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Nonstoquastic catalyst for bifurcation-based quantum annealing of the ferromagnetic p-spin model
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Introducing a nonstoquastic catalyst is a promising avenue to improve quantum annealing with the transverse
field. In the present paper, we propose a nonstoquastic catalyst for bifurcation-based quantum annealing
described by the spin-1 operators to improve the efficiency of a ground-state search. To investigate the effect
of the nonstoquastic catalyst, we study the ferromagnetic p-spin model, which has difficulty with finding the
ground state due to the first-order phase transition for quantum annealing. A semiclassical analysis shows that
the problematic first-order phase transition can be eliminated by introducing the proposed nonstoquastic catalyst
with the appropriate amplitude. We also numerically calculate the minimum energy gap for a finite-size system
by diagonalizing the Hamiltonian. We find that while the energy gap decreases exponentially with increasing
system size for the original Hamiltonian, it decreases polynomially against the system size for the Hamiltonian
with the nonstoquastic catalyst. This result implies that the proposed nonstoquastic catalyst has the potential to
improve the performance of bifurcation-based quantum annealing.
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I. INTRODUCTION

Quantum annealing (QA) is a quantum metaheuristic for
solving combinatorial optimization problems [1–7] and is
related to adiabatic quantum computation [8,9]. The target
of QA is the ground state of the classical Ising model to
which a combinatorial optimization problem is mapped [10].
Standard QA is formulated as a spin-1/2 Ising model with
a time-dependent transverse field. The protocol of QA starts
with the spins initialized to the superposition of the two
orthogonal states |±1〉 by the transverse field. By adiabat-
ically decreasing the amplitude of transverse field, we can
obtain the desired ground state corresponding to the optimal
solution.

The performance of QA can be evaluated with a minimum
energy gap between an instantaneous ground state and the
first excited state. This can be understood with the quantum
adiabatic theorem, which indicates that the annealing time
necessary to obtain the desired ground state is inversely pro-
portional to the square of the minimum energy gap [11–13].
It is empirically known that the minimum energy gap closes
exponentially with increasing system size when a quantum
system encounters a first-order phase transition during anneal-
ing. This is a serious problem for QA because the annealing
time increases exponentially as the system size increases.
The ferromagnetic p-spin model is a well-known example in
which the first-order phase transition appears during QA [14].
In contrast, when the phase transition is second order, the
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minimum energy gap decreases polynomially as the system
size increases. Then, in this case, we can find the ground state
in polynomial time.

It is worth mentioning that standard QA is implemented
with a stoquastic Hamiltonian, in which all nondiagonal
elements of the matrix representation are real and nonpos-
itive [15]. Since a system under a stoquastic Hamiltonian
can be emulated classically without the sign problem, the
standard QA is considered to have comparable performance
to a classical algorithm. Therefore, whether a nonstoquas-
tic catalyst, which is an additional Hamiltonian violating
the stoquastic condition, can improve the performance of
QA has been investigated. The mean-field analysis for QA
with the p-spin model showed that a certain type of non-
stoquastic catalyst is effective in changing the first-order
phase transition to the second-order one [16–19]. This is an
interesting case in which a nonstoquastic catalyst leads to
an exponential acceleration of QA. The numerical calcula-
tion [20] showed that QA under a nonstoquastic Hamiltonian
has an advantage over standard QA. On the other hand,
Ref. [21] showed that the energy gap in a Hamiltonian with
a nonstoquastic catalyst is generally smaller than a stoquas-
ticized Hamiltonian obtained by de-signing the nonstoquastic
catalyst.

Recently, bifurcation-based QA (BQA) using Kerr-
nonlinear parametric oscillators (KPOs) was studied [22–33].
A KPO can generate a cat state (superposition of two co-
herent states) from a vacuum state by an adiabatic process.
The idea of BQA originates from this cat-state generation
process, which is referred to as the quantum bifurcation mech-
anism. While the Hamiltonian of BQA using the KPOs is
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described with bosonic operators, a spin formulation of BQA,
which is described by the spin-1 operators, was also proposed
in [34]. This spin formulation is designed to resemble the
bifurcation mechanism of the KPO. In this formulation, each
spin state is initially prepared in |0〉 and eventually becomes
either |+1〉 or |−1〉. According to the effective spin model
of the KPO studied in Ref. [35], BQA described with spin-1
operators can be regarded as the approximation model of
BQA using KPO. Also, by adopting a spin-locking tech-
nique [36,37], we can implement not only the conventional
QA [38,39] but also BQA described with the spin-1 opera-
tors with nitrogen-vacancy (NV) centers in diamonds [40].
The NV center in a diamond is a promising device for
realizing quantum information processing because it has a
long coherence time, such as a few milliseconds, even at
room temperature [41,42]. Therefore, the study of BQA will
lead to the development of a novel experimental platform
for QA. In addition, some studies suggest that BQA may
have an advantage over conventional QA with the transverse
field [28,34]. However, the Hamiltonian of the spin formula-
tion of BQA proposed in Ref. [34] is stoquastic. The natural
question of whether a nonstoquastic catalyst will benefit BQA
arises.

