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Complementary relations of entanglement, coherence, steering,
and Bell nonlocality inequality violation in three-qubit states
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We put forward complementary relations of entanglement, coherence, steering inequality violation, and Bell
nonlocality for arbitrary three-qubit states. We show that two families of genuinely entangled three-qubit pure
states with a single parameter exist, and they exhibit maximum coherence and steering inequality violation for
a fixed amount of negativity, respectively. It is found that the negativity is exactly equal to the geometric mean
of bipartite concurrences for the three-qubit pure states, although the negativity is always less than or equal to
the latter for three-qubit mixed states. Moreover, the complementary relation between negativity and first-order
coherence for tripartite entanglement states is established. Furthermore, we investigate the close relation between
the negativity and the maximum steering inequality violation. In addition, the complementary relation between
negativity and the maximum Bell-inequality violation for arbitrary three-qubit states is obtained. The results
provide reliable evidence of fundamental connections among entanglement, coherence, steering inequality
violation, and Bell nonlocality.
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I. INTRODUCTION

Entanglement is considered to be the most fundamental
feature of quantum mechanics. It has many potential applica-
tions in quantum information processing, including canonical
ones: quantum cryptography [1], quantum teleportation [2],
and dense coding [3]. It occurs when the state of a composite
system cannot be written as a product of states of each subsys-
tem. The information-theoretic quantification of entanglement
is connected with its usefulness in terms of quantum comput-
ing and communication. There are a number of measures for
quantifying the bipartite or multipartite entanglement, such as
the concurrence [4], entanglement of formation [5], negativity
[6,7], the geometric mean of bipartite concurrences (GBC)
[8,9], and so on. Although these measures are regarded differ-
ently, there exist many evidences to show that they are in fact
strongly related [10–12], and even potentially equivalent [13].
For example, Wootters found a functional relation between the
entanglement of formation and concurrence [4].

Coherence, directly related to interference phenomena,
describes the coherent superposition of states of interaction
fields [14,15]. It has been regarded as a useful physical re-
source possessing different computable measures, such as l1
norm [16], relative entropy [16,17], and skew information
[18]. It plays an important role in quantum thermodynamics
[19] and witnessing quantum correlations [20]. In addi-
tion, quantum steering can be captured as another effective
quantum resource with local operations assisted by one-
way classical communication as the free operations [21]. It
shows a special phenomenon of quantum information that the
correlation of a two-particle state allows one to steer the
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other party into an eigenstate of position or momentum by
choosing the measurement. There are many criteria for the
verification of steering violation, such as the linear steer-
ing criterion [22,23], the geometric Bell-like inequalities for
steering [24], the steering criteria from entropic uncertainty
relations [25–28], and so on. Quantum steering can be ex-
ploited to realize some quantum tasks for which the classical
approach does not work, e.g., quantum information processing
[29,30], quantum key distribution [31–33], and subchannel
discrimination [34,35].

In particular, a successful and secure quantum information
task requires knowing how quantum resources are shared and
transformed over many sites. The question naturally arises of
how to enhance one resource by modifying the other, and how
much these resources can be converted in practical quantum
tasks. Recently, the distribution and transformation of differ-
ent quantum resources have stimulated a number of studies
[36–47]. For example, Svozilíket al. found the conservations
between first-order coherence and quantum correlations, in-
cluding Bell nonlocality and the degree of entanglement, in
the two-qubit state case [36]. In addition, Kalaga et al. in-
vestigated the complementary relations among entanglement,
coherence, and steering parameter for bipartite subsystems
of three-qubit states [48,49]. The complementary relations
among different quantum resources enable one to estimate
the degree of one quantum resource for a given degree of
another resource, e.g., estimating entanglement from Bell
nonlocality or vice versa [50]. Such complementary relations
can lead to somehow counterintuitive but sound conclusions
that mixed states can be relatively more entangled [51] or
even more nonclassical [52]. However, it is worth noting
that most of the related studies are related to the bipartite
or three-qubit pure states. Moreover, many of the measures
of entanglement chosen for these studies are difficult to
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analytically calculate for multipartite mixed states. This raises
a significant issue: whether one can find the explicit rela-
tions among coherence, entanglement, and steering violation
for the multipartite mixed states. In fact, the investigations
of the intrinsic relations among various quantum resources
in multipartite quantum systems are especially important for
manipulating information transfer and flow in the context of
quantum resource theories.

