfigure, the white-noise tolerance of the GME witness in Eq. (10) is plotted by red line with diamonds, and in comparison the white-noise
tolerance of the normal fidelity witness W|ψs〉

F = I/d − |GHZd
n 〉〈GHZd

n | is plotted by blue circled line. As observed in this figure, for all local
dimension d � 3, our results increase and converge to 1 with the increasing system size. While for the normal fidelity witness, its white-noise
tolerance decreases when the number of qudits grows and eventually tends to 1 − 1/d .

The pW|φs〉 tends to 1 for large n when d > 2. As a comparison,
the best-known GME witness for this kind of state comes
from the fidelity-based method, with W

|ψs〉
F = λ0I − |φs〉〈φs|.

The white-noise tolerance of W
|ψs〉
F is (1 − λ0)/(1 − 1/dn),

which tends to 1 − λ0 � 1 − 1/d with an increasing
system size. For the special case of n-qudit GHZ states
|GHZd

n〉, the performance of our construction and the
fidelity-based method is compared in Fig. 2, where a
significant improvement is demonstrated. Note that for
n-qubit GHZ states |GHZn〉, the fidelity witness is already
optimal, and hence we start from the local dimension d = 3
in Fig. 2.

D. Four-qubit singlet state

Multiqubit singlet states are another interesting family of
multiqubit states. They are invariant under a simultaneous
unitary rotation on all qubits (U ⊗n|ψ〉〈ψ |(U †)⊗n = |ψ〉〈ψ |).
In the four-qubit case, all four-qubit singlet states live in a
two-dimensional subspace of the entire Hilbert space. Without
loss of generality, it can be denoted as

|ϕ4〉 = a|ψ−
12〉 ⊗ |ψ−

34〉 + eiθ b|ψ−
13〉 ⊗ |ψ−

24〉, (11)

with the constraint a2 + b2 + cos(θ )ab = 1 and |ψ−
12〉 being

the two-qubit singlet state (|01〉 − |10〉)/
√

2 on the first two
qubits. Specifically, for the choice of θ = π/2, we arrive at a
class of four-qubit singlet states decided by a single parameter
|ϕ4(a)〉 = a|ψ−

12〉 ⊗ |ψ−
34〉 + i

√
1 − a2|ψ−

13〉 ⊗ |ψ−
24〉 with a ∈

[−1, 1]. For this class of state |ϕ4(a)〉, our framework results
in the following GME witness:

W4(a) = αP4
2 + 1

2

(
P4

1 + P4
3

) + 1
4

(
P4

0 + P4
4

) − |ϕ4〉〈ϕ4|,
(12)

where α = max{[1 + 3(1 − a2)]/4, (1 + 3a2)/4} � 5/8.
While the fidelity-based witness for such state is
W′

4(a) = αI − |ϕ4〉〈ϕ4|. In Appendix B 4, a further discussion
of the entanglement detection for multiqubit singlet states is
proposed based on our framework.

Consequently, we provided a general framework for de-
tecting arbitrary target GME state in a noisy system by
constructing robust GME witnesses. First, by benchmarking
its performance on some well-studied states, it is observed that
this framework results in robust GME witnesses that perform
comparable to the current best witnesses for these states. For
other less-investigated states, the most widely used method
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to construct EW for them is the fidelity-based method. As
shown in these examples, our framework can provide a signif-
icant improvement compared with the fidelity-based method.
This also leads to the conjecture that a large amount of pure
GME states become fairly robust to noise as the system size
increases. Second, the advantage of our framework against
the fidelity-based method comes with no experimental over-
heads. This benefits from the fact that the

∑
k ck Ĩk term in this

construction is usually diagonal in some well-defined basis,
such as the graph-state basis and the computational basis.
Finally, it should be stressed that Theorem 1 can be applied
not only to the class of bipartite EWs shown in Eq. (5), but also
to other classes of bipartite EWs. This potentially results in
some different GME witnesses. A further example is provided
in Appendix A 3.

IV. APPLICATIONS OF THE RESULTING
GME WITNESSES

A. Detection of unfaithfulness

The unfaithful entangled states are a large class of states
that cannot be recognized with any fidelity witness and have
attracted both theoretical and experimental interests [55–58].
Therefore, given that we already gained access to construct
finer GME witnesses than the fidelity-based method, it is
natural to investigate their ability on the detection of unfaithful
GME states.

In general, deciding whether an entangled state is unfaith-
ful is a nontrivial task since one has to prove that the state
is not detected by all fidelity witnesses rather than a certain
one. In the bipartite case, a necessary and sufficient criterion
for a state ρAB to be unfaithful was proposed [55], while for
the multipartite case, the characterization of unfaithfulness
remains an open problem. To avoid this difficulty and verify
that an EW indeed detects unfaithfulness, we limit our at-
tention to a special class of states ρ(p) = pI/dn + (1 − p)ρ0

to show that there is an upper bound on the white-noise
tolerance of any fidelity witness for arbitrary state. Denote
WF = αI − ρ ′ as an arbitrary fidelity witness, then we can
derive its white-noise tolerance pF for arbitrary ρ(p) by solv-
ing Tr[WF ρ(p)] = 0, which leads to

pF = max

{
Tr(ρ0ρ

′) − α

Tr(ρ0ρ ′) − 1/dn
, 0

}
. (13)

Then it is straightforward to see that pF � (1 − 1/d )/(1 −
1/dn) due to the fact that Tr(ρ0ρ

′) � 1 and α � 1/d . Hence it
can be concluded that an EW can be employed to detect some
unfaithful entangled states as long as its white-noise tolerance
for some state is higher than (1 − 1/d )/(1 − 1/dn). This is
precisely the case for many GME witnesses constructed with
our framework. For example, in an n-qubit case, this upper
bound is 1/[2(1 − 1/2n)] and decreases to 1/2 as n grows.
While our framework provides large amount of EWs with
white-noise tolerance converging to 1, this allows for the
certification of unfaithfulness of many states in n-qubit case.