In this paper, we study the effect of a nonstoquastic cat-
alyst in BQA described by the spin-1 operators. Here, we
consider the p-spin model and propose a nonstoquastic cat-
alyst to change the order of the phase transition. In order to
analyze the phase transitions in stoquastic and nonstoquastic
cases, we calculate the energy potential with the semiclas-
sical approximation as in various QA studies [43–48]. A
previous study [48] showed that, for standard QA of the
p-spin model with the nonstoquastic catalyst, the semiclas-
sical analysis significantly predicts the location and order
of the phase transitions and agrees with the full quantum
statistical-mechanical calculations [16]. Thus, the semiclas-
sical analysis will also be practical for the current problem.
We show that the proposed nonstoquastic catalyst is effective
for changing the first-order phase transition, which appears in
the stoquastic case, to the second-order one. To support the
argument of the semiclassical analysis, we study the exact
ground state and the minimum energy gap in a finite-size
system by diagonalizing the Hamiltonian. We confirm that
the instantaneous ground state obtained in the semiclassical
analysis approximates the exact instantaneous ground state
well. We also show that, as the system size increases, the
minimum energy gap decreases exponentially in the stoquas-
tic case and decreases polynomially in the nonstoquastic
case.

This paper is organized as follows. In Sec. II, we intro-
duce the spin formulation of BQA. In Sec. III, we formulate
the Hamiltonian of the p-spin model and propose a non-
stoquastic catalyst for BQA. In Sec. IV, we calculate the
semiclassical potential and the order parameters to inves-
tigate the order of the phase transitions. In Sec. V, we
discuss the effect of the proposed nonstoquastic catalyst in
a finite-size system. We summarize this paper in Sec. VI.
In Appendix A, we discuss an implementation of BQA with
the NV centers in diamonds. We provide additional analyses
and details of certain calculations in Appendixes B and C,
respectively.

II. REVIEW OF THE SPIN FORMULATION OF
BIFURCATION-BASED QUANTUM ANNEALING

We recapitulate the spin formulation of BQA proposed in
Ref. [34]. First, we define the x, y, and z components of the
spin-1 operators as

Ŝx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, (1a)

Ŝy = i√
2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠, (1b)

Ŝz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, (1c)

respectively. The eigenstates of Ŝz denote |0〉 and |±1〉 as
Ŝz |m〉 = m |m〉 for m = 0,±1. The Hamiltonian of BQA for
an N-spin system is given by

Ĥ (s) =
N∑

i=1

[ − A(s)Ŝx
i − B(s)

(
Ŝz

i

)2] + Ĥp
({

Ŝz
i

})
, (2)

where s ∈ [0, 1] is a dimensionless time parameter and i indi-
cates the index of a spin site. A(s) is a positive function that
takes a finite value at the middle of annealing, and B(s) is
a function increasing from a large negative value to a large
positive value as time s evolves. We assume that A(s) and B(s)
are a Gaussian function and a linear function, respectively,
as

A(s) := A0 exp

(
− (2s − 1)2

2σ 2

)
, (3a)

B(s) := B0(2s − 1). (3b)

The summation term in Eq. (2) is a driver Hamiltonian in-
ducing the bifurcation mechanism. Ĥp represents a problem
Hamiltonian that includes interactions between spins and lo-
cal fields. BQA starts with the state ⊗i |0〉i, which is the
ground state of the Hamiltonian (2) at s = 0. By adiabatically
evolving the system under the Hamiltonian (2) from s = 0 to
s = 1, each spin state changes to |±1〉i, corresponding to the
ground state of Ĥp that is our target.