In this paper, we show that complementary relations among
different measures of quantum resources exist, including neg-
ativity, GBC, first-order coherence, quantum steering, and
Bell nonlocality, for arbitrary three-qubit states. The nega-
tivity is chosen as the measure of entanglement, because it
can be calculated analytically in the multipartite mixed-state
scenario. First of all, we find that the negativity is exactly the
same as the GBC for the three-qubit pure states, although the
negativity is always less than or equal to the GBC for the
mixed states. In addition, the complementary relation between
negativity and first-order coherence for tripartite entangle-
ment states is established. For the three-qubit pure states,
we obtain that a single-parameter family of state |ψ〉α takes
the maximum first-order coherence, although another family
of state |ψ〉m takes the minimum first-order coherence for a
given negativity. Note that state |ψ〉α still takes the maximum
first-order coherence for the mixed states. It is shown that the
higher the rank of the density matrix of the state, the closer it is
to the origin. Moreover, we study the complementary relation
between the negativity and the maximum steering inequal-
ity violation. Interestingly, state |ψ〉m takes the maximum
steering inequality violation for a given negativity. Finally,
we study the complementary relation between negativity and
the maximum Bell-inequality violation in three-qubit quan-
tum systems. These relations quantify the intrinsic correlation
among these quantum resources and show how they can be
converted from one another.

This paper is organized as follows: In Sec. II, we briefly re-
view some measures of coherence, entanglement, steering in-
equality violation, and Bell nonlocality. In Sec. III, we present
the close relation between negativity and GBC. In Sec. IV, we
give the complementary relation between the negativity and
first-order coherence. The complementary relation between
negativity and the maximum steering inequality violation
is studied in Sec. V. The complementary relation between
negativity and the maximum Bell-inequality violation is in-
vestigated in Sec. VI. The conclusion is provided in Sec. VII.

II. PRELIMINARIES

Here, we give a brief overview of entanglement, coherence,
steering inequality violation, and Bell nonlocality to be used
in the paper. The measure of entanglement is quantified by the
negativity and GBC. The measure of coherence is given by the
first-order coherence. We use the three-setting linear steering
inequality and the Clauser-Horne-Shimony-Holt Bell’s-like
(Bell-CHSH) inequality as the measures of steering inequality
and Bell nonlocality, respectively.

A. Negativity

The negativity can be calculated in the same way for
pure and mixed states in arbitrary dimensions. In particu-

lar, the tripartite negativity is useful for distillability to a
Greenberger-Horne-Zeilinger (GHZ) state in quantum com-
putation [53]. For an arbitrary three-qubit state ρ, it is defined
as [7]

NABC (ρ) = (NA|BCNB|ACNC|AB)
1
3 , (1)

where the bipartite negativity is given by [6]

NI|JK = −2
∑

i

Ni(ρ
TI ), (2)

with I, J, K ∈ {A, B,C}, I �= J �= K, and Ni(ρTI ) being the
negative eigenvalues of the partial transpose ρTI of the to-
tal state ρ with respect to the subsystem I , defined as
〈hI , jJK |ρTI |kI , lJK〉 = 〈kI , jJK |ρ|hI , lJK〉.

By the Schmidt decomposition theorem, for any bi-
partite pure state |φ〉 in d ⊗ d ′(d � d ′) quantum system,
HA ⊗ HB, an alternative form of negativity is written
as [54]

N (|φ〉) = 2

d − 1

∑
i< j

√
λiλ j, (3)

where
√

λi and
√

λ j are the Schmidt coefficients, with λi, λ j

being the eigenvalues of the reduced density matrix ρA. For
example, if we take d = 2, then we have

N (|φ〉) = 2
√

λ1λ2 = 2
√

det ρA. (4)

Therefore, the negativity of a three-qubit pure state |ψ〉 can be
rewritten as

N (|ψ〉) =
(∏

i

2
√

det ρi

)1/3

= 2

(∏
i

det ρi

)1/6

, (5)

where i ∈ {A, B,C}.

B. GBC

The GBC is introduced as a genuine multipartite entan-
glement measure [8], which should satisfy two conditions:
it must be zero for all biseparable states and positive for
any nonbiseparable state. The GBC relies on the concept of
regularized bipartite concurrence [9]. The concurrence of a
pure bipartite normalized state is given by

CAB(|ψ〉) =
√

dmin

dmin − 1

[
1 − Tr

(
ρ2

A

)]
, (6)

where dmin denotes the dimension of the smaller subsystem.
For an arbitrary n-partite pure state |�〉, the GBC is defined
as [8]

G(|�〉) = c(α)
√
P (|�〉), (7)

where α = {αi} is the set of all possible bipartitions {Aαi |Bαi}
of the n parties, c(α) is the cardinality of α

c(α) =

⎧⎪⎨
⎪⎩
∑(n−1)/2

m=1

(n
m

)
, if n is odd∑(n−2)/2

m=1

(
n
m

)
+ 1

2

(n/2
n

)
, if n is even,

(8)
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and P (|�〉) is the product of all bipartite concurrences

P (|�〉) =
∏
αi∈α

CAαi Bαi
(|�〉). (9)

Moreover, the GBC is generalized to mixed states ρ via the
convex roof construction

G(ρ) = inf
{pi,|ψi〉}

∑
i

piG(|ψi〉), (10)

where the infimum is over all feasible decompositions ρ =∑
i

pi|ψi〉〈ψi|.

