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Nonadiabatic dynamical characterization in arbitrary quenching processes of two-dimensional
Chern insulators and three-dimensional chiral topological insulators
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Recently, dynamical characterization of bulk topology has been experimentally realized under nonadiabatic
sudden quench dynamics. However, it has been shown that only the topology of final phase can be characterized
when the system is quenched from initial topologically trivial phase. In this paper, we make a thorough
investigation of different types of quenching processes under nonadiabatic slow quench dynamics, and study
not only the processes between nontrivial phase and trivial phase, but also between the phases with different
topological invariants. We find that, under slow quench dynamics, both the initial and final topological phase can
be characterized and the topological invariant can be captured by time-averaged spin polarization. Moreover,
different types of processes can be distinguished from the special regions where the time-averaged spin
polarization vanishes. Our findings are not only restricted to two-dimensional Chern insulators, but also are
valid for three-dimensional chiral topological insulators. All the dynamical characterization schemes are entirely
based on the experimentally measurable quantity time-averaged spin polarization, and thus one can expect our
findings may provide reference for future experiments.
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I. INTRODUCTION

Topological quantum phases have been extensively studied
in last two decades [1–9]. Under the equilibrium theory, the
topological quantum phases can be classified and character-
ized by its topological invariant defined with Bloch functions.
The famous bulk-boundary correspondence dictates the exis-
tence of a robust boundary mode that is immune to disorder
or defects for a system with nontrivial topological invari-
ant. According to the bulk-boundary correspondence, one can
identify the topological phases by resolving the boundary
modes with angle-resolved photoelectron spectroscopy and
transport measurements experimentally [10–13].

Going beyond the equilibrium theory, the notion of char-
acterization of topological phases has been extended to the
nonequilibrium regime, in which dynamical characterization
of (non-) Hermitian quantum systems [14–22], (non-) corre-
lated systems [23], higher-order topological insulators [24]
are discussed. Recently, a dynamical bulk-surface correspon-
dence has been established by Liu and his coworkers in
Hermitian systems [25], in which a generic d-dimensional
(dD) topological phase can be characterized by the (d − 1)D
invariant defined on the so-called band inversion surface
(BIS). On the platform of optical lattice in ultracold atomic
systems, the measurement of the time-averaged spin po-
larization (TASP) by spin-resolved time-of-flight absorption
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imaging becomes possible. Thus, this dynamical bulk-surface
correspondence has been further verified experimentally
[26–30]. In momentum space, after suddenly quenching the
system from a trivial phase to a topological phase, the bulk
topology of a dD equilibrium phase of the postquench Hamil-
tonian can be easily determined with high-precision by the
winding of dynamical field on BIS in the TASP. In addition,
a dynamical topological invariant after a sudden quench is
proposed in Ref. [31], which is shown to be intrinsically
related to the difference between the topological invariants
of the initial and final static Hamiltonian. The dynamical
topological invariant is zero if the initial Hamiltonian and the
final Hamiltonian lie within the same phase. On the contrary,
the dynamical topological invariant is not zero if the initial
Hamiltonian and the final Hamiltonian lie in the different
phases including different topological phases.

Compared with the above sudden quench, a general dy-
namical characterization scheme based on the slow quench
protocol with a finite quenching rate is provided in previ-
ous works [32,33]. The quenching rate varies from 0 to ∞,
corresponding to a continuous crossover from the sudden
quench limit to the adiabatic limit. It has been found that
nonadiabatic slow quench dynamics can indeed provide an
alternative topological structure named spin inversion surface
(SIS) in characterizing the topological phases. However, the
previous studies consider only the dynamical characteriza-
tion in one special type of quenching process, and the TASP
only captures the topological invariant of the postquench
Hamiltonian. One may wonder whether it is critical for dy-
namical characterization to quench from a topologically trivial
phase or whether the initial topological phase can be charac-
terized. What knowledge could we obtain by reversing the
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quenching processes (i.e., from “topological set of param-
eters” to “nontopological ones”) or by quenching between
regimes with different topological invariants? Therefore, by
a thorough investigation of the dynamical characterization
for the two-dimensional Chern insulator, one would expect
richer physical phenomena emerging from different types of
quenching processes.

In this paper, in the framework of slow nonadiabatic
quench, we show how the dynamical characterization is
performed in different types of quenching processes of two-
dimensional Chern insulator as well as three-dimensional
chiral topological insulator. A generalized version of Landau-
Zener model is proposed and applied to the study of
dynamical characterization of topological phases under slow
quench dynamics. By analyzing the corresponding TASP of
each process after quenching, we find that the initial phase
can be characterized under nonadiabatic quench dynamics.
No matter what intermediate phase the quenching process
undergoes, the TASP records the topological information of
the initial phase and final phase. Specifically, in the processes
with a trivial phase included, the invariant of the initial or final
topological phase can always be captured. In the processes be-
tween different topological regimes, both the initial and final
phase can be characterized. Finally, by analyzing the influence
of the quenching rate and the ratio of relevant parameters, we
find that the processes quenching from a topological phase to
a trivial phase can always be distinguished from other types of
processes. Compared with the sudden quench, this is also the
unique advantage of slow quench. All the dynamical charac-
terization schemes are entirely based on the TASP, which can
be observed directly in experiment. Therefore, one can expect
our findings may provide reference for future experiments.