To briefly review the bifurcation mechanism, we consider
a single-spin system. The Hamiltonian is

Ĥ (1)(s) = −A(s)Ŝx − B(s)(Ŝz )2 − hŜz. (4)

We evaluate the instantaneous ground state numerically for
the three h cases. Figure 1(a) for h = 0 shows that the final
ground state is the superposition of |±1〉. We can see the
bifurcation mechanism around s = 0.5, where the probability
of the superposition state increases and the state |0〉 vanishes.
This case corresponds to the cat-state generation of the KPO.
When h is positive (negative), the spin state becomes |+1〉
(|−1〉), as shown in Figs. 1(b) and 1(c).
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FIG. 1. Plots of probabilities of each state in the instantaneous
ground state of Hamiltonian (4) as a function of s for three cases:
(a) h = 0, (b) h = +1, and (c) h = −1. A(s) and B(s) are from
Eq. (3), with A0 = 3, σ 2 = 0.1, and B0 = 40.

III. FERROMAGNETIC P-SPIN MODEL AND
NONSTOQUASTIC CATALYST

Hereafter, we consider the ferromagnetic p-spin model
in the spin formulation of BQA. The Hamiltonian is as
follows:

Ĥ (s) =
N∑

i=1

[ − A(s)Ŝx
i − B(s)

(
Ŝz

i

)2] − N

(
1

N

N∑
i=1

Ŝz
i

)p

. (5)

For odd p, the ground state of the p-spin model is ⊗N
i=1 |+1〉i,

and for even p, the ground state is doubly degenerate,
⊗N

i=1 |+1〉i and ⊗N
i=1 |−1〉i. Note that this p-spin model re-

duces to the Grover problem for the limit of p → ∞.
This Hamiltonian (5) is stoquastic, and the first-order phase

transition appears during the time evolution (we discuss this
in the next section). We then propose the following interaction
as a nonstoquastic catalyst:

Ĥc = N

(
1

N

N∑
i=1

(
Ŝx

i

)2 − (
Ŝy

i

)2

)2

, (6)

(
Ŝx

i

)2 − (
Ŝy

i

)2 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠

i

. (7)

The operator (7) switches the spin state between |+1〉i and
|−1〉i in a way similar to the Pauli X operator. The catalyst (6)
is inspired by a nonstoquastic XX interaction removing the
first-order phase transition in standard QA of the p-spin

model [16–18]. We consider the following Hamiltonian:

Ĥ (s) =
N∑

i=1

[ − A(s)Ŝx
i − B(s)

(
Ŝz

i

)2]

+ CN

(
1

N

N∑
i=1

(
Ŝx

i

)2 − (
Ŝy

i

)2

)2

− N

(
1

N

N∑
i=1

Ŝz
i

)p

,

(8)

where C is the amplitude of the proposed nonstoquastic cat-
alyst. The Hamiltonian (8) becomes nonstoquastic for C > 0,
and setting C < 0 corresponds to the de-signed stoquastiza-
tion studied in Ref. [21]. We discuss a possible realization
of this Hamiltonian by using NV centers in diamonds in
Appendix A. It is worth mentioning that the typical energy
scale of the interaction between the NV centers is tens of
kilohertz when we realize our proposed method with the NV
centers in diamonds, as we discuss in Appendix A. Therefore,
throughout this paper, we assume that the energy is scaled by
a unit of 10 kHz.

IV. SEMICLASSICAL ANALYSIS WITH
SPIN COHERENT STATE

To investigate the phase transitions in BQA under the
Hamiltonian (8), we use the semiclassical spin coherent state
for the spin-1 operators [49] defined as the product state

|ψSC(θ, φ, α, β )〉 = ⊗N
i=1

[
cos

θ

2
|0〉i + sin

θ

2
cos

φ

2
eiα |+1〉i

+ sin
θ

2
sin

φ

2
eiβ |−1〉i

]
. (9)

All spins are assumed to have the same angular variables θ , φ,
α, and β. The semiclassical potential per spin is derived from
the expectation value of the Hamiltonian in the spin coherent
state (9) as

VSC(s, θ, φ, α, β )

= lim
N→∞

1

N
〈ψSC| Ĥ (s) |ψSC〉

= −A(s)√
2

sin θ

(
cos

φ

2
cos α + sin

φ

2
cos β

)

− B(s) sin2 θ

2
+ C

(
sin2 θ

2
sin φ cos(α − β )

)2

−
(

sin2 θ

2
cos φ

)p

. (10)