B. Estimating entanglement measures

Moreover, a witness operator is useful not only for entan-
glement certification, but also for entanglement quantification.

To start with, we briefly review the method developed in
Ref. [32] for optimally estimating some entanglement mea-
sure E given the expectation value of some witness operator
W. The task can be described as finding the lower bound

ε(w) = inf
ρ

{E (ρ)|Tr(ρW) = w}, (14)

where the infimum is taken over all states compatible with the
data w = Tr(ρW). Note that ε(w) is a convex function and
thus there exist bounds of the type

ε(w) � rw − c, (15)

for an arbitrary r. By inserting w = Tr(ρW) and E (ρ) �
ε(w), it is observed that

c � rTr(ρW) − E (ρ), (16)

should be satisfied for any ρ. Hence given a “slope” r, the
optimal constant c is

c = Ê (rW) := sup
ρ

{rTr(ρW) − E (ρ)}. (17)

Finally, an optimal lower bound is obtained after optimizing
r:

ε(w) = sup
r

{rw − Ê (rW)}. (18)

Here we limit our discussions into the nontrivial case, where
a negative expectation w of a witness operator is observed. In
this case, the optimal “slope” r is always negative.

Now, suppose that the W2 is a finer EW than the W1,
satisfying W2 � W1. It is straightforward to see that

Ê (rW1) � Ê (rW2). (19)

Therefore, when these two operators W1 and W2 have the
same expectation value w0,

ε2(w0) = sup
r

{rw0 − Ê (rW2)}

� sup
r

{rw0 − Ê (rW1)}

= ε1(w0). (20)

For the same target state ρ, the expectations w1 and w2 of
these two witness operators always satisfy w1 � w2, which
leads to ε2(w2) � ε2(w1) � ε1(w1). That is, a finer EW pro-
vides a tighter lower bound on the entanglement measure for
the same state. Hence, our framework enables a better esti-
mation of the entanglement measures of genuine multipartite
entanglement than the fidelity-based method.

To quantitatively investigate the improvement from these
new GME witness, we discuss the estimation on the ge-
ometry measure of genuine multipartite entanglement for
noisy n-partite d-dimensional GHZ states ρn,d (p) = pI/dn +
(1 − p)|GHZd

n〉〈GHZd
n |, with |GHZd

n〉 = ∑d−1
i=0 |i〉⊗n/

√
d . For

the arbitrary multipartite pure state |ψ〉, its geomet-
ric measurement of GME is defined by EG(|ψ〉) = 1 −
max|φbs〉 |〈φbs|ψ〉|2, with |φbs〉 being an arbitrary pure bisep-
arable state. The geometric measure of GME is extended to
mixed states by the convex roof construction

EG(ρ) = inf
pi,|ψi〉

∑
i

piEG(|ψi〉), (21)
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FIG. 3. In this figure, we choose d = 3 and n = 3, 5, 7, 9 as examples to compare the lower bound εn,d
o (p) (solid blue line) and εn,d

f (p)
(dashed red line) of geometric measure of GME from different EWs. It is observed that the advantage of EWs in this work become more
apparent with increasing system size. Note that, for higher local dimensions where d � 4, the lower bound εn,d

o (p) and εn,d
f (p) have similar

behavior. While in the qubit case, the EW Wo,|GHZd
n 〉 degenerates to the fidelity witness I/2 − |GHZn〉〈GHZn| for n-qubit GHZ state |GHZn〉,

and εn,2
o (p) is the same as εn,2

f (p).

where the minimization runs over all possible decompositions
ρ = ∑

i pi|ψi〉〈ψi|.
Based on the result in Ref. [59], we can derive a lower

bound εn,d
f (p) for EG[ρn,d (p)]

EG[ρn,d (p)] � εn,d
f (p) := 1 − γ (S), (22)

where γ (S) = [
√

S + √
(d − 1)(d − S)]2/d with S =

max{1, d (1 − p) + p/dn−1}. This is just the lower bound
related to the fidelity witness WF = I/d − |GHZd

n〉〈GHZd
n |.

Whereas it is proved in the previous section that finer EW is
accessible with our method, that is,

Wo,|GHZd
n 〉 =

d−1∑
i, j=0,

i< j

n−1∑
r=1

∑
m

1

d
πm(|i〉⊗r| j〉⊗n−r )πm(〈i⊗r |〈 j|⊗n−r )

+
d−1∑
i=0

1

d
|i〉〈i|⊗n − ∣∣GHZd

n

〉〈
GHZd

n

∣∣. (23)

With the expectation value wn,d (p) = Tr[ρn,d (p)Wo,|GHZd
n 〉]

from this finer EW, a lower bound εn,d
o (p) can be derived by

employing the technique developed in Ref. [32]

EG[ρn,d (p)] � εn,d
o (p) := sup

r

{
rwn,d (p) − ÊG

(
rWo,|GHZd

n〉
)}

,

(24)

with r being a real number and

ÊG
(
rWo,|GHZd

n〉
)

= sup
|ψ〉

sup
|φbs〉

{〈ψ |(rWo,|GHZd
n〉 + |φbs〉〈φbs|

)|ψ〉 − 1
}
, (25)

where the maximization runs over all pure state |ψ〉 and
biseparable state |φbs〉. Furthermore, in this special case, it can
be verified that one has to choose |φbs〉 as a state having the
largest overlap with |GHZd

n〉, which results in

ÊG
(
rWo,|GHZd

n〉
)=1 − r

2
+ 1

2

√
(1 − r)2 + 4r

d − 1

d
+ r

d
− 1.