The rest of this paper is organized as follows. In Sec. II, we
give a general introduction to the slow nonadiabatic quench
dynamics. Then in Sec. III, we present the results of dynami-
cal characterization in different types of quenching processes
under nonadiabatic slow quench dynamics. In addition, we
discuss the influence of the quenching rate and the ratio of
interactions to the TASP in Sec. III. Finally, we provide a brief
summary to the main results of the paper in Sec. IV.

II. NONADIABATIC QUENCH DYNAMICS

A. Nonadiabatic slow quench dynamics

We first give a general introduction to the slow quench
protocol that can be utilized in the nonadiabatic dynamical
characterization of topological phases. In general, for a slow
quench, the Hamiltonian of a topological system in momen-
tum space is described in the following form:

H(k, t ) = h(k, t ) · γ = h0(k, t )γ0 +
d∑

i=1

hi(k)γi. (1)

The γ matrices satisfy the anticommutation relations
{γi, γ j} = 2δi j and are of dimensionality nd = 2d/2 (or
2(d+1)/2) when d is even (or odd). In one-dimensional (1D)
and two-dimensional (2D) systems, γ are the Pauli matrices.
In higher-dimensional systems, γ take the Dirac form.

Here, we consider a specific protocol:

h0(k, t ) = g/t + h0(k),

with g determining the quenching rate. The parameter g
varies from 0 to ∞, corresponding to a continuous crossover
from the sudden quench limit (g = 0) to the adiabatic limit
(g → ∞). In such a protocol, the form of g/t enables us
to quench the system from an initial Hamiltonian at t = tint

to a final Hamiltonian at t = tf by keeping other parameters
unchanged. During the quenching process, the evolution of
the state vector is fully determined by the Schrödinger equa-
tion ih̄ d

dt |ψ (k, t )〉 = H(k, t )|ψ (k, t )〉 after preparing an initial
state |ψ (k, tint )〉. Then the pseudospin defined as

〈γ (k, t )〉 = 〈ψ (k, t )|γ|ψ (k, t )〉 (2)

will precess about the effective field h(k, t ). After a certain
time �t [g/(tint + �t ) � h0(k)], one can observe an approxi-
mately stable oscillation of the pseudospin 〈γ (k, t )〉. Thus, the
final TASP over a period T at each k point can be obtained as

〈γ (k)〉 = 1

T

∫ tint+�t+T

tint+�t
〈γ (k, t )〉dt . (3)

Here, the time point tint + �t across the time point of phase
boundary at h(k, t ) = 0. The superscripts (subscripts) “f”
(“int”) here represent the parameters of the final postquench
Hamiltonian Hf (initial prequench Hamiltonian Hint).

B. The time-averaged spin polarization under
slow quench dynamics

To be more clear about the expression form of TASP,
one needs to consider the nonadiabatic dynamics governed
by the time-dependent Hamiltonian (1), for which purpose
we need to solve the corresponding Landau-Zener problem.
Specifically, for a two-level system, if one prepares an initial
state |ψ (k, tint )〉 as the ground state of an initial Hamiltonian
Hint, the system will undergo a nonadiabatic transition during
the evolution, and finally at time t = tf, the system will stay
not only on the final instantaneous ground state |−〉 with
probability Pd (k), but also on the instantaneous excited state
|+〉 with probability Pu(k). By solving the time-dependent
Schrödinger equation, one can find that each component of
the TASP has the following form (see Appendix A):

〈γi(k)〉 = (Pu − Pd )
hf

i

εf
, (4)

in which εf is the eigenenergy of the final Hamiltonian and hf
i

is the component of effective vector field h(k, t ) in Eq. (1) at
t = tf. Note that the transition probability Pu and Pd , parame-
ters hf

i and εf are all dependent on momentum k.
One would find that each component of TASP can vanish

in two special regions in the k space: one is hf
i = 0, the other

is (Pu − Pd ) = 0. For the region with hf
i = 0, the component

〈γi(k)〉 of TASP vanishes but other components may remain
nonzero and we define it as BIS. For the region with Pu −
Pd = 0, all components of TASP vanish and we define it as
SIS. Specifically, if we choose h0 as the quenching axis, and
thus in the 〈γ0(k)〉, the region with hf

0 = 0 corresponds to the
BIS and the region with Pu − Pd = 0 corresponds to the SIS.

052218-2



NONADIABATIC DYNAMICAL CHARACTERIZATION … PHYSICAL REVIEW A 107, 052218 (2023)

Note that we have given a similar form of Eq. (4) in
previous works [32,33]. However, in previous works, we just
consider the quenching processes from a trivial phase to a
topological phase. Therefore, when the initial state is well
prepared, the transition probability (Pu − Pd ) = 0 is only re-
lated to the final state, which is determined by hf

0. In this
paper, we consider not only the quenching processes between
nontrivial phase and trivial phase, but also between the phases
with different topological invariants. Thus, the appearance of
Pu − Pd = 0 may be caused by the properties of either the
initial state or the final state, or sometimes by the properties
of both the initial state and the final state. That is to say,
in general, (Pu − Pd ) = 0 is related to both hint

0 and hf
0. This

relation may also lead to the SIS being subdivided into two
parts. One of this two parts is close to the BIS and the final
topological phase can be characterized on it. Thus, we call it
as FSIS (final SIS). The other of this two parts is far away from
the BIS and the initial topological phase can be characterized
on it. Thus, we call it as ISIS (initial SIS). Both the BIS
and SIS will be identified after experimentally obtaining the
measurable TASP. The information related to the BIS and
SIS is always marked in purple and green in the following
description, respectively.