The θ , φ, α, and β to minimize the semiclassical potential
are denoted as θmin, φmin, αmin, and βmin, respectively. The
ground state in the semiclassical approximation is given by
|ψSC,GS〉 = |ψSC(θmin, φmin, αmin, βmin)〉. Thus, the order pa-
rameter at the semiclassical limit can be calculated as

m := 〈ψSC,GS| 1

N

N∑
i=1

Ŝz
i |ψSC,GS〉 = sin2 θmin

2
cos φmin. (11)

Note that since the spin coherent state (9) does not cover
superposition of ⊗i |+1〉i and ⊗i |−1〉i, the present analysis
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FIG. 2. Plots of (a) θmin and φmin and (b) order parameter m
against s for p = 5 in the stoquastic case C = 0. The first-order phase
transition appears at s ≈ 0.550. A(s) and B(s) are from Eq. (3), with
A0 = 3, σ 2 = 0.1, and B0 = 40.

might be insignificant for even-p cases with the degenerate
ground state. For convenience, we arbitrarily consider the
case where the instantaneous ground state finally becomes
⊗i |+1〉i. Therefore, we restrict the domains of θ and φ to
0 � θ � π and 0 � φ � π/2.

First, we consider the stoquastic case C = 0, where α =
β = 0 clearly gives the ground state. Figure 2 shows the
numerical results for θmin, φmin, and the order parameter m
for p = 5. Figure 2(a) shows θmin increases from zero with
φmin = π/2 in the first half. This means that the amplitude of
|0〉i in the instantaneous ground state decreases, and those of
|+1〉i and |−1〉i increase. After the discontinuous change in
θmin and φmin, we obtain θmin = π and φmin = 0, which give
|ψSC,GS〉 = ⊗i |+1〉i. We can see in Fig. 2(b) that the order
parameter m changes discontinuously at s ≈ 0.550, where the
first-order phase transition appears.

The results for the nonstoquastic cases are plotted in Fig. 3.
In Fig. 3(a) for C = 1.4, φmin deviates from π/2 at s ≈ 0.520.
Correspondingly, the order parameter is continuously away
from zero, which is a signature of a second-order transition.
However, the first-order phase transition occurs at s ≈ 0.522.
By setting a significant amplitude, such as C = 5, as shown
in Fig. 3(b), the phase transition becomes completely second
order, where the order parameter changes continuously from 0
to 1. Therefore, in order to resolve the first-order phase transi-
tion, the proposed nonstoquastic catalyst (6) is effective. Note
that we obtain αmin = βmin = 0 in both Figs. 3(a) and 3(b).
This is due to the absence of an imaginary component in the
Hamiltonian (8). In Appendix B we give the situation where
the driver Hamiltonian is rotated around the z axis and the
total Hamiltonian has an imaginary component.

Next, we discuss de-signed stoquastization [21] of the
nonstoquastic Hamiltonian (8). In Fig. 4, we plot the order
parameters for two negative-C cases. The first-order phase
transition appears when C = −0.8 [Fig. 4(a)], and the order
parameter m stays zero for C = −0.9 [Fig. 4(b)] during time
evolution. Thus, negative C is ineffective for the present prob-
lem.

We also plot the order parameter as a function of coef-
ficients A and B in the driver Hamiltonian. The results are
plotted in Fig. 5. In Fig. 5(a), for the stoquastic case, the sys-
tem encounters the first-order phase transition by increasing
B regardless of the value of A. Next, we show the plots for

FIG. 3. Plots of θmin, φmin, αmin, βmin, and order parameter m
against s for p = 5 and C > 0. The first-order phase transition ap-
pears at s ≈ 0.522 in (a). The second-order phase transitions are
observed at s ≈ 0.520 in (a) and s ≈ 0.490 in (b). In both cases, A(s)
and B(s) are from Eq. (3), with A0 = 3, σ 2 = 0.1, and B0 = 40.

C > 0 in Figs. 5(b)–5(d). The orange dashed curves indicate
the location where the second-order phase transition appears.
These curves are calculated using the following conditions:

∂VSC

∂θ

∣∣∣∣
φ=π/2,α=β=0

= −A cos θ − B

2
sin θ + C sin2 θ

2
sin θ

= 0, (12a)

∂2VSC

∂φ2

∣∣∣∣
φ=π/2,α=β=0

= sin
θ

2

(
A

2
cos

θ

2
− 2C sin3 θ

2

)

= 0. (12b)

FIG. 4. Plots of order parameter m against s for p = 5 and C < 0.
A(s) and B(s) are from Eq. (3), with A0 = 3, σ 2 = 0.1, and B0 = 40.
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FIG. 5. Order parameter m as a function of coefficients A and
B for p = 5. The blue curve represents m when one takes the path
corresponding to functions A(s) and B(s) in Eq. (3) with A0 = 3,
σ 2 = 0.1, and B0 = 40. The solid and dotted parts of the blue curves
indicate that m continuously and discontinuously changes, respec-
tively. The orange curves in the A-B plane indicate the second-order
phase transitions given by Eq. (12).