C. First-order coherence

The first-order coherence is extensively used in the optical
systems for the measure of coherence. Its quantification is
independent of the selection of the reference basis. For an
arbitrary three-qubit state ρABC , the first-order coherence of
its subsystems A, B, and C are defined, in terms of the purity
[55], as

D(ρi ) =
√

2 Tr
(
ρ2

i

)− 1, (11)

where i ∈ {A, B,C}. When all subsystems can be considered
independently, the first-order coherence of state ρABC is given
by [36]

D(ρABC ) =
√
D(ρA)2 + D(ρB)2 + D(ρC )2

3
, (12)

where 0 � D(ρABC ) � 1.

D. The three-setting linear-steering inequality violation

Quantum steering is considered as a subset of entangle-
ment and a superset of Bell nonlocality [56]. From the local
hidden states model, some steering inequalities are derived to
indicate steering phenomenon by the violation of them. As
an example, the linear-steering inequality is formulated by
Cavalcanti et al. to verify whether a bipartite state is steerable
when Alice and Bob are both allowed to operate n dichotomic
measurements on their own subsystems [22]:

Fn(ρAB, μ) = 1√
n

∣∣∣∣∣
n∑

k=1

〈Ak ⊗ Bk〉
∣∣∣∣∣ � 1, (13)

where Ak = âk · 	σ and Bk = b̂k · 	σ , with 	σ = (σ1, σ2, σ3)
being the Pauli matrices; âk, b̂k ∈ R3 are unit and or-
thonormal vectors; 〈Ak ⊗ Bk〉 = Tr(ρAB(Ak ⊗ Bk )); and μ =
{â1, â2, . . . , ân, b̂1, b̂2, . . . , b̂n} is the set of measurement di-
rections.

In general, an arbitrary two-qubit state can be denoted by
the Hilbert-Schmidt representation

ρAB = 1

4

[
I2 ⊗ I2+	a · 	σ ⊗ I2+I2 ⊗ 	b · 	σ +

∑
i, j

ti jσi ⊗ σ j

]
,

(14)

where 	a and 	b are the local bloch vectors, and TAB = [ti j]
is the correlation matrix. The components ti j are given by
ti j = Tr[ρAB(σi ⊗ σ j )]. For the three measurement settings

corresponding to n = 3 of Eq. (13), state ρAB is F3 steerable if
[23,46]

SAB = Tr
(
T T

ABTAB
)− 1 > 0, (15)

where the superscript T represents the transpose of the corre-
lation matrix TAB. It can be shown that this steering inequality
is a two-way steering criterion due to its invariance under
qubit permutations. Among the three bipartite reduced states
of a three-qubit state ρABC , the maximum steering inequality
violation is given by [46]

S (ρABC ) = max {SAB,SAC,SBC}. (16)

E. Bell-inequality violation

In 1995, Horodecki et al. presented the necessary and
sufficient condition for violating the Bell-CHSH inequality
[57]. For an arbitrary two-qubit state ρAB, the maximum Bell-
CHSH value B′

AB is given by

B′
AB = 2

√
MAB, (17)

where MAB = m1 + m2, with m1 and m2 being the largest two
eigenvalues of T T

ABTAB, in which TAB is the correlation matrix.
MAB > 1 implies the violation of the Bell-CHSH inequality.
In this case, the Bell-inequality violation (i.e., the Bell-CHSH
inequality violation) BAB is defined as [58]

BAB = max {0, MAB − 1}. (18)

Among the three pairwise reduced states of a three-qubit state
ρABC , the maximum Bell-inequality violation is obtained as
[59]

B(ρABC ) = max {BAB,BBC,BAC}, (19)

where only one of BAB, BAC , and BBC is nonzero [60].