(26)

By inserting this equation into Eq. (24), the lower bound
εn,d

o (p) can be solved directly.
In Fig. 3, we show the results for d = 3 and n = 3, 5, 7, 9

as examples, to illustrate the performance of our method
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with an increasing system size. As the number of subsystems
grows, the critical value of p tends to 1, when the lower bound
εn,d

o (p) vanishes. Meanwhile, the εn,d
o (p) is always larger than

the εn,d
f (p) above, which vanishes at p = 1 − 1/d for large n.

That is, the new EWs Wo,|GHZd
n 〉 are able to provide a better

estimation on the geometric measure of GME for ρn,d (p). It
remains open whether εn,d

o (p) equals EG[ρn,d (p)]. However,
it is still reasonable to expect that such new GME witnesses
can provide faithful estimations on entanglement measures
without the need for quantum tomography, as they are already
robust enough.

V. CONCLUSION AND OUTLOOK

In summary, we developed a general framework for gen-
uine multipartite entanglement detection around any given
target state and demonstrated its operability and universality
by applying it on typical GME states that arise in practice.
In particular, this is achieved using a method to bring any
complete set of bipartite EWs to a single GME witness. This
method allows to make full use of some prior information
about the target state to improve the noise resistance. In fact,
the resulting GME witnesses turn out to be quite robust and
whose white-noise tolerance converge to 1 in many cases. As a
consequence, this framework holds great practical potential in
real-life situations, particularly for detecting entanglement in
noisy multipartite or high-dimensional systems. This will play
a certain role in facilitating the solution of the very challeng-
ing problem of genuine multipartite entanglement detection.

In addition to genuine multipartite entanglement, we re-
mark that our method is highly flexible and admits natural
generalizations for detecting other types of entanglement. A
relevant case is entanglement detection in quantum networks,
which is currently under active investigation. In quantum
networks, multipartite entanglement exhibits novel features
due to the complex network topology [60–62] and better
techniques are urgently needed for characterizing the gen-
uine network multipartite entanglement. Finally, it will also
be interesting to seek a further extension of the framework
in high-order entanglement detection [10] as well as bound
entanglement detection.
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APPENDIX A: PROOF AND DISCUSSIONS
OF THE BIPARTITE EW IN EQ. (5)

1. Class of bipartite entanglement witness

Let |φ〉 be an arbitrary pure entangled state in the d ×
d-dimensional Hilbert space Hd ⊗ Hd . Without loss of gen-
erality, we can assume |φ〉 = ∑d−1

i=0

√
λi|ii〉, where all λi � 0

are Schmidt coefficients in decreasing order and
∑

i λi = 1.
We can define a positive operator Q as

Q =
d−1∑

i, j=0,
i< j

√
λiλ j (|i j〉 − | ji〉)(〈i j| − 〈 ji|), (A1)

which can be used for constructing an EW for |φ〉.
Lemma 1. The partial transpose of Q provides an optimal

EW W|φ〉
o , which W|φ〉

o reads

W|φ〉
o = Q� =

d−1∑
i, j=0

√
λiλ j |i j〉〈i j| − |φ〉〈φ|. (A2)

Proof. To prove that the W|φ〉
o is an EW, note that it is

of the form Q� with Q being positive-semi-definite (Q � 0).
Thus for all separable states Tr(ρsepW

|φ〉
o ) = Tr(ρ�

sepQ) � 0.
Meanwhile, Tr(W|φ〉

o |φ〉〈φ|)=∑
i λ

2
i − 1=−∑

i �= j λiλ j < 0.
Then W|φ〉

o is an EW by definition.
To show the optimality of W|φ〉

o , it is sufficient to prove
that the set of pure separable states {|φ1〉 ⊗ |φ2〉} satisfying
〈φ1|〈φ2|Wo|φ1〉|φ2〉 = 0 span the entire Hilbert space Hd ⊗
Hd [29]. For the qubit case, we have W(2)

o = √
λ0λ1(|01〉 −

|10〉)(〈01| − 〈10|)� . It is easy to verify that the set of separa-
ble states {|00〉, (|0〉 + |1〉)(|0〉 + |1〉)/2, (|0〉 + i|1〉)(|0〉 −
i|1〉)/2, |11〉} satisfies Tr(ρsepW

(2)
o ) = 0. This set of states

spans the entire Hilbert space H2 ⊗ H2. In fact, it was shown
that any decomposable EW acting on H2 ⊗ Hd is optimal if
and only if it takes the form W = Q� for some Q � 0 [63].

Similarly, in the qudit case (d > 2), there exist separa-
ble states {|ee〉, (|e〉 + | f 〉)(|e〉 + | f 〉)/2, (|e〉 + i| f 〉)(|e〉 −
i| f 〉)/2, | f f 〉} satisfying Tr(ρsepW

|φ〉
o ) = 0, for each pair

0 � e < f � d − 1. These states span the same space with
{|ee〉, |e f 〉, | f e〉, | f f 〉}. By iterating over all e < f , we end
up with a set of separable states spanning the entire space
Hd ⊗ Hd . Thus the EW W|φ〉

o is optimal. This finishes the
proof. �

2. Detection of bipartite unfaithful state

Remarkably, for the entangled state |φ〉, the most widely
used fidelity witness reads W|φ〉

F = λ0I − |φ〉〈φ|. It is straight-
forward to observe that W|φ〉

F − W|φ〉
o � 0, which means that

the W|φ〉
o is finer than the W

|φ〉
F . This leads to a byproduct

that the W|φ〉
o can detect unfaithful states. Unfaithful states

are entangled states that cannot be detected by all fidelity
witnesses [48], namely, an entangled state ρ is unfaithful if
and only if Tr(ρW |ψ〉