In this calculation, we assume that the second-order phase
transition occurs at the point where φmin continuously deviates
from π/2 and the ground state has αmin = βmin = 0. Fig-
ure 5(b) shows the case of C = 1.4. The first-order transition
appears even if we take the path across the orange dashed
curve. The blue curve in Fig. 5(b) is the same as the order
parameter plotted in Fig. 3(a). In Fig. 5(c), we can find the
path along which the order parameter continuously changes
for C = 2. However, the first-order phase transition remains
for the path with a small A. Although C is made larger, a
large A is necessary to avoid the first-order phase transition,
as shown in Fig. 5(d).

Figure 6 shows the phase diagrams for 3 � p � 8 obtained
from the order parameter, which is given by the semiclassical
analysis. We use Eq. (3) for A(s) and B(s) and consider two
A0 cases. The colored curves indicating the first-order phase
transition extend from points on the axis C = 0. In Fig. 6(a),
the curves for p = 3, 4, and 5 are terminated at finite C.
Therefore, we can find the paths to avoid the first-order phase
transitions for p = 3, 4, and 5 by tuning the amplitude C.
However, as long as we use the value of A0 = 2, the curves
for the first-order phase transitions for 6 � p � 8 are unavoid-
able. On the other hand, Fig. 6(b) shows that, if we adopt
A0 = 3, we can circumvent those curves with relatively small
C. However, Fig. 7 shows that we need to set larger A0 again
to avoid the first-order phase transition in the higher-p cases.
It is worth mentioning that for conventional QA with qubits it
becomes more difficult to avoid the first-order phase transition
as we increase the value of p [16,17], which is similar to

FIG. 6. Phase diagram in the s-C plane for 3 � p � 8. A(s) and
B(s) are from Eq. (3), with σ 2 = 0.1 and B0 = 40. Each thick colored
curve represents a first-order phase transition (1PT). The black dotted
curve indicates the location s of the second-order phase transition
(2PT) calculated from Eq. (12).

our case. More specifically, we need a careful adjustment of
the amplitude parameter to avoid a first-order phase transition
when p is high [16,17].

V. ANALYSIS FOR FINITE-SIZE SYSTEM

Let us consider the effect of the proposed nonstoquastic
catalyst in a finite-size system to discuss the validity of the
semiclassical approximation. We can obtain the exact ground
state |ψGS〉 by diagonalizing the Hamiltonian (8). The details
of the calculation are shown in Appendix C. We plot the order
parameter for the system with N = 96 spins, which is denoted
as mN=96, in Fig. 8. This result agrees with the semiclassical
analysis shown in Figs. 2 and 3. Next, we calculate the fidelity

FIG. 7. Phase diagram in the s-C plane for 9 � p � 11. A(s) and
B(s) are from Eq. (3), with σ 2 = 0.1 and B0 = 40. Each thick colored
curve represents a first-order phase transition (1PT). The black dotted
curve indicates the location s of the second-order phase transition
(2PT) calculated from Eq. (12).
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FIG. 8. Plots of order parameter mN=96 against s for p = 5. A(s)
and B(s) are from Eq. (3), with A0 = 3, σ 2 = 0.1, and B0 = 40.

between the semiclassical state |ψSC,GS〉 and the exact ground
state |ψGS〉, namely, |〈ψSC,GS|ψGS〉|2. The fidelity for p = 5 is
shown in Fig. 9. We consider three values of C and find the
fidelity is almost 1 except around the point of the phase tran-
sition in each case. A possible reason for the sudden decrease
in fidelity is that the location in s for the phase transitions to
occur in the finite-size calculation is slightly different from
that in the semiclassical analysis. These results suggest that
the semiclassical state can reasonably approximate the exact
ground state.

By calculating the eigenvalues of the Hamiltonian (8),
we can evaluate the minimum energy gap between the in-
stantaneous ground state and the first excited state during
annealing. Figure 10 shows that the minimum energy gap
exponentially (polynomially) decreases versus the system size
N in the stoquastic (nonstoquastic) case. For N � 45, the
gap in the nonstoquastic case becomes larger than that in the
stoquastic case. Figure 10 is clear evidence that the proposed
catalyst can qualitatively accelerate the present annealing
protocol.