F. Two useful boundary states

In order to express the complementary relations of the
above quantum resources for the arbitrary three-qubit states
in a more explicit manner, here we introduce two boundary
states with a single parameter. The first one is the generalized
GHZ state, which can exhibit maximum first-order coherence
value for a fixed amount of negativity,

|ψ〉α = cos α|i, j, k〉 + sin α|ī, j̄, k̄〉, (20)

where i, j, k ∈ {0, 1} and the overbar means taking the oppo-
site value. In the following, we take states with i = j = k = 0
as an example in the calculation:

|ψ〉α = cos α|000〉 + sin α|111〉. (21)

The second boundary state is a single-parameter family of
three-qubit pure state

|ψ〉m = |000〉 + m(|010〉 + |101〉) + |111〉√
2 + 2m2

, (22)

where m ∈ [0, 1]. Note that the state is a GHZ-class state
when m ∈ [0, 1), and it is a W -class state when m = 1.
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III. NEGATIVITY VERSUS THE GBC

Theorem 1. For the three-qubit pure states, the negativity
is exactly equivalent to the GBC. However, for a three-qubit
mixed state ρ, the negativity is always less than or equal to the
GBC,

N (ρ) � G(ρ). (23)

Proof. For a three-qubit pure state |ψ〉, the GBC is given
by

G(|ψ〉) =
{∏

i

√
2
[
1 − Tr

(
ρ2

i

)]}1/3

, (24)

where i ∈ {A, B,C}. Due to the trace condition of the reduced
density matrices, λ1 + λ2 = 1, we can obtain that√

2
[
1 − Tr

(
ρ2

A

)] =
√

2
[
1 − (λ2

1 + λ2
2

)]
= 2
√

λ1λ2 = 2
√

det ρA. (25)

Similarly, √
2
[
1 − Tr

(
ρ2

B

)] = 2
√

det ρB√
2
[
1 − Tr

(
ρ2

C

)] = 2
√

det ρC . (26)

Substituting Eqs. (25) and (26) into Eq. (5), we have

N (|ψ〉) = G(|ψ〉). (27)

For a three-qubit mixed state ρ, since the bipartite negativity is
a convex function [6], the tripartite negativity, as the geometric
mean of three bipartite negativities, is also a convex function
[61]. In addition, the GBC is defined as the minimum de-
composition

∑
j p j |ψ j〉〈ψ j | over all feasible decompositions.

Thus, we obtain the following relation:

N (ρ) �
∑

j

p jN (ψ j ) =
∑

j

p jG(ψ j ) = G(ρ). (28)

�

IV. NEGATIVITY VERSUS FIRST-ORDER COHERENCE

Theorem 2. If a three-qubit pure state |ψ〉 has the same
value of negativity with states |ψ〉α and |ψ〉m, the first-
order coherence of these three states satisfies the ordering
D(|ψ〉m) � D(|ψ〉) � D(|ψ〉α ). The complementary relation
of negativity and first-order coherence is expressed as

N (|ψ〉)2 + D(|ψ〉)2 � 1,

N (|ψ〉)6 + 3D(|ψ〉)2 � 1. (29)

Note that the first inequality is still valid for the three-qubit
mixed states.

Proof. We will prove this theorem for the pure states first,
and then extend it to the case of the mixed states.

Combining Eqs. (11) and (12), we have

D(ρ)2 = 2

3

∑
i

Tr
(
ρ2

i

)− 1, (30)

where i ∈ {A, B,C}. Then we can construct an equation∑
i

[
1 − Tr

(
ρ2

i

)]+∑
i

Tr
(
ρ2

i

) = 3, (31)

and using the arithmetic-geometric mean value inequality, we
have

1

3

∑
i

2
[
1 − Tr

(
ρ2

i

)]
�
{∏

i

2
[
1 − Tr

(
ρ2

i

)]}1/3

. (32)

By adding a term 2
∑

i
Tr(ρ2

i )/3 − 1 to both sides of the above

equation, we have{∏
i

√
2
[
1 − Tr

(
ρ2

i

)]}2/3

+ 2

3

∑
i

Tr
(
ρ2

i

)− 1 � 1. (33)

For a three-qubit pure state |ψ〉, substituting Eqs. (24) and
(30) into Eq. (33), and replacing G(|ψ〉) with N (|ψ〉), we get

N (|ψ〉)2 + D(|ψ〉)2 � 1. (34)

To verify the second inequality in Eq. (29), we can construct
a function H (u, v,w) as

H (u, v,w) = 24uvw − u − v − w + 1
2 , (35)

where u, v,w ∈ [0, 1
4 ]. It can be found that

∂H

∂u
= 24vw − 1 � 0

∂H

∂v
= 24uw − 1 � 0

∂H

∂w
= 24uv − 1 � 0. (36)

Then the minimum of the function H can be calculated as

H
(

1
4 , 1

4 , 1
4

) = 0. (37)

On the other hand, the trace conditions of the reduced density
matrices ρA, ρB, and ρC are

λ1 + λ2 = 1, λ3 + λ4 = 1, λ5 + λ6 = 1, (38)

where λ1 and λ2, λ3 and λ4, and λ5 and λ6 are the eigenvalues
of ρA, ρB, and ρC , respectively. We can see that

0 � λ1λ2 = λ1(1 − λ1) � 1
4 . (39)

Similarly, we have

0 � λ3λ4 � 1
4 , 0 � λ5λ6 � 1

4 , (40)