III. DIFFERENT TYPES OF QUENCHING PROCESSES
FOR THE TWO-DIMENSIONAL TOPOLOGICAL

INSULATOR

Now we apply different types of quenching processes to
two-dimensional Chern insulator, which is described by a two-
band Hamiltonian: H(k, t ) = h(k, t ) · σ, with the vector field
given by

h0(k, t ) ≡ hz(k, t ) = g

t
+ mz − t0 cos kx − t0 cos ky,

h1 = hx = tso sin kx, (5)

h2 = hy = tso sin ky.

This Hamiltonian without time-dependent term g
t has been

realized in recent experiment of quantum anomalous Hall
effect [34]. Here, we slowly quench the z component of the
vector field from t = tint to tf (a large number compared with
g) and study the emergent topological characterization after
quenching. For 0 <

g
t + mz < 2t0, the Hamiltonian gives a

topological phase with Chern number C = −1. In addition,
for −2t0 <

g
t + mz < 0, the Hamiltonian describes a topologi-

cally nontrivial phase with Chern number C = +1. Otherwise,
the Hamiltonian lies in the trivial phase.

In the following, we first discuss the TASP in different
types of quenching processes under slow quench dynamics
with a certain g and a certain ratio tso/t0, and then discuss the
influence of the quenching rate g and the ratio tso/t0 on the
TASP.

A. Quenching the system from a trivial phase
to a topological phase

The exact solutions of the Landau-Zener problem are diffi-
cult to find and only a few special cases can be solved exactly.
In the previous paper [32], we have given an exact solutions in
a special case. Briefly speaking, we slowly quench the system

FIG. 1. (a) The specific quenching processes of a slow quench.
“0” represents the trivial phase, and other numbers represent the
topological phase with different topological invariant. (b)–(d) The
TASP after quenching the hz axis from a trivial phase to a topological
phase with C = −1. The system is quenched from tint = 0 to tf =
5000 with 5tso = t0 = g = mz = 1. 〈σz〉z represents the z component
of TASP after quenching the hz axis, and so on. (e) The dynamical
field of the system plotted by the normalized spin-orbit field ĥso.

from a trivial phase to a topological phase with time t varies
from tint → 0 to tf → ∞, and the initial state |ψ (0)〉 is always
the ground state of the initial Hamiltonian H(tint → 0). Then
the TASP can be given by

〈σi〉 = (Pu − Pd )
hf

i

εf
=

(
e−2πg

hf
0

εf − cosh 2πg
)

sinh 2πg

hf
i

εf
, (6)

where ε is the energy of final Hamiltonian H (tint → ∞).
As shown in Figs. 1(b)–1(d), we plot the three components

of TASP after quenching the hz axis from a trivial phase to
a topological phase with topological invariant −1. There are
two rings with 〈σz〉 = 0 appearing in the TASP. On the purple
ring, only one component of TASP 〈σz〉 vanishes, while the
other two components remain nonzero. On the green ring,
all three components of TASP vanish, which corresponds to
the momentum points with Pu − Pd = 0 in Eq. (6). Thus, we
identified the purple ring and green ring as BIS and SIS,
respectively. After identifying the BIS and SIS in the TASP,
one can then determine the topological invariant of system
from the winding of dynamical field formed by the other two
components −〈σx〉 and −〈σy〉 on BIS, or by the gradients of
two other components g̃x = −∂k⊥〈σx〉 and g̃y = −∂k⊥〈σy〉 on
SIS [33]. Here, the direction k⊥ is defined to be perpendicu-
lar to the SIS. Both the dynamical field (−〈σx〉,−〈σy〉) and
(g̃x, g̃y) are shown to be proportional to the spin-orbit field
hso = (hx, hy). That is to say, hso is actually a two-component
vector, as shown in Fig. 1(e). One can see that both the
winding of dynamical field (arrows) on BIS and SIS forms
a nontrivial topological configuration, and thus gives a topo-
logical number −1.
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FIG. 2. (a) The specific quenching processes of a slow quench.
“0” represents the trivial phase, and other numbers represent the
topological phases with different topological invariants. (b)–(d) The
TASP after quenching the hz axis from a trivial phase to a topolog-
ical phase with C = +1. The system is quenched from tint = 0 to
tf = 5000 with 5tso = t0 = g = −mz = 1. (e) The dynamical field of
the system plotted by the normalized spin-orbit field.

In Figs. 2(b)–2(d), three components of TASP are shown
after quenching the hz axis from a trivial phase to a topological
phase with topological invariant +1. The purple ring and the
green ring can also be identified as BIS and SIS, respectively.
Furthermore, one can also obtain the dynamical field on BIS
and SIS by measuring the value and the gradient of two
components of TASP 〈σx,y〉, respectively. Compared with the
dynamical field shown in Fig. 1(e), the dynamical field plotted
in Fig. 2(e), which converges at a central point inside BIS and
SIS rather than spread out to the outside of BIS and SIS, shows
an opposite winding behavior. Therefore, an opposite Chern
number C = +1 is given by the dynamical field both on BIS
and SIS.

From the above results of Figs. 1 and 2, one can see that
what the TASP records is the topological invariant of the final
phase. Even though in the case of Fig. 2, the system undergoes
a nonadiabatic transition that passes through an intermedi-
ate region with Chern number C = −1, the information of
the intermediate phase is unrevealed. In the next sections,
we show that the topological invariant of initial phase can
also be revealed in the TASP. However, in the current case,
the initial trivial phase cannot bring any topological informa-
tion on the TASP. Thus, only the information related to final
topological phase is recorded in the TASP.