F ) � 0 for all |ψ〉. Therefore, the relation-
ship W

|φ〉
F − W|φ〉

o � 0 itself is not sufficient to demonstrate
that the extra entangled states detected by W|φ〉

o is unfaithful.
A further clarification is required to justify the statement that
W|φ〉

o detects an unfaithful state.
Now we would like to provide qualitative and quantitative

characterizations on the ability to detect unfaithfulness of the
W|φ〉

o . Consider the class of states ρ|φ〉(p)= pI/d2+(1−p)
|φ〉〈φ|. From Observation 1 in Ref. [55], it is known that
such states are faithful if and only if they are detected by
Wm = I/d − |φ+

d 〉〈φ+
d |, with |φ+

d 〉 being the maximally en-
tangled state

∑d−1
i=0 1/

√
d|ii〉. By solving Tr[ρ|φ〉(p)Wm] = 0,
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TABLE I. Maximal unfaithful length ld from the class of EWs
W|φ〉

o . We remark that the optimization of ld may arrive at a local
maximum. We use enough random starting points to support the
claim that we arrive at the global maximum.

d 3 4 5 6 7

ld 0.2679 0.4202 0.5195 0.5896 0.6624

we obtain that the white-noise tolerance of Wm for |φ〉 is

p|φ〉
f =

∑d−1
i, j=0

√
λiλ j − 1∑d−1

i, j=0

√
λiλ j − 1

d

. (A3)

That is, ρ|φ〉(p) is faithful when p < p|φ〉
f . Similarly, we can

obtain the white-noise tolerance of W|φ〉
o for |φ〉, which is

p|φ〉
o = 1 − ∑d−1

i=0 λ2
i

1 − ∑d−1
i=0 λ2

i + 1
d2

( ∑d−1
i, j=0

√
λiλ j − 1

) . (A4)

It can be observed that

1/p|φ〉
o − 1

1/p|φ〉
f − 1

=
(∑d−1

i, j=0

√
λiλ j − 1

)2

d (d − 1)
(
1 − ∑

i λ
2
i

)

= 1 +
(∑

i �= j

√
λiλ j

)2 − d (d − 1)
(
1 − ∑

i λ
2
i

)
d (d − 1)

(
1 − ∑

i λ
2
i

)

� 1 + d (d − 1)
(∑

i �= j λiλ j
) − d (d − 1)

(
1 − ∑

i λ
2
i

)
d (d − 1)

(
1 − ∑

i λ
2
i

)

= 1 + d (d − 1)
[( ∑d−1

i=0 λi
)2 − 1

]
d (d − 1)

(
1 − ∑

i λ
2
i

) = 1. (A5)

In other words, p|φ〉
f � p|φ〉

o , where the inequality comes from
the Cauchy-Schwarz inequality, and takes equality if d = 2
or λi = 1/d for all i. Therefore, the W|φ〉

o can always detect
an unfaithful state ρ|φ〉(p) for p ∈ [p|φ〉

f , p|φ〉
o ), unless |φ〉 is a

two-qubit state or maximally entangled.
As a quantitative investigation, we numerically maximize

the interval length ld of [p|φ〉
f , p|φ〉

o ) over all |φ〉 for different
local dimension d . We name ld the maximal unfaithful length
from the class of EWs W|φ〉

o and the results are listed in Table I
for d = 3, 4, . . . , 7. It can be seen that ld grows significantly
with an increasing dimension d , indicating that the W|φ〉

o can
greatly outperform the fidelity witness. This is also in agree-
ment with the statement that most states are unfaithful as
claimed in Ref. [48].

Except for the ld , one may be also interested in the average
performance of this different class of EWs on unfaithfulness
detection. As a comparison, it is natural to consider two inter-
vals [p|φ〉

e , p|φ〉
f ) and [p|φ〉

o , p|φ〉
f ), where the p|φ〉

e is the critical
value such that ρ|φ〉(p) becomes separable. The first interval
contains all unfaithful ρ|φ〉(p), while the second contains the
part that can be detected by the class of W|φ〉

o . Then we can
use avg|φ〉(p|φ〉

o − p|φ〉
f )/(p|φ〉

e − p|φ〉
f ) to evaluate the average

TABLE II. Average performance of W|φ〉
o for detecting unfaith-

fulness. For different local dimension d , the average is taken by
randomly generating 107 pure states in Hd ⊗ Hd . Since any pure
bipartite state admits a Schmidt decomposition |φ〉 = ∑

i

√
λi|ii〉,

we replace the randomly generated pure bipartite states with
random vectors (

√
λ0, . . . ,

√
λd−1) uniformly distributed on the d-

dimensional unit sphere. Moreover, the critical value p|φ〉
e is d2√

λ0λ1
1+d2√

λ0λ1
according to the results in Ref. [64], assuming that the Schmidt
coefficients λi are in decreasing order.

d 3 4 5 6 7

avg|φ〉(p|φ〉
o − p|φ〉

f ) 0.0804 0.0969 0.0963 0.0909 0.0848

avg|φ〉(p|φ〉
e − p|φ〉

f ) 0.1190 0.1460 0.1457 0.1379 0.1286

avg|φ〉
p|φ〉

o −p|φ〉
f

p|φ〉
e −p|φ〉

f

0.5605 0.5937 0.6089 0.6181 0.6248

performance of W|φ〉
o for detecting unfaithfulness, as shown

in Table II. It is observed that a large percentage of unfaithful
states are detected. This is also the premise that GME wit-
nesses constructed from this class of bipartite EWs can detect
a multipartite unfaithful state.

3. Generalization of Lemma 1

Finally, we provide a generalization of Lemma 1. For the
above entangled state|φ〉, we can construct another positive
operator

Q̃ =
d−1∑

i, j=0,
i< j

(αi j |i j〉 − βi j | ji〉)(αi j〈i j| − βi j〈 ji|), (A6)

instead of Q, where αi jβi j = √
λiλ j and αi j, βi j are all

positive. The operator W̃o = Q̃� is also optimal EW
and applicable in our framework for GME witness
construction. Here, the proof of the optimality of W̃o is
similar to the case in Lemma 1. It is sufficient to verify
that the set of states {|ee〉, | f f 〉, (

√
βe f |e〉 + √

αe f | f 〉) ⊗
(
√

αe f |e〉 + √
βe f | f 〉), (

√
βe f |e〉 + i

√
αe f | f 〉) ⊗ (

√
αe f |e〉 −

i
√

βe f | f 〉)}d−1
e, f =0 have zero expectation value when measured

with W̃o and span the entire d2-dimensional Hilbert space.