FIG. 9. The fidelity as a function of s for p = 5. A(s) and B(s)
are from Eq. (3), with A0 = 3, σ 2 = 0.1, and B0 = 40.

FIG. 10. The minimum energy gap against the system size N
for p = 5. The blue circles and the orange squares are calculated
from the eigenvalues in the stoquastic (C = 0) and nonstoquastic
(C = 5) cases, respectively. The blue solid curve and the orange
dashed line show the results of exponential and polynomial fittings
of the minimum energy gap for each case.

VI. SUMMARY AND DISCUSSION

We considered the p-spin model in BQA described by the
spin-1 operators and proposed a nonstoquastic catalyst. We
used the semiclassical analysis with the spin coherent state
to investigate the phase transitions in stoquastic and nonsto-
quastic cases. We found that, for specific cases, the proposed
nonstoquastic catalyst (6) is effective for reducing the first-
order phase transition appearing in the stoquastic case to the
second-order one. This means that the catalyst will lead to
performance improvement. One needs a sufficient amplitude
of the nonstoquastic catalyst and appropriate control of the
driver Hamiltonian to remove the first-order phase transition.
Nevertheless, if the amplitude C is small and the system has
a first-order phase transition, the performance of BQA will
be improved. As we saw in Fig. 3(a), the jump in the order
parameter at the first-order phase transition in the nonsto-
quastic case is less than the one in the stoquastic case. The
jump width corresponds to the energy-barrier width, which
affects the probability that the system will reach the desired
ground state through the quantum tunneling effect. Thus, a
nonstoquastic catalyst would increase the probability and help
with the ground-state search even when the first-order phase
transition occurs.

We also evaluated the scaling of the energy gap by diago-
nalizing the Hamiltonian (8), and the results agree with our
claim. The fidelity shows that the semiclassical analysis is
accurate enough to predict the exact ground state. Since the
semiclassical analysis is based on the static approximation,
we could not evaluate the actual time to satisfy the adiabatic
condition. However, as shown in a previous paper [48], the
semiclassical analysis provides a powerful tool to predict
where the phase transition occurs, and we use it for the case
of BQA.

We numerically calculated the end points of the curves for
the first-order phase transitions in the phase diagram in Fig. 6.
On the other hand, it was shown that for standard QA [50]
the exact end points can be analytically derived for the mean-
field model with the nonstoquastic catalyst. Therefore, for our
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problem, we also might be able to predict the end points more
precisely, which is left for future study.

We note that the p-spin model with p = 4 can be regarded
as the mean-field approximation of the Lechner-Hauke-Zoller
(LHZ) model with local four-body interactions [51,52]. The
LHZ model is considered practical architecture for BQA
with KPOs to solve a fully connected problem Hamilto-
nian [28,29,32]. Thus, our results for the p-spin model will
be helpful in designing real quantum devices. However,
to implement BQA with a nonstoquastic catalyst by using
KPOs, we need to develop a framework in the bosonic sys-
tem similar to our proposal. We also leave this for future
work.

For further understanding of a nonstoquastic catalyst
in BQA, it is desirable to study other instances, such as
the weak-strong cluster problem, which also has a first-
order phase transition [19,53]. Additionally, developing other
avenues for improving BQA is interesting. Various ap-
proaches for improving standard QA have been studied,
for example, inhomogeneous driving [52,54,55], reverse
annealing [56–58], and counterdiabatic driving [59–63].
Whether these are also applicable to BQA is an interesting
topic.
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APPENDIX A: QUANTUM ANNEALING WITH NITROGEN
VACANCIES CENTERS IN DIAMOND

Here, we discuss the experimental realization of BQA us-
ing the NV centers in diamonds. The electronic ground state
of the NV center is a spin triplet where we have |0〉 and |±1〉.
We can polarize the NV center by applying a green laser [64].
The state of the NV centers can be read out by measuring
the photoluminescence [64,65] and can be controlled using
microwave pulses [65,66].