B. Quenching the system from a topological
phase to a trivial phase

We further explore the dynamical characterization in
other types of quenching processes, in which the system is
quenched from a topological phase with topological invariant
C = +1 to a trivial phase. As shown in Fig. 3(b), there is only
one ring (denoted by the green solid line), on which all the

FIG. 3. (a) The specific quenching processes in panels (b)–(d).
“0” represents the trivial phase, and other numbers represent the
topological phases with different topological invariants. (b) The
TASP after quenching the hz axis from a topological phase with
C = +1 to a trivial phase. The system is quenched from tint = 1/3 to
tf = 5000 with 5tso = t0 = g = 1 and mz = −4. (c) The TASP after
quenching the hz axis from a topological phase with C = −1 to an-
other topological phase with C = +1. The system is quenched from
tint = 1/2 to tf = 5000 with 5tso = t0 = g = −mz = 1. (d) The TASP
after quenching the hz axis from a topological phase with C = +1
to another topological phase with C = −1. The system is quenched
from tint = 1/2 to tf = 5000 with 5tso = t0 = −g = mz = 1.

components of TASP vanish, and thus we also identify this
ring as SIS. On the SIS, we can still obtain the dynamical field,
as shown in Fig. 2(e), which implies a topological number
+1. Evidently, the final trivial phase here cannot bring any
topological information on the TASP. Thus, the TASP here
only records the topological information related to the initial
phase. Note that, here we use the green solid line in order to
show that the appearance of SIS is due to a topological initial
phase. If the appearance of SIS is due to a topological final
phase, then we will still denote the SIS by a green dashed
line.

C. Quenching the system from a topological phase
to a topological phase

Now, we discuss a different type of quenching process in
which the system is quenched from a topological nontrivial
phase to another nontrivial phase.
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We first quench the system from a topological phase with
topological invariant C = −1 to another topological phase
with topological invariant C = +1. As shown in Fig. 3(c), SIS
here is obviously subdivided into two parts, and thus there
appear three different rings with 〈σz〉 = 0 in the TASP. To
distinguish them, we name these two parts FSIS and ISIS.
Near the edge of the Brillouin zone, there are two rings (green
dashed and purple dashed) adjacent to each other, which are
identified as BIS and FSIS. They can be further distinguished
by different behavior of two other components of TASP 〈σx,y〉.
On the BIS, as denoted by the purple dashed ring, the other
two components of TASP 〈σx,y〉 remain nonzero. On the FSIS,
as denoted by the green dashed ring, the other two components
of TASP 〈σx,y〉 also vanish. The third ring, which is away from
the BIS and near the edge of the Brillouin zone, is identified
as the ISIS on which all the components of the TASP also
vanish. Then one can also obtain the dynamical field on the
BIS or FSIS by measuring the value or the gradient of two
components of TASP 〈σx,y〉. Both the dynamical field on the
BIS and FSIS have same configuration as shown in Fig. 2(e).
Thus, a nontrivial topological number +1, which corresponds
to the topological invariant of the final phase, is given by
the dynamical field on the BIS or FSIS. Moreover, one can
also obtain the dynamical field on the ISIS by measuring the
gradient of two components of TASP 〈σx,y〉. The dynamical
field on the ISIS have similar topological configurations, as
shown in Fig. 1(e). Thus, a nontrivial topological number −1,
which corresponds to the topological invariant of the initial
phase, is given by the dynamical field on the ISIS.

The above characterization schemes remain valid for the
quenching processes from another topological phase with
topological invariant C = +1 to a topological phase with
topological invariant C = −1. To reverse the quenching pro-
cesses, we change the quench protocol g/t to −g/t . As shown
in Fig. 3(d), the two adjacent rings also appear in the TASP.
Similar to the quenching processes as before, we can identify
one ring as the BIS and the other as the FSIS. On both
of them, the dynamical field presents the same topological
configuration as shown in Fig. 1(e), which implies the bulk
topological number of the final phase C = −1. In addition,
we can still identify the remaining ring as ISIS, on which all
the components of TASP vanish. The dynamical field on it
presents the same topological configuration as that shown in
Fig. 2(e), which implies the bulk topological number of the
final phase is C = +1.

From the perspective of phase transition, in the processes
of slow quench, hz(k, t ) varies with time, and the bulk
gap closes while hz(k, t ) = hx = hy = 0, corresponding to
a topological phase transition with the topological invariant
changed. In particular, hx = hy = 0 are the positions of topo-
logical charges, i.e., the singularities enclosed in the ISIS,
FSIS, and BIS. Analogous to the Gaussian theorem [35,36],
the topological charge is actually a monopole, whose quan-
tized flux through the ISIS and FSIS or BIS are viewed as
the initial topological invariant and final topological invariant,
respectively. That is to say, the topological charge is dual to
the winding of dynamical field on the ISIS, FSIS, and BIS.
Thus, one can also determine the initial and final topological
invariants of the system from the corresponding topological
charges (see Appendix B for detail).

Up to now, we find that the initial phase can also be char-
acterized under nonadiabatic quench dynamics. No matter
what intermediate phase the quenching process undergoes, the
TASP only records the topological information of the initial
phase and final phase. In addition, each type of quenching pro-
cess shows its unique features on the SIS and BIS, and thus the
different types of processes can be distinguished. In particular,
the initial phase and final phase can be easily characterized
and distinguished in all types of quenching processes. Similar
results can also be obtained in the topological system with
high Chern number (see Appendix C).