APPENDIX B: PROOF OF THE EXAMPLES

In this section, we will show explicitly how this con-
struction can be applied to some commonly used multipartite
entangled states and make further discussions on the results.

1. W state

The W state is an important class of multiqubit entangled
states. A class of EWs for the W state which can outper-
form significantly than the fidelity witness was proposed in
Ref. [51]. In Ref. [51], the authors constructed an operator at
first and then proved that this operator was a decomposable
bipartite EW with respect to all possible bipartitions. Contrar-
ily, our construction is in the opposite direction. We construct
a complete set of bipartite EWs for the W state and lift them
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to a GME witness. Although different methods were used, our
construction recovers the result in Ref. [51].

We start with the simplest three-qubit case, where the target
state is

|W3〉 = 1√
3

(|001〉 + |010〉 + |100〉). (B1)

For the bipartition 1|23, the EW constructed from Lemma 1 is
of the form

W
|W3〉
1|23 =

√
2

3
(|000〉〈000| + |1ψ+〉〈1ψ+|)

+ 2

3
|0ψ+〉〈0ψ+| + 1

3
|100〉〈100| − |W3〉〈W3|,

(B2)

with |ψ+〉 = (|01 + 10〉)/
√

2. For the other two bipartitions,
the W2|13 and W3|12 can be obtained after a permutation of the
qubits. Then for |W3〉, the set S reads

S = {|000〉〈000|, |001〉〈001|, |010〉〈010|, |100〉〈100|,
|0ψ+〉〈0ψ+|, |02ψ

+
13〉〈02ψ

+
13|, |ψ+0〉〈ψ+0|,

|1ψ+〉〈1ψ+|, |12ψ
+
13〉〈12ψ

+
13|, |ψ+1〉〈ψ+1|}. (B3)

These states in S can be grouped into three subsets according
to the procedure in the main text:

S1 = {|000〉〈000|},
S2 = {|001〉〈001|, |010〉〈010|, |100〉〈100|,

|0ψ+〉〈0ψ+|, |02ψ
+
13〉〈02ψ

+
13|, |ψ+0〉〈ψ+0|},

S3 = {|1ψ+〉〈1ψ+|, |12ψ
+
13〉〈12ψ

+
13|, |ψ+1〉〈ψ+1|}, (B4)

and the corresponding αk by Theorem 1 is

α1 =
√

2/3, α2 = 2/3, α3 =
√

2/3, (B5)

respectively. This result in a GME witness

W|W3〉 =
√

2

3
(|000〉〈000| + |101〉〈101| + |011〉〈011|

+ |110〉〈110|) + 2

3
(|001〉〈001| + |010〉〈010|

+ |100〉〈100|) − |W3〉〈W3|. (B6)

Moreover, by employing the generalization of Lemma 1 in
Eq. (A6), we obtain

W′
1|23 = [(a|0〉|00〉 − b|1〉|ψ+〉)(a〈0|〈00| − b〈1|〈ψ+|)]�1 ,

(B7)

where a, b are positive numbers and satisfy ab = √
2/3. The

other two bipartite EWs are obtained immediately after rear-
rangement of the qubits. For this set of bipartite EWs, the EW
W|W3〉 can be generalized into

W′
|W3〉 = a2|000〉〈000| + b2(|101〉〈101| + |011〉〈011|

+ |110〉〈110|) + 2
3 (|001〉〈001| + |010〉〈010|

+ |100〉〈100|) − |W3〉〈W3|. (B8)

In n-qubit cases, if a subsystem A contains m qubits, the
corresponding bipartite EW from Lemma 1 is of the form (1 �
m � n − 1)

Wm|n−m =
√

m(n − m)

n2
|ψ〉m|n−m〈ψ |�A , (B9)

where |ψ〉m|n−m = |0〉⊗m
A|0〉⊗n−m

Ā − |Wm〉A|Wn−m〉Ā. Then
the set S for |Wn〉 can still be grouped into three subsets

{|0⊗n〉}, {|πm(0⊗n−11)〉}, {|π ′
m(0⊗n−21⊗2)〉}, (B10)

with the corresponding coefficients αk being

α1 = max
m

√
m(n − m)

n2
=

√�n/2�(n − �n/2�)

n
,

α2 = max
m

n − m

n
= n − 1

n
,

α3 = max
m

√
m(n − m)

n2
=

√�n/2�(n − �n/2�)

n
. (B11)

Therefore we arrive at the following W|Wn〉:

W|Wn〉 = n − 1

n
P1 +

√�n/2�(n − �n/2�)

n
(|0〉〈0|⊗n + P2)

− |Wn〉〈Wn|, (B12)

with Pi = ∑
m πm(|0〉⊗n−i|1〉⊗i )πm(〈0|⊗n−i〈1|⊗i ), where the

summation m is over all possible permutations of |0〉⊗n−i|1〉⊗i.
The EW W|Wn〉 can also be generalized in a similar man-

ner with the W|W3〉 so as to recover the results of Ref. [51].
Although ending up with the same witness operator, our con-
struction provides a different insight on why the W|Wn〉 takes
such a form.