Let u = λ1λ2, v = λ3λ4, and w = λ5λ6, and substituting them
into Eq. (35), we obtain

24
6∏

μ=1

λμ − λ1λ2 − λ3λ4 − λ5λ6 + 1

2
� 0. (41)

Then, by using the trace conditions of the reduced density
matrices, we get

26
6∏

μ=1

λμ + 2
(
λ2

1 + λ2
2 + λ2

3 + λ2
4 + λ2

5 + λ2
6

)− 3 � 1. (42)
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Finally, we can find that⎡
⎣2

(∏
i

det ρi

)1/6
⎤
⎦

6

+ 3

[
2

3

∑
i

Tr
(
ρ2

i

)− 1

]
� 1. (43)

Substituting Eqs. (5) and (30) into Eq. (43), we can obtain that

N (|ψ〉)6 + 3D(|ψ〉)2 � 1. (44)

On the other hand, the negativity and first-order coherence of
the boundary states |ψ〉α and |ψ〉m, from Eqs. (5) and (12), are
given by

N (|ψ〉α ) = |sin 2α|, (45)

D(|ψ〉α ) = |cos 2α|, (46)

N (|ψ〉m) =
(

1 − m2

1 + m2

)1/3

, (47)

D(|ψ〉m) = 2m√
3(1 + m2)

. (48)

We can find that

N (|ψ〉α )2 + D(|ψ〉α )2 = 1, (49)

N (|ψ〉m)6 + 3D(|ψ〉m)2 = 1, (50)

which imply that states |ψ〉α and |ψ〉m are the upper and lower
boundary states, respectively.

It can be found that the first-order coherence of subsystems
of a three-qubit mixed state ρABC are convex functions. The
first-order coherence of state ρABC , as the vector composition
of D(ρi ) and h(x1, x2, x3) = [(x2

1 + x2
2 + x2

3 )/3]1/2, is also a
convex function [62]. On the other hand, Eq. (34) can be
rewritten as

D(|ψ〉) �
√

1 − N (|ψ〉)2. (51)

Let U [N (|ψ〉)] =
√

1 − N (|ψ〉)2, then we can see that the
function U is concave function in regard to N (|ψ〉). Using
the convexity of negativity, we have

D(ρ) �
∑

i

piD(ψi ) �
∑

i

pi

√
1 − N (ψi )2

�

√√√√1 −
[∑

i

piN (ψi )

]2

�
√

1 − N (ρ)2, (52)

i.e.,

N (ρ)2 + D(ρ)2 � 1. (53)

�
In Fig. 1, we plot how the square of first-order coherence

changes with respect to the square of negativity for 105 Haar
randomly generated three-qubit pure states [63]. The magenta
squares donating state |ψ〉α are located at the upper boundary,
which satisfies the relation between negativity and first-order
coherence in Eq. (49). The blue circles at the lower boundary
show that the two quantum resources of state |ψ〉m fulfill

FIG. 1. Complementary relation between the negativity N (|ψ〉)
and the first-order coherence D(|ψ〉) for 105 Haar randomly gener-
ated three-qubit pure states. The magenta squares are located at the
upper boundary with state |ψ〉α , and state |ψ〉m represented by blue
circles lies at the lower boundary. Both axes are dimensionless.

the relation in Eq. (50). The 105 Haar randomly generated
three-qubit pure states are included in the range constrained by
states |ψ〉α and |ψ〉m, meaning that their negativity and first-
order coherence obey the inequalities in Eq. (29). Moreover,
we find that the first-order coherence increases (decreases)
with the decrease (increase) of the negativity, showing a com-
plementary relation.

Figure 2 plots the relation between negativity and first-
order coherence for 105 Haar randomly generated three-qubit
mixed states. The magenta squares are still located at the
upper boundary with the state |ψ〉α . The 105 Haar randomly
generated three-qubit mixed states are under the boundary
line, which means that their negativity and first-order co-

FIG. 2. Complementary relation between the negativity N (ρ )
and the first-order coherence D(ρ ) for 105 Haar randomly generated
three-qubit mixed states. The magenta squares are located at the up-
per boundary with state |ψ〉α . The numbers on the color bar represent
different ranks of the density matrices of the random states. Both axes
are dimensionless.
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herence satisfy the inequality in Eq. (53). In addition, we
can see that the higher the rank of the density matrix of the
random state, the closer it is to the origin. Also, it shows that a
complementary relation between the negativity and first-order
coherence for arbitrary three-qubit states exists.