IV. THE INFLUENCE OF THE QUENCHING RATE g
AND THE RATIO tso/t0

In this section, we give a more general conclusion after
considering the influence of the quenching rate g and the ratio
tso/t0 on the dynamical characterization.

A. The influence of the quenching rate g

As shown in Figs. 4(a) and 4(b), for the processes between
different topological regimes, we plot the component of TASP
〈σz〉 as a function of quenching rate g on the line kx = ky with
protocol g/t and −g/t , respectively. Thus, the BIS, FSIS, and
ISIS can be identified as before under a certain rate g. The
solid and dashed lines represent the zero points of hint

z and hf
z

in corresponding processes, respectively.
When g changes, the BIS is always at momentum points

with hf
z = 0 as defined before. However, the position of SIS

depends on g. Although the position of ISIS changes more
slowly with g than the FSIS, they move in opposite directions
(face to face) as g becomes larger. Here, we denote the change
of the position of FSIS by the arrows. Thus, when g is large
enough (g = 10), the FSIS will overlap with ISIS. In addition,
the exact form of the TASP in a sudden quench is given as (see
Appendix A)

〈σi〉 = −
(
hf

0hint
0 + h2

1 + h2
2

)
hf

i

εint · ε2
f

, (7)

in which h0, h1, and h2 equal hz, hx, and hy, respectively.
When g tends to zero, the nonadiabatic slow quench here

degenerates into a sudden quench. Thus, the position of the
FSIS and ISIS will totally overlap with two zero points of
hf

0hint
0 + h2

1 + h2
2. The smaller (h2

x + h2
y ) is, the closer the FSIS

and ISIS is to hf
z = 0 and hint

z = 0. In a certain range 0 � g <

10, there will be a FSIS near the BIS and a ISIS far from the
BIS, on which the dynamical field reflects the bulk topology
of the final phase and initial phase, respectively.

For the processes with quench protocol −g/t , it still can
be considered as a Landau-Zener problem. Thus, the TASP

of −g/t also has the similar form 〈σi(k)〉 = (Pu − Pd ) hf
i

εf
as

that of g/t . For the case here, after further plotting the other
components of TASP 〈σx,y〉 in Fig. 4(c), one can see that the
TASP of g/t and −g/t have the following relation:

〈σi(k)〉g/t = −〈σi(k + π )〉−g/t . (8)

To make it more clear, we give a schematic diagram of trans-
lation between this two processes in Appendix B. Thus, one
can easily obtain [Pu(k) − Pd (k)]g/t = [Pu(k + π ) − Pd (k +
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FIG. 4. (a) The component of TASP 〈σz〉 on the line kx = ky

in the processes between different topological regimes with quench
protocol g/t . The system is quenched from a topological phase with
C = −1 to a topological phase with C = +1. Other parameters sat-
isfy (g/tint + mz ) = 1, (g/tf + mz ) = −1, and 5tso = t0 = −mz = 1.
(b) The component of TASP 〈σz〉 on the line kx = ky in the processes
between different topological regimes with quench protocol −g/t .
The system is quenched from a topological phase with C = +1 to a
topological phase with C = −1. Other parameters satisfy (−g/tint +
mz ) = −1, (−g/tf + mz ) = 1, and 5tso = t0 = mz = 1. The solid and
dashed lines represent the points with hint

z = 0 and hf
z = 0 in corre-

sponding processes, respectively. The change of FSIS are denoted by
the arrows. (c) The component of TASP 〈σx,y〉 on the line kx = ky in
the processes between different topological regimes with two quench
protocol g/t and −g/t (g = 1).

π )]−g/t . Especially, the above relation can be well understood
in a sudden quench according to Eq. (7). For other cases,
there is not an obvious general relation that can be found in
the TASP and (Pu − Pd ) between two reversed processes, but
the position of the SIS depends on g being similar to the case
described here.

In addition, the dependence of position of SIS on g in the
processes from a trivial phase to a topological phase and from
a topological phase to a trivial phase is similar to the FSIS
and ISIS, respectively, and we will not bother to elaborate on
them.

B. The influence of the ratio tso/t0

In the quenching Hamiltonian (5), there is an additional
parameter tso which does not affect the phase diagram but

FIG. 5. (a) After quenching the system from a topological phase
with C = −1 to another topological phase with C = +1, two con-
figurations of rings with different ratios tso/t0 are found in 〈σz〉 for
protocol g/t (g = 1). (b) After quenching the system from a topolog-
ical phase with C = +1 to another topological phase with C = −1,
two configurations of rings with different ratios tso/t0 are found in
〈σz〉 for protocol −g/t (g = 1).

may influence the results of nonadiabatic transitions. In this
section, we study the effect of the ratio tso/t0 on the dynam-
ical characterization. As plotted in Figs. 5(a) and 5(b), after
quenching the system from a topological phase to another
topological phase with protocol g/t and −g/t , respectively,
two configurations of rings with different ratios tso/t0 are
found in 〈σz〉, respectively.

For the case of tso/t0 > 0.7, one can see that the SIS here
decomposes into four semicircles. Similar to the ring in the
center of the TASP with tso/t0 < 0.7, two semicircles (up and
down, left and right) here compose a ring, which gives an
invariant −1. In addition, when g changes, the configuration
of SIS remains unchanged in the two reversed quenching
processes. Thus, either the initial or final invariant of the
system cannot be exactly characterized by the SIS. However,
the components of the TASP 〈σx〉 and 〈σy〉 on BIS remain
nonzero. Thus, the final phase can still be characterized.