2. Graph states

Before discussing the construction of GME witnesses for
the graph states, we first give a brief introduction to the
graph states. A graph is a pair G = (V, E ) of sets where the
elements of V are called vertices and the elements of E are
edges connecting the vertices. For example, (1, 2) represents
the edge connecting vertex 1 and 2. Two vertices are called
neighboring if they are connected by an edge. A graph can
also be represented by the adjacency matrix � with

�i j =
{

1, if (vi, v j ) ∈ E ,

0, otherwise. (B13)

Then, an n-qubit graph state |G〉 is defined with an n-vertex
graph G whose vertices correspond to qubits and edges corre-
spond to control-Z (CZ) gate between two qubits. The graph
state can be expressed with a set of stabilizers

gi = Xi

∏
j∈N (i)

Zj, i = 1, . . . , n, (B14)

where Xi and Zi are the Pauli operators on qubit (vertex) i, and
N (i) is the neighborhood of i (i.e., the set of vertices directly
connected to i by edges). These operators gi commute with
each other and |G〉 is the common eigenstate of them such
that

∀i = 1, . . . , n, gi|G〉 = |G〉. (B15)
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Moreover, all the 2n common eigenstates of these gi form a
basis named a graph-state basis. Each term in this basis is
uniquely decided by the eigenvalues of gi. As the eigenvalues
of gi are either 1 or −1, the graph-state basis can be denoted
by a vector �a ∈ {0, 1}n such that

∀i = 1, . . . , n, gi|a1 · · · an〉G = (−1)ai |a1 · · · an〉G. (B16)

The density matrix of |�a〉G is

|a1 · · · an〉G〈a1 · · · an| =
n∏

i=1

(−1)ai gi + I

2
. (B17)

Specifically, the graph state |G〉 is denoted as |0 · · · 0〉G.
Remarkably, by choosing the graph-state basis instead of

the computational basis, the calculation of GME witness con-
struction can be greatly simplified without needing to perform
the Schmidt decomposition. First, the partial transposition of
a graph state is diagonal under the graph-state basis, namely,
|�a0〉G〈�a0|TA is of the form

∑
�a c�a|�a〉G〈�a|. Meanwhile, the op-

erator Q in Eq. (A1) can be seen as a linear combination
of all the eigenstates with a negative eigenvalue of |G〉〈G|TA .
Therefore, when Lemma 1 is applied to the graph state |G〉, the
resulting bipartite EW W

|G〉
o,A|Ā is diagonal in the graph-state ba-

sis. In this case, the vectors in the set S can be taken as the base
vectors |�a〉G, such that the construction in Theorem 1 is easy to
achieve. In the following, we propose an explicit procedure for
finding the decomposition of W|G〉

o,A|Ā in the graph-state basis.

First, for the given bipartition A|Ā, the adjacency matrix �

can be decomposed into the following blocks:(
GA �A|Ā
�A|Ā GĀ

)
. (B18)

We denote k = rank(�A|Ā) as the rank of the submatrix �A|Ā.
It is known that a graph state can be transformed into tensor
product of k Bell states across the partitions A and Ā, using
CZ gates within each partition and local complementation
operations [42]. Here the local complementation τa on a vertex
a is defined as follows: τa : G → τa(G), such that the edge
set E ′ of the new graph τa(G) is E ′ = E ∪ E [N (a), N (a)] −
E ∩ E [N (a), N (a)]. The local complementation τa(G) can be
implemented with the following local unitary operation [42]:

Ua(G) = (−iXa)1/2
∏

b∈N (a)

(iZb)1/2. (B19)

After this operation, |G〉 is turned into |τa(G)〉 and the stabi-
lizers of |G〉 transform according to the following equations:

Ua(G)gG
b Ua(G) = gτa(G)

a gτa(G)
b , if b ∈ N (a);

Ua(G)gG
b Ua(G) = gτa(G)

b , if b /∈ N (a). (B20)

Meanwhile, we remark that a bipartite EW WA|Ā for |G〉 is
transformed into another bipartite EW W′

A|Ā for |G′〉 after

some local unitary operation with respect to A|Ā. Hence our
task for constructing bipartite EW of the initial graph state |G〉
is turned into finding a bipartite EW for |Bell〉⊗k by employing
Lemma 1; a much easier task compared with the initial one.

Second, after reversing the above transformation process
from |G〉 to |Bell〉⊗k , the EW for |Bell〉⊗k which is diagonal
in the Bell-state basis will be turned back into a bipartite EW

FIG. 4. Representation of n-qubit linear cluster state with graph,
where n qubits are connected one by one with CZ gates.

for |G〉 which is diagonal in graph-state basis. With the above
foundation, we move on to an explicit discussion on a typical
class of graph states: the linear cluster state |Cln〉. THe linear
cluster state is represented with the graph in Fig. 4.

We call the bipartition A|Ā a rank-k bipartition if
rank(�A|Ā) = k, with the �A|Ā defined in Eq. (B18). All rank-1
bipartitions of the linear cluster state have only two possible
types of the subgraph on the boundary �A|Ā (Fig. 5). Any
other edge is deleted by CZ gates within each partition. For
the type-1 subgraph Gi,i+1, the bipartite EW reads

WGi,i+1 = 1
2 (|0i0i+1〉Gi,i+1〈0i0i+1| + |0i1i+1〉Gi,i+1〈0i1i+1|
+ |1i0i+1〉Gi,i+1〈1i0i+1| + |1i1i+1〉Gi,i+1〈1i1i+1|)
− |Gi,i+1〉〈Gi,i+1|, (B21)

by employing Lemma 1, where the state vectors like
|0i1i+1〉Gi,i+1 are graph-state basis-defined in Eq. (B16), and
the “0”s on the other vertices are omitted for simplicity here
and after. Note that the gGi,i+1

j can be transformed back to the

gCln
j by employing CZ gates without disturbing the eigenvalue

of the state vector. Therefore, the bipartite EW for the original
state |Cln〉 is

WA|Ā = 1
2 (|Cln〉〈Cln| + |0i1i+1〉Cln〈0i1i+1|
+ |1i0i+1〉Cln〈1i0i+1| + |1i1i+1〉Cln〈1i1i+1|)
− |Cln〉〈Cln|, (B22)

when formulated in the graph-state basis. After normalizing
the WA|Ā to meet the constraint Tr(WA|Ā|Cln〉〈Cln|) = −1, we
obtain

W′
A|Ā = |0i1i+1〉Cln〈0i1i+1| + |1i0i+1〉Cln〈1i0i+1|

+ |1i1i+1〉Cln〈1i1i+1| − |Cln〉〈Cln|, (B23)

as the bipartite EW used in our construction. This bipartite
EW contributes the following terms to the set S:

{|0i1i+1〉Cln , |1i0i+1〉Cln , |1i1i+1〉Cln}. (B24)

This set is denoted as Si,type 1 = {01, 10, 11}i,i+1 for short.