V. NEGATIVITY VERSUS MAXIMUM STEERING
INEQUALITY VIOLATION

Theorem 3. If an arbitrary three-qubit state ρ has the
same value of negativity as state |ψ〉m, the maximum steering
inequality violations of these two states satisfy the ordering
S (ρ) � S (|ψ〉m). The complementary relation of the negativ-
ity and the maximum steering inequality violation is given by

2N (ρ)6 + S (ρ) � 2. (54)

Proof. An arbitrary three-qubit state ρABC can be written as

ρABC = 1

8

⎡
⎣I ⊗ I ⊗ I + 	A · 	σ ⊗ I ⊗ I + I ⊗ 	B · 	σ ⊗ I

+ I ⊗ I ⊗ 	C · 	σ +
∑

i j

tAB
i j σi ⊗ σ j ⊗ I

+
∑

ik

tAC
ik σi ⊗ I ⊗ σk +

∑
jk

tBC
jk I ⊗ σ j ⊗ σk

+
∑
i jk

tABC
i jk σi ⊗ σ j ⊗ σk

⎤
⎦. (55)

The purities of the the reduced density matrices ρA and ρBC

are

Tr
(
ρ2

A

) = 1 + 	A2

2
, Tr

(
ρ2

BC

) = 1

4
(2 + 	B2 + 	C2 + SBC ).

(56)

Similarly, we obtain

Tr
(
ρ2

B

) = 1 + 	B2

2
, Tr

(
ρ2

AC

) = 1

4
(2 + 	A2 + 	C2 + SAC ),

Tr
(
ρ2

C

) = 1 + 	C2

2
, Tr

(
ρ2

AB

) = 1

4
(2 + 	A2 + 	B2 + SAB).

(57)

In the following, we will give the proof for pure states first,
and then extend the theorem to mixed states. If ρABC is a
pure state with ρABC = |ψ〉〈ψ |, based on the Schmidt decom-
position, we have Tr(ρ2

i ) = Tr(ρ2
jk ) for i �= j �= k, i, j, k ∈

{A, B,C}. By Eqs. (56) and (57), the linear steering inequality
violation of the bipartite reduced states of ρAB, SAB, can be
written as a function of purities of subsystems of state |ψ〉

SAB = 2
[
2 Tr
(
ρ2

C

)− Tr
(
ρ2

A

)− Tr
(
ρ2

B

)]
. (58)

Assuming that S (|ψ〉) = SAB, then let us construct a function
with the form

R(u, v,w) = 26uvw + 2u + 2v − 4w, (59)

where u, v,w ∈ [0, 1
4 ]. We can show that

∂R

∂u
= 26vw + 2 � 0

∂R

∂v
= 26uw + 2 � 0

∂R

∂w
= 26uv − 4 � 0. (60)

Thus, the maximum of the function R is given by

R
(

1
4 , 1

4 , 0
) = 1. (61)

Substituting relations u = λ1λ2, v = λ3λ4, and w = λ5λ6 into
R(u, v,w) in Eq. (59), we can obtain an inequality with re-
spect to the eigenvalues of the reduced density matrices as

26
6∏

μ=1

λμ + 2λ1λ2 + 2λ3λ4 − 4λ5λ6 � 1. (62)

The above inequality can be rewritten as

26
6∏

μ=1

λμ + 2(1 − 2λ5λ6) − (1 − 2λ1λ2) − (1 − 2λ3λ4) � 1.

(63)

By using the trace conditions of the reduced density matrices,
we have

26
6∏

μ=1

λμ + 2
(
λ2

5 + λ2
6

)− (λ2
1 + λ2

2

)− (λ2
3 + λ2

4

)
� 1. (64)

Finally, we can get

2

⎡
⎣2

(∏
i

det ρi

)1/6
⎤
⎦

6

+ 2
[
2 Tr
(
ρ2

C

)− Tr(ρ2
A) − Tr

(
ρ2

B

)]
� 2. (65)

Substituting Eqs. (5) and (58) into Eq. (65), we have

2N (|ψ〉)6 + S (|ψ〉) � 2. (66)

The complementary relation also holds if S (|ψ〉) = SAC or
S (|ψ〉) = SBC .

Moreover, the maximum steering inequality violation of
the boundary state |ψ〉m, from Eq. (16), can be calculated as

S (|ψ〉m) = 8m2

(1 + m2)2
. (67)

Together with Eq. (47), we can obtain

2N (|ψ〉m)6 + S (|ψ〉m) = 2, (68)

which imply that state |ψ〉m is the upper boundary states.
On the other hand, Eq. (66) can be rewritten as

S (|ψ〉) � 2[1 − N (|ψ〉)6]. (69)