To understand the underlining physics of different con-
figurations of rings, one should study the vanishing TASP
under slow quench dynamics with small g, which can be
approximately obtained by the regions with momentum points
determined by hf

0hint
0 + h2

1 + h2
2 = 0 from sudden quench

dynamics. For convenience, we denote the regions with mo-
mentum points hf

0hint
0 + h2

1 + h2
2 = 0 as SISg=0. When tso/t0

approaches zero, SISg=0 is actually in the region with mo-
mentum points hf

0 = 0 and hint
0 = 0. When tso/t0 becomes very

large, the SISg=0 is no longer in the region with momentum
points hf

0 = 0 and hint
0 = 0. Thus, there must be a critical

value of tso/t0 at which the position of SIS changes abruptly.
Under this critical value, the position of SISg=0 is close to
the region with hf

0 = 0 and hint
0 = 0 and the shape of SISg=0

is also similar to the region with hf
0 = 0 and hint

0 = 0. The
magnitude of this critical value is proportional to mz (see Ap-
pendix A for detail). Moreover, in the two reversed quenching
processes, the product of the hf

0 and hint
0 keeps unchanged,
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FIG. 6. (a) The component of TASP 〈σz〉 after quenching the
hz axis from a topological phase with C = −1 to a trivial phase
for different ratios tso/t0. The system is quenched from mz = +1
to mz = −3. (b) The component of TASP 〈σz〉 after quenching the
hz axis from a topological phase with C = +1 to a trivial phase
for different ratio tso/t0. The system is quenched from mz = −1 to
mz = −3.

and thus the same configuration of SISg=0 can be found in
the TASP.

We further discuss the influence of tso/t0 in other types
of quenching processes with a trivial phase included. In the
quenching processes from a trivial phase to a topological
phase, the vanishing TASP in 〈σz〉 can be found at SISg=0 and
at the BIS with hf

z = 0. Thus, there will be a special case that
SISg=0 sometimes may overlap with the BIS (see Discussion,
Sec. VI). Nevertheless, the BIS with hf

0 = 0 always exists, and
thus the final bulk topology in this processes can always be
captured.

In the quenching processes from a topological phase to
trivial phase, hf

0 cannot equal to zero, and thus the vanishing
TASP in 〈σz〉 can only be found at SISg=0. As shown in Fig. 6,
we plot the component of TASP 〈σz〉 after quenching hz axis
from a topological phase with C = −1 or C = +1 to a trivial
phase for different ratio stso/t0. Only one configuration of
SISg=0 is found in the processes from a topological phase with
C = +1 to a trivial phase, and we have already known the in-
variant defined on it is +1.Three configurations of SISg=0 are
found in the processes from a topological phase with C = −1
to a trivial phase. However, because the hf

0 is different from
that in the processes between different topological regimes,
the critical ratio is different. The first or second SISg=0 is
an enclosed ring, which gives the initial topological number
−1. For the third SISg=0, the semicircles at four corners of
the Brillouin zone compose a ring that gives a topological
number +1. The two pairs of semicircles (up and down, left
and right) compose two rings with invariant −1, and one of
them cancel out with the ring composed by four semicircles
at four corners. Thus, the initial topological number −1 can
always be obtained.

Overall, the initial phase can also be characterized under
nonadiabatic quench dynamics. No matter what intermediate
phase the quenching process undergoes, the TASP records the
topological information of the initial phase and final phase.
Specifically, in the processes with a trivial phase included, the
invariant of the initial topological phase or final topological
phase can always be captured. However, in the processes be-
tween different topological regimes, both the initial and final
phase can be characterized under a critical ratio tso/t0. Beyond
this critical ratio, only the final phase can be characterized.

Our findings also show that, under the critical value, each
type of quenching process shows its unique features on the
SIS and BIS. Specifically, if only two adjacent rings appear
in the TASP, we identify this process as quenching from a
trivial phase to a topological phase. If only one ring appears
in the TASP, we identify this process as quenching from a
topological phase to a trivial phase. In addition to the above
two cases, other types of processes are identified as quench-
ing between different topological phases. Beyond this critical
ratio (here, this critical ratio is 0.7), the configuration of rings
is complicated. However, because only the SIS appears in the
processes from a topological phase to a trivial phase, this type
of process can always be distinguished from other types of
processes in spite of what value the tso/t0 is.

V. THREE-DIMENSIONAL TOPOLOGICAL INSULATOR

Our findings are not only restricted to two-dimensional
topological systems, but also are valid for higher-dimensional
systems. Here, we apply the above characterization schemes
to three-dimensional chiral insulator. The Hamiltonian of
three-dimensional chiral insulator can be written as H(k) =
h(k) · γ , with the vector field given by

h0 = m0 − t0
∑

j=x,y,z

cos ki,

h1,2,3 = tso sin kx,y,z. (9)

Here, we take γ = (σz ⊗ τx, σx ⊗ τ0, σy ⊗ τ0, σz ⊗ τz ), where
both σx,y,z and τx,y,z are Pauli matrices, τ0 is a identity matrix.
The Hamiltonian has a chiral symmetry defined by σz ⊗ τy.
For t0 < m0 < 3t0, the Hamiltonian gives a topological phase
with winding number ν3 = 1. For −t0 < m0 < t0, the Hamil-
tonian gives a topological phase with ν3 = −2. In addition, for
−3t0 < m0 < −t0, the Hamiltonian also gives a topological
phase with ν3 = 1. Otherwise, the Hamiltonian lies in the
trivial phase.