The Hamiltonian of the NV centers is given as follows [67]:

H =
N∑

i=1

Di
(
Ŝz

i

)2 + Ei
[(

Ŝx
i

)2 − (
Ŝy

i

)2]

+ 2λx
i Ŝx

i cos ωit + 2λ
y
i Ŝy

i cos ωit

+
∑
i, j

gz
i j Ŝ

z
i Ŝz

j + gxy
i j

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
, (A1)

where Di denotes the zero-field splitting, Ei denotes the strain,
λx

i (λy
i ) denotes the Rabi frequency along the x (y) direction,

and gz (gxy) denotes the coupling strength of the Ising (flip-
flop) interaction. The typical coupling strength between NV
centers is around tens of kilohertz when the distance between
NV centers is tens of nanometers [68,69]. We can control the

zero-field splitting and strain by applying electric fields [70].
We can determine the Rabi frequency by changing the mi-
crowave amplitudes [65]. So we can set the energy scale of
the NV centers to be tens of kilohertz when we implement the
BQA. By going to the rotating frame and using the rotating-
wave approximation, we obtain

H 

N∑

i=1

(Di − ωi )
(
Ŝz

i

)2 + Ei
[(

Ŝx
i

)2 − (
Ŝy

i

)2]
+ λx

i Ŝx
i + λ

y
i Ŝy

i +
∑
i, j

gzŜ
z
i Ŝz

j . (A2)

We can tune the value of Ei by applying electric fields [70].
It is worth mentioning that, by adjusting the parameters with
the NV centers, we can realize the Hamiltonian in Eq. (5) with
p = 2. It is possible to implement conventional QA with NV
centers by using the spin-lock technique [38,39]. However,
to perform the spin lock, we need to perform single-qubit
rotations. This means that the gate error will accumulate and
the success probability of QA will decrease. On the other
hand, when we perform BQA with NV centers, we do not
need to perform any gate operations. This shows the practical
advantage of BQA with NV centers.

Let us discuss the possible realization of the non-
stoquastic Hamiltonian (8) in our method. It is known
that the NV center and a bosonic mode can be coupled
with either inductive or capacitive coupling [71–74]. Es-
pecially, we can couple a magnetic-field mode with the
NV center in a subspace spanned by |B〉 and |D〉 [75–77].
Within this subspace, the interaction with such a bosonic
mode is HI = ∑

i g(aσ̂+
i + a†σ̂−

i ), where σ̂+ = |B〉〈D| and
σ̂− = |D〉〈B| are the Pauli operators and |B〉 = (| + 1〉 +
| − 1〉)/

√
2 [|D〉 = (| + 1〉 − | − 1〉)/

√
2] denotes a bright

(dark) state. In the dispersive regime where the detuning
between the bosonic mode and the resonance frequency of
the NV centers is much larger than g, we obtain HI ∝
(
∑

i σ̂
z
i )2, where σ̂ z

i = |B〉〈B| − |D〉〈D| = | + 1〉〈−1| + | −
1〉〈+1| [71,78,79]. This corresponds to the nonstoquastic
catalyst (8).

APPENDIX B: DRIVER HAMILTONIAN ROTATED
AROUND Z AXIS

We consider the following Hamiltonian:

Ĥ (s) =
N∑

i=1

[
−A(s)

(
cos

χ

2
Ŝx

i + sin
χ

2
Ŝy

i

)
− B(s)

(
Ŝz

i

)2
]

+ CN

(
1

N

N∑
i=1

(
Ŝx

i

)2 − (
Ŝy

i

)2

)2

− N

(
1

N

N∑
i=1

Ŝz
i

)p

,

(B1)

where χ is the rotation angle of the driver Hamiltonian around
the z axis. We note that the operator Ŝy

i has an imaginary
component. As in Sec. IV, we calculate θmin, φmin, αmin, βmin,
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FIG. 11. Plots of θmin, φmin, αmin, βmin, and order parameter m against s around the phase transitions for p = 5 and C = 5 for several χ . In
each case, A(s) and B(s) are from Eq. (3), with A0 = 3, σ 2 = 0.1, and B0 = 40.

and the order parameter m from the semiclassical potential of the Hamiltonian (B1). The semiclassical potential is as follows:

VSC(s, χ.θ, φ, α, β ) = lim
N→∞

1

N
〈ψSC| Ĥ (s) |ψSC〉 = −A(s)√

2
sin θ

[
cos

φ

2
cos

(
α+ χ

2

)
+ sin

φ

2
cos

(
β− χ

2

)]

− B(s) sin2 θ

2
+ C

(
sin2 θ

2
sin φ cos(α − β )