Let L[N (|ψ〉)] = 2[1 − N (|ψ〉)6], we can show that L is a
concave function with respect to N (|ψ〉). If ρABC is a mixed
state, both its negativity and the maximum steering inequality
violation are convex functions [46]. Similar to the deriva-
tion in Eq. (52), we can obtain the complementary relation
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FIG. 3. Complementary relation between the negativity N (ρ )
and the maximum steering inequality violation S(ρ ) for 105 Haar
randomly generated three-qubit mixed states of S(ρ ) � 0. The blue
circles are located at the upper boundary with state |ψ〉m. The num-
bers on the color bar represent different ranks of the density matrices
of the random states. Both axes are dimensionless.

between the negativity and the maximum steering inequality
violation for the three-qubit mixed states as

2N (ρ)6 + S (ρ) � 2. (70)

�
In Fig. 3, we plot how the maximum steering inequality

violation changes in regard to negativity to the sixth power
for 105 Haar randomly generated three-qubit mixed states
when S (ρ) � 0. We can see that state |ψ〉m is located at the
upper boundary (blue circles), suggesting that its negativity
and maximum steering inequality violation satisfy the relation
in Eq. (68). The random states are under the boundary line,
which means that their negativity and maximum steering in-
equality violation satisfy the inequality in Eq. (70). The results
show that a complementary relation between negativity and
the maximum steering inequality violation exists for arbitrary
three-qubit states. Also, the higher the rank of the density
matrix of the random state, the closer it is to the origin.

It is worth mentioning that this complementary relation is
obtained under the conditions of tripartite entanglement and
the maximum pairwise steering inequality violation. Alter-
natively, is there an exact relation between pairwise steering
inequality violation and bipartite entanglement measure in
arbitrary three-qubit states? In the following, we take SAC

as an example, and investigate its relations with the bipartite
entanglement measures NA|BC , NC|AB, and NB|AC . In Fig. 4,
we plot how SAC changes with respect to NA|BC , NC|AB, and
NB|AC , respectively. We find that the maximum of SAC in-
creases as NA|BC (NC|AB) increases. However, there exists a
complementary relation between SAC and NB|AC .

Corollary 1. If an arbitrary three-qubit state ρABC has
the same value of bipartite negativity NI|JK (ρ) (I, J, K ∈
{A, B,C}, I �= J �= K) with state |ψ〉m (may need qubit per-
mutations), the pairwise steering inequality violations of these
two states satisfy the ordering SJK (ρ) � SJK (|ψ〉m). The

(a)

(b)

FIG. 4. . Relations between the pairwise steering inequality vi-
olation SAC and three bipartite entanglement measures: (a) NA|BC or
NC|AB, (b) NB|AC . The numbers on the color bar represent different
ranks of the random states. In (a), the boundary state is state |ψ〉θ in
Ref. [13]. Both axes are dimensionless.

complementary relation of NI|JK (ρ) and SJK (ρ) is given by

2N 2
I|JK (ρ) + SJK (ρ) � 2. (71)

The proof is similar to the proof of Theorem 3. The
interpretation is that the increase of bipartite entanglement
NI|JK (ρ) decreases pairwise steering SJK (ρ) by diminishing
the entanglement of subsystem ρJK . Note that state |ψ〉m cor-
responds to maximum pairwise steering inequality violation
SAC for a fixed amount of bipartite negativity NB|AC . For
the complementary relation between SAB (SBC) and NC|AB

(NA|BC), the boundary state is the state after permutation of
the latter (first) two qubits of state |ψ〉m.

VI. NEGATIVITY VERSUS MAXIMUM
BELL-INEQUALITY VIOLATION

Theorem 4. If an arbitrary three-qubit state ρ has the same
value of negativity as state |ψ〉m (i, j, k), the maximum Bell-
inequality violation of these two states satisfies the ordering
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B(ρ) � B(|ψ〉m). The complementary relation of negativity
and the maximum Bell-inequality violation is given by

N (ρ)6 + B(ρ) � 1. (72)

Proof. To begin with, we assume that B(|ψ〉) = BAB,
where |ψ〉 is a three-qubit pure state. For bipartite subsys-
tem ρAB of |ψ〉, there is a complementary relation between
first-order coherence and maximum Bell-CHSH value [36]

D2
AB

2
+
( B′

AB

2
√

2

)2

� Tr
(
ρ2

AB

)− 2(ε1ε4 + ε2ε3), (73)

where

DAB =
√(

D2
A + D2

B

)
2

. (74)

DAB is the bipartite first-order coherence, and ε1 � ε2 � ε3 �
ε4 are the eigenvalues of ρAB. Here ε3 = ε4 = 0 since ρAB

has the same eigenvalues as ρC , another subsystem of |ψ〉. If
BAB = 0, Eq. (72) obviously holds. If BAB > 0, from Eq. (18),
we have

BAB = MAB − 1. (75)

Using Eqs. (17) and (75), Eq. (73) can be rewritten as

D2
AB + BAB + 1 � 2 Tr

(
ρ2

C

)
. (76)