We first discuss the influence tso/t0 in quenching processes
between different topological phases. As shown in Fig. 7(a),
after quenching the system from mint

0 = 1.5 to mf
0 = −1.5,

the corresponding three-dimensional (3D) configuration of
SISg = 0 and BIS in 〈γ0〉 is found. Although the topological
invariants of initial Hamiltonian and final Hamiltonian are the
same, the TASP still captures the topological information be-
fore and after quenching. Under the critical ratio tso/t0 = 0.86
(see Appendix A for details), the FSIS has a similar shape
as the BIS, and the ISIS is an enclosed sphere surface at the
center of Brillouin zone. From the dynamical field given in
Ref. [37], one can easily see both that the initial and final
topological phases can be characterized here. Similarly, after
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FIG. 7. (a) After quenching the system from mint
0 = 1.5 to mf

0 =
−1.5. Three configurations of BIS and (SIS)g = 0 with different
ratios tso/t0 are found in 〈γ0〉. (b) After quenching the system from
mint

0 = 1.5 to mf
0 = −0.5. Three configurations of BIS and (SIS)g =

0 with different ratios tso/t0 are found in 〈γ0〉.

quenching the system from mint
0 = 1.5 to mf

0 = −0.5, the cor-
responding 3D configuration of SISg = 0 and BIS are shown
in Figs. 7(b). Under the critical ratio tso/t0 = 0.6, both the
initial and final invariants can be captured. In fact, beyond the
critical value tso/t0 = 0.6 or tso/t0 = 0.86, the SISg = 0 have
no intersections with the line kx = ky = kz, and only the final
phase can be characterized.

We further discuss the influence of tso/t0 in other types
of quenching processes with a trivial phase included. In the
quenching processes from a trivial phase to a topological
phase, the BIS with hf

0 = 0 always exists, and thus the final
bulk topology in this processes can always be captured.

In the quenching processes from a topological phase to
a trivial phase, as shown in Fig. 8, we plot the component
of TASP 〈γ0〉 after quenching the h0 axis from a topological
phase with ν3 = 1 or ν3 = −2 to a trivial phase for different
ratios tso/t0. For the processes from a topological phase with
ν3 = −2 to a trivial phase, three configurations of SISg=0

are found in Fig. 8(a). We have already known the invariant
defined on the first configuration is −2. According to the
configuration of topological charges given in Ref. [37], four
topological charges (O1, O2, O4, and O6) are enclosed within
the region of the second configuration or the third configu-
ration. Thus, the sum of three negative charges (O2, O4, and
O6) and one positive charge (O1) gives the initial invariant
−2 = −3 + 1. For the processes from a topological phase
with ν3 = 1 to a trivial phase, only one configuration of SISg=0

is found in the case of Fig. 8(b), and we have already known
the invariant defined on it is 1. Three main configurations of
SISg=0 are found in the case of Fig. 8(c). The first configura-
tion is an enclosed sphere, and we have already known the
invariant defined on it is 1. Although the second and third
configurations seem to be more complicated, the topological
charge that enclosed within the region of SISg=0 is just the
positive charge O1, which locates at the momentum point

FIG. 8. (a) After quenching the system from mint
0 = −0.5 to

mf
0 = −4. Three configurations of SISg=0 with different ratios tso/t0

are found in 〈γ0〉. (b) After quenching the system from mint
0 = −1.5

to mf
0 = −4. One configuration of SISg=0 with different ratio tso/t0

is found in 〈γ0〉. (c) After quenching the system from mint
0 = 1.5 to

mf
0 = −4. Three configurations of SISg=0 with different ratios tso/t0

are found in 〈γ0〉.

kx = ky = kz = 0. Thus, the initial invariant 1 can be always
obtained in spite of what value the ratio tso/t0 is. One may
see the different configurations in each quenching process
are actually the same topological patterns for the dynamical
characterization of initial topological phases.

VI. DISCUSSION

For a sudden quench, the quenching processes from a topo-
logical phase to a trivial phase may not be distinguished from
other types of processes. We make a comparison between
the processes from a trivial phase with a infinite hint

0 to a
topological phase with finite hf

0 and the processes from a topo-
logical phase with a finite hint

0 to a trivial phase with a large hf
0

(hf
0 
 h2

1 + h2
2). For the former processes, the TASP becomes

− hf
0hf

i
εf

2 . Thus, only one common ring with hf
0 = 0 (BIS) can be

found in all the components of TASP. For the latter processes,
the TASP becomes −hint

0 hf
i/εintεf and hf

0 cannot be zero. Thus,
only one common ring with hint

0 = 0 can be found in all the
components of TASP. As shown in Figs. 9(b) and 9(c), the
rings in this two quenching processes have the same features,
and thus the two processes cannot be distinguished in a sudden
quench.

However, in the slow quench, for the former processes, the
rings in the TASP are the BIS and SIS. On the BIS, 〈σz〉 = 0
but 〈σx,y〉 �= 0. For the latter processes, the ring in the TASP is
the SIS, on which all the components of TASP 〈σx,y,z〉 vanish.
Thus, these two processes can be distinguished.