)2

−
(

sin2 θ

2
cos θ

)p

. (B2)
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Here, we fix p = 5. In the stoquastic case C = 0, θmin,
φmin, and the order parameter m are the same as in Fig.
2, while αmin = −χ/2 and βmin = χ/2. Next, we consider
the nonstoquastic case C = 5. Figure 11 shows the numer-
ical results for several χ . Note that χ = 0 reproduces the
result in Fig. 3(b), where the first-order phase transition dis-
appears. However, as indicated in Fig. 11(a), the first-order
phase transition reappears even if χ rotates slightly from
zero. The top half of Fig. 11 shows that the jump in the
order parameter increases as χ increases from 0 to π/2.
We also find αmin and βmin deviate from zero by rotating
χ . In Fig. 11(e), we obtain αmin = −π/4 and βmin = π/4.
This means that the third term, given by the nonstoquastic
catalyst, in the semiclassical potential (B2) vanishes. There-
fore, the nonstoquastic catalyst is ineffective for the case
of χ = π/2.

The bottom half of Fig. 11 shows that the jump in the
order parameter decreases as χ increases from π/2 to π .
Figure 11(j) for χ = π shows the second-order phase tran-
sition with αmin = −π/2 and βmin = π/2, where the third
term in the semiclassical potential (B2) remains. However,
the first-order phase transition shows up even if χ shifts
slightly from π , as shown in Figs. 11(g)–11(i). There-
fore, we need to take care with the rotation angle of the
driver term around the z axis when we remove the first-
order phase transition using the proposed nonstoquastic
catalyst.

APPENDIX C: DIAGONALIZING THE HAMILTONIAN (8)

To evaluate the exact ground state for a finite-size system,
we consider the matrix representation of the total Hamilto-
nian (8). Since the Hamiltonian is symmetric under the spin
permutation, we can restrict our computation to the symmetric
subspace. Hence, the basis can be described by the number
state for N spins, defined as

|n1, n0, n−1〉 =
√

n1!n0!n−1!

N!

∑
P{|1〉⊗n1 |0〉⊗n0 |−1〉⊗n−1},

(C1)

where n1, n0, and n−1 denote the number of spins in states
|1〉, |0〉, and |−1〉, respectively, and

∑
P represents the sum

over all permutations of N entries. We then obtain the matrix
element of the Hamiltonian 〈n1, n0, n−1| Ĥ (s) |n1, n0, n−1〉 =
[Ĥ (s)](n1,n0,n−1 ),(n′

1,n
′
0,n

′
−1 ) for all possible combinations of

(n1, n0, n−1) as

[Ĥ (s)](n1,n0,n−1 ),(n1,n0,n−1 )

= −B(s)(N − n0) + C

N
(2n1n−1 + n1 + n−1)

− N

(
n1 − n−1

N

)p

, (C2)

[Ĥ (s)](n1,n0+1,n−1−1),(n1,n0,n−1 ) = [Ĥ (s)](n1,n0,n−1 ),(n1,n0+1,n−1−1)

= [Ĥ (s)](n1+1,n0−1,n−1 ),(n1,n0,n−1 )

= [Ĥ (s)](n1,n0,n−1 ),(n1+1,n0−1,n−1 )

= −A(s)

√
(n0 + 1)n−1

2
, (C3)

[Ĥ (s)](n1+2,n0,n−1−2),(n1,n0,n−1 )

= [Ĥ (s)](n1,n0,n−1 ),(n1+2,n0,n−1−2)

= C

N

√
(n1 + 2)(n1 + 1)n−1(n−1 − 1). (C4)

By diagonalizing the matrix, we obtain the eigenvalues
eGS

n1,n0,n−1
of the exact ground state of the finite system as∣∣ψ (N )
GS

〉 =
∑

n1+n0+n−1=N

eGS
n1,n0,n−1

|n1, n0, n−1〉 . (C5)

From the eigenvalues, we can calculate the energy gap and
also the order parameter for the finite-size system as

mN := 1

N

〈
ψ

(N )
GS

∣∣ N∑
i=1

Ŝz
i

∣∣ψ (N )
GS

〉

= 1

N

∑
n1+n0+n−1=N

(n1 − n−1)|en1,n0,n−1 |2. (C6)

Finally, we can calculate the inner product between the spin-
coherent ground state and the exact ground state as

〈
ψSC,GS

∣∣ψ (N )
GS

〉 =
∑

n1+n0+n−1=N

eGS
n1,n0,n−1

√
N!

n1!n0!n−1!

×
(

sin
θmin

2
cos

φmin

2

)n1
(

cos
θmin

2

)n0

×
(

sin
θmin

2
sin

φmin

2

)n−1

. (C7)

In this derivation, we have fixed αmin = βmin = 0. We can then
calculate the fidelity.
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