Then, from Eqs. (11), (74), and (76), we get

BAB � 2 Tr
(
ρ2

C

)− Tr
(
ρ2

A

)− Tr
(
ρ2

B

)
. (77)

On the other hand, from Ref. [64], we can know that for
any pure three-qubit state, the triple (MAB, MAC, MBC ) has
the same ordering as (sAB

iso , sAC
iso , sBC

iso ) of pairwise isotropic
strengths, which happen to be a third of the correspond-
ing pairwise steering inequality violations. That means
that the triple (BAB,BAC,BBC ) has the same ordering as
(SAB,SAC,SBC ). From Eq. (64), we can obtain

2 Tr
(
ρ2

C

)− Tr
(
ρ2

A

)− Tr
(
ρ2

B

)
� 1 − 26

6∏
μ=1

λμ. (78)

Therefore, it gives

BAB � 1 −
⎡
⎣2

(∏
i

det ρi

)1/6
⎤
⎦

6

. (79)

Substituting Eq. (5) into Eq. (79), we obtain

N (|ψ〉)6 + B(|ψ〉) � 1. (80)

Similarly, the above complementary relation also holds if BAC

or BBC is the largest one among BAB, BAC , and BBC .
The maximum Bell-inequality violation of state |ψ〉m, from

Eq. (19), is given by

B(|ψ〉m) = 4m2

(1 + m2)2 . (81)

Using Eqs. (47) and (81), we have

N (|ψ〉m)6 + B(|ψ〉m) = 1, (82)

which implies that state |ψ〉m is the upper boundary states.

FIG. 5. Complementary relation between negativity N (ρ ) and
the maximum Bell-inequality violation B(ρ ) for 105 Haar randomly
generated three-qubit mixed states. The blue circles lie at the upper
boundary with state |ψ〉m. The numbers on the color bar represent
different ranks of the random states. Both axes are dimensionless.

Furthermore, for an arbitrary three-qubit state ρ, the maxi-
mum Bell-inequality violation is also a convex function [59],
so we can extend the complementary relation between neg-
ativity and the maximum Bell-inequality violation to mixed
states by a similar derivation to Eq. (52). Thus, we have

N (ρ)6 + B(ρ) � 1. (83)

�
In Fig. 5, we plot the relation between negativity and the

maximum Bell-inequality violation for 105 Haar randomly
generated three-qubit mixed states. We can see that state |ψ〉m

is located at the upper boundary (blue circles), suggesting that
its negativity and maximum Bell-inequality violation satisfy
the complementary relation in Eq. (83). In particular, we find
that the three-qubit state is hard to violate the Bell inequality
when its rank is greater than three.

Also, if considering three pairwise Bell-inequality viola-
tions separately, we can obtain the complementary relations
between pairwise Bell-inequality violations and bipartite en-
tanglement in the tripartite system.

Corollary 2. If an arbitrary three-qubit state ρABC has
the same value of bipartite negativity NI|JK (ρ) (I, J, K ∈
{A, B,C}, I �= J �= K) as state |ψ〉m (may need qubit
permutations), the pairwise Bell-inequality violations of
these two states satisfy the ordering BJK (ρ) � BJK (|ψ〉m).
The complementary relation of NI|JK (ρ) and BJK (ρ) is
obtained as

N 2
I|JK (ρ) + BJK (ρ) � 1. (84)

VII. CONCLUSION

In this paper, we found that exact complementary relations
among entanglement, coherence, steering inequality violation,
and Bell nonlocality exist for arbitrary three-qubit states.
First of all, it was shown that the negativity is exactly the
same as the GBC for the three-qubit pure states, although
the negativity was always less than or equal to the GBC for
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three-qubit mixed states. Then the complementary relation
between negativity and first-order coherence was established.
For the three-qubit pure states, the first-order coherence is
constrained to a range formed by two inequalities for a fixed
amount of negativity. The upper boundary state of the comple-
mentary relation is state |ψ〉α , and |ψ〉m is the lower boundary
state. For the three-qubit mixed states, the upper boundary is
still valid while the lower boundary is ineffective. We can
obtain that the higher the rank of the density matrix of the
random state, the closer it is to the origin. Moreover, we in-
vestigated the complementary relation between the negativity
and the maximum steering inequality violation for the three-
qubit states. Interestingly, the |ψ〉m state takes the maximum
steering inequality violation for a given negativity. At last, we
obtained that state |ψ〉m is also the upper boundary state of the

complementary relation between negativity and the maximum
Bell-inequality violation. These results show that these three
quantum resources are closely related and can be transformed
from one another. In particular, our boundaries are useful for
quantifying the maximum value of one resource that can be
converted from the other.
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