+ 1

+ 1

+ 2

type-1 type-2

FIG. 5. Possible subgraphs on the boundary across rank-1 bi-
partition. For a given bipartition A|Ā, if rank(�A|Ā) = 1, then the
subgraph across this bipartition has only the above two types.
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Meanwhile, the type-2 subgraph Gi,i+1,i+2 in Fig. 5 can be
transformed into the type-1 subgraph after applying CZ,(i,i+2),
Ui(Gi,i+1,i+2), and CZ,(i,i+2) sequentially. We remark that the
local complementation operation Ui(Gi,i+1,i+2) may change
the corresponding eigenvalue when gGi,i+1,i+2

j turns into gGi,i+1

j ,
which is decided by Eq. (B20). Therefore, these kinds of
bipartitions contribute the following set of states to the set S:

Si,type 2 = {010, 101, 111}i,i+1,i+2. (B25)

In summary, all the rank-1 bipartitions contribute an operator
R1 by our construction. If we denote the V1 as the set of vectors
from {0, 1}n such that the maximal distance between the “1”s
appearing in each vector is smaller than 3, the R1 can be
formulated as

R1 =
∑
�a∈V1

|�a〉Cln〈�a|. (B26)

For rank-2 bipartitions, their boundaries are composed of
two rank-1 boundaries. For example, if there are two type-1
parts, the bipartite EW takes the form

WA|Ā = 1

4

∑
�a∈{0,1}4

|�ai,i+1, j, j+1〉Cln〈�ai,i+1, j, j+1| − |Cln〉〈Cln|.

(B27)

After normalization, the bipartite EW reads

WA|Ā = 1

3

∑
�a∈{0,1}4,

�a �=�0

|�ai,i+1, j, j+1〉Cln〈�ai,i+1, j, j+1| − |Cln〉〈Cln|.

(B28)

Such a bipartite EW contributes the following new terms to
the set S:

Si,type 1 ⊗ S j,type 1 = {0101, 0110, 0111, 1001, 1010, 1011,

1101, 1110, 1111}i,i+1, j, j+1. (B29)

The contribution of other possibilities can be decided in a
similar manner as above for the type-2 subgraph. All these
rank-2 bipartitions contribute a set V2 to S. Here a vector from
{0, 1}n belongs to V2 if there exist at most two “1”s whose
distance is larger than 2 at the same time in the vector. Finally,
all the rank-2 bipartitions introduce an operator R2 to our
construction, with

R2 =
∑
�a∈V2

1

3
|�a〉Cln〈�a|. (B30)

For a rank-k bipartition, the subgraph on the boundary is
nothing but a combination of k rank-1 part. After repeating
the above process, it is shown that all the rank-k bipartitions
contribute the following operator Rk:

Rk =
∑
�a∈Vk

1

2k − 1
|�a〉Cln〈�a|. (B31)

A vector �a belongs to Vk if there exist at most k for the number
of “1”s in �a, such that their distance with each other are larger
than k at the same time. It can be observed immediately that
k � 
n/3�, indicating that the partition whose rank is higher
than 
n/3� gives no extra contribution.

After considering all the bipartitions, we end up with the
GME witness WCln introduced in the main text, namely,

WCln =

n/3�∑
k=1

Rk − |Cln〉〈Cln|. (B32)

As an example, for the four-qubit cluster state

WCl4 =
∑
�a∈V1

|�a〉G〈�a| + 1

3

∑
�a∈V2

|�a〉G〈�a| − |G〉〈G|, (B33)

where V1 is the set {0001, 0010, 0011, 0100,

0101, 0110, 0111, 1000, 1010, 1100, 1110}, and V2 is
the set {1001, 1011, 1101, 1111}.

Remarkably, in the four-qubit case, the best-known EW is
[45]

W
opt
Cl4

=
∑
�a∈V1

|�a〉G〈�a| − |G〉〈G|. (B34)

It is finer than the WCl4 above. That is, while our approach is
already quite powerful, there is still room for improvement. In
this particular case, the improvement can be achieved by an
elaborate choice of the set of bipartite EWs, instead of using
Lemma 1 only. If the bipartite EWs for 13|24 and 14|23 in the
above construction are replaced by

W13|24 = |0001〉Cl4〈0001| + |0100〉Cl4〈0100|
+ |0101〉Cl4〈0101| + |0011〉Cl4〈0011|
+ |0110〉Cl4〈0110| + |0111〉Cl4〈0111| − |Cl4〉〈Cl4|,

W14|23 = |0001〉Cl4〈0001| + |0010〉Cl4〈0010|
+ |0101〉Cl4〈0101| + |0011〉Cl4〈0011|
+ |0110〉Cl4〈0110| + |0111〉Cl4〈0111| − |Cl4〉〈Cl4|,

(B35)

respectively, we can recover the W
opt
Cl4

with Theorem 1. With
this example on the four-qubit cluster state, we highlight that
Lemma 1 is just an alternative choice which ends up with
robust GME witnesses. Our construction, in fact, allows a
flexible choice on the set of EWs to be lifted to the mul-
tipartite case, and a suitable choice can further improve its
performance. Moreover, it should be remarked that our dis-
cussion was based on the partial transposition throughout this
paper to obtain higher noise resistance. If bipartite EWs in
the construction are designed by other positive maps (e.g., the
Choi’s map), different classes of GME witness can be found.
This may help to harness the full potential of Theorem 1 in
future work.