We conclude that the difference between the BIS and SIS
always makes the processes from a topological phase to a

052218-8



NONADIABATIC DYNAMICAL CHARACTERIZATION … PHYSICAL REVIEW A 107, 052218 (2023)

FIG. 9. (a) The specific quenching processes in panels (b) and
(c). “0” represents the trivial phase, and other numbers represent
the topological phases with different topological invariants. (b) The
TASP after suddenly quenching the hz axis from a trivial phase to
a topological phase with C = +1. The system is quenched from
mz = 20 to mz = −1 with 5tso = t0 = 1. (c) The TASP after suddenly
quenching the hz axis from a topological phase with C = +1 to a
trivial phase. The system is quenched from mz = −1 to mz = −10
with 5tso = t0 = 1.

trivial phase distinguishable from other types of processes in
the slow quench. Compared with a sudden quench, this is also
the unique advantage of a slow quench.

VII. CONCLUSIONS

In summary, we uncover how the dynamical characteriza-
tion is performed in different types of quenching processes
in two-dimensional Chern insulators and three-dimensional
chiral topological insulators. We show that the initial phase
can be characterized under nonadiabatic quench dynamics.
No matter what intermediate phase the quenching processes
undergoes, the TASP records the topological information of
the initial phase and final phase. Compared with the sudden
quench, the processes from a topological phase to a trivial
phase can always be distinguished from other type of pro-
cesses. It is worthwhile that the dynamical characterization
scheme here is only based on the TASP, and thus one can ex-
pect that our characterization schemes may provide reference
for future experiments.
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APPENDIX A: THE TIME-AVERAGED SPIN
POLARIZATION UNDER NONADIABATIC

QUENCH DYNAMICS

In a sudden quench, the Hamiltonian of a two-level system
can be written as

H = h · σ =
(

ε cos θ ε sin θe−iϕ

ε sin θeiϕ −ε cos θ

)
. (A1)

Here, ε = (h0
2 + h1

2 + h2
2)1/2 is the energy of the Hamilto-

nian. The parameters θ and ϕ are space angles that describe
the direction of the effective field h. In the following, we use
superscripts (subscripts) “f” (“int”) to represent the parame-
ters of the final Hamiltonian Hf (initial Hamiltonian Hint).

The evolution of the state vector can be written as |ψ (t )〉 =
e−iHft |ψ (0)〉. Furthermore, an arbitrary initial state can be
expressed as the superposition state of eigenstates of the final
Hamiltonian: |ψ (0)〉 = C1|+〉 + C2|−〉. After some algebra,
we show 〈σi〉 = (C1

2 − C2
2)hf

i/εf. Then if one chooses the
initial state as the ground state of the initial Hamiltonian, the
TASP will become

〈σi〉 = {− cos (θf − θint )

− sin θf sin θint[cos (ϕf − ϕint ) − 1]}hf
i

εf
.

If one further choose h0 as the quenching axis, h0 will change
from hint

0 to hf
0. That is to say, θ will change from θint to θf.

However, in both the initial and final Hamiltonians, h1 and h2

are unchanged, and thus ϕint = ϕf. At this time, the TASP is
given in a simple form:

〈σi〉 = [− cos (θf − θint )]
hf

i

εf

= −hf
0hint

0 + h2
1 + h2

2

εf · εint

hf
i

εf
. (A2)

This is a general result that can be applied to an arbitrary
process.

For the Chern insulator, h0, h1, and h2 here equal hz, hx, and
hy, respectively. When the system is quenched from mint

z to mf
z,

the TASP may vanish at the regions with hf
zh

int
z + h2

x + h2
y = 0

and hf
z = 0, i.e., the SISg=0 and BIS. If SISg=0 has intersection

points with the line k = kx = ky, tso should satisfy the follow-
ing equation:

2t2
sosin2k + mint

z mf
z − 2

(
mint

z + mf
z

)
cos k + 4cos2k = 0.

(A3)

For the case mint
z = −mf

z = mz, we arrive at sin2k =
(m2

z − 4)/(2t2
so − 4), and thus − mz√

2
� tso � mz√

2
. Under the

critical value mz√
2
, SISg=0 has intersection points with the line

k = kx = ky, and both the initial and final phases can be
characterized. Beyond the critical value mz√

2
, SISg=0 has no

intersection points with the line k = kx = ky, and both the
initial and final phase cannot be characterized. For mz = 1,
the critical value is

√
2

2 ≈ 0.7.
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For higher-dimensional systems, the TASP of matrix Oi

can be written as

〈Oi〉ρ0
= lim

T →∞
1

T

∫ T

0
dt Tr[ρ0eiHftOie

−iHft ]

=
∑

m

〈ψ̃m|ρ0|ψ̃m〉〈ψ̃m|Oi|ψ̃m〉. (A4)

The Hamiltonian we are talking about here satisfies Clifford
algebra. Thus, the final Hamiltonian Hf has the following
property:

Hf = H0 + hf
iOi, (A5){

H0, hf
iOi

} = 0, (A6)

then

〈ψ̃m|Oi|ψ̃m〉 = hf
i/Em, (A7)

where |ψ̃m〉 is the normalized eigenstate, Em is the correspond-
ing eigenenergy of Hf at level m, and ρ0 is the initial density
matrix of initial Hamiltonian Hint.

This is because, on one hand,

〈ψ̃m|{Hf,Oi}|ψ̃m〉 = 〈ψ̃m|{hf
iOi,Oi

}|ψ̃m〉 = 2hf
i, (A8)

and, on the other hand,

〈ψ̃m|{Hf,Oi}|ψ̃m〉 = 2Em〈ψ̃m|Oi|