3. Multipartite states admitting Schmidt decomposition

A special case of multipartite entangled states is the multi-
partite states admitting Schmidt decomposition. Without loss
of generality, we can assume that such states are of the form
|φs〉 = ∑d−1

i=0

√
λi|i〉⊗n with λi � 0 in decreasing order. Then
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Lemma 1 gives a set of bipartite EWs W|φSD〉
A|Ā :

W
|φSD〉
A|Ā =

d−1∑
i, j=0

√
λiλ j |i〉⊗k

A| j〉⊗n−k
Ā〈i|⊗k

A〈 j|⊗n−k
Ā − |φs〉〈φs|,

(B36)

where k = |A| is the number of qudits in subsystem A. For
these bipartite EWs, the set S is

{πm(|i〉⊗r | j〉⊗n−r )}r,i, j,πm ∪ {|l〉⊗n}d−1
l=0 , (B37)

with r = 1, 2, . . . , n − 1, i, j = 0, 1, . . . , d − 1 (i < j) and
πm being all possible permutations of |i〉⊗r | j〉⊗n−r . Note that
all state vectors in S are orthogonal with each other, thus our
construction ends up with the following multipartite EW:

W|φs〉 =
d−1∑

i, j=0,
i< j

n−1∑
r=1

∑
m

√
λiλ jπm(|i〉⊗r| j〉⊗n−r )πm(〈i⊗r |〈 j|⊗n−r )

+
d−1∑
i=0

λi|i〉〈i|⊗n − |φs〉〈φs|, (B38)

where the summation of m is over all possible permutations
πm(|i〉⊗r| j〉⊗n−r ) of |i〉⊗r | j〉⊗n−r .

Moreover, similar to the case of proving the optimality
of W|φ〉

o in the first section, we can verify the optimality of
W|φs〉 by checking that all the biseparable states satisfying
Tr(W|φs〉ρbs) = 0 span the entire Hilbert space H⊗n

d .
For the special case of n-qudit GHZ states, the white-noise

tolerance of W|GHZd
n 〉 is dn−1

dn−1+2n−1−1 and converges to 1 for large
n as long as d > 2. It is also noted that in Ref. [50], a slightly
lower bound dn−1

dn−1+2n−1−1+ 1
d−2

was obtained by the construction

of multipartite nonpositive map that were positive on the sub-
set of biseparable states. However, such a map and W|GHZd

n 〉
detects fairly different class of GME states, although they have
similar performance under white noise.

4. GME witness for multiqubit singlet states

Multiqubit singlet states are of particular experimental in-
terest, while the GME witness for them is less investigated.
In this example, it is shown that our framework works well
for the multi-qubit singlet states. In the main text, we provide
the result for a specific class of four-qubit singlet states. How-
ever, here we begin with the discussion on general four-qubit
singlet states

|ϕ4〉 = a|ψ−
12〉 ⊗ |ψ−

34〉 + eiθ b|ψ−
13〉 ⊗ |ψ−

24〉, (B39)

with the constraint a2 + b2 + cos(θ )ab = 1 and |ψ−
12〉 being

the two-qubit singlet state (|01〉 − |10〉)/
√

2 on the first two
qubits. By performing our construction procedure for all four-
qubit singlet states, it is observed that the set S is always
divided into five subsets and the identity operators on the
corresponding subspaces are just {P4

i }4
i=0 [the P4

i is defined
below Eq. (B12)]. More specifically, the resulting witness is

W4 = c2P
4
2 + c1

(
P4

1 + P4
3

) + c0
(
P4

0 + P4
4

) − |ϕ4〉〈ϕ4|,
(B40)

with the coefficients decided by

c2 = max
{
1 − 3

4 a2, 1 − 3
4 b2, 3

4 (a2 + b2) − 1
2

}
,

c1 = 1
2 ,

c0 = max
{

1
2 − 1

4 (a2 + b2), 1
4 a2, 1

4 b2
}
. (B41)

Specifically, with a choice of θ = π/2, this recovers the EW
in the main text. While if a = −1, b = 1, and θ = 0, |ϕ4〉 be-
comes a biseparable state |ψ−

14〉 ⊗ |ψ−
23〉 and the corresponding

EW becomes positive-semi-definite.
When the number of qubit grows, achieving a general ex-

pression becomes more complicated. To investigate the GME
witness construction in this case, we consider the following
six-qubit singlet state:

|ϕ6〉 = 1
2 (|ψ−

12〉 ⊗ |ψ−
34〉 ⊗ |ψ−

56〉 + i|ψ−
13〉 ⊗ |ψ−

24〉 ⊗ |ψ−
56〉

+ i|ψ−
12〉 ⊗ |ψ−

35〉 ⊗ |ψ−
46〉 − |ψ−

13〉 ⊗ |ψ−
25〉 ⊗ |ψ−

46〉),

(B42)

for which we arrive at the GME witness

W6 = 5
8P

6
3 + 1

2

(
P6

2 + P6
4

) + 1
4

(
P6

1 + P6
5

)
+ 1

8

(
P6

0 + P6
6

) − |ϕ6〉〈ϕ6|. (B43)

Based on these results, it is reasonable to conjecture that for
some 2n-qubit singlet state |ϕ2n〉, there exists a GME witness
taking the form

W2n = cnP
2n
n +

n−1∑
i=0

ci
(
P2n

i + P2n
2n−i

) − |ϕ2n〉〈ϕ2n|, (B44)

with ci � ci−1 � 0 for i = 1, . . . , n and cn is the maximal
squared overlap between |ϕ6〉 and biseparable states. More-
over, if ci scales with (1/2)−(n−i+1) as in the four- and
six-qubit case, a high white-noise tolerance tending to 1 can
be expected for a large number of qubits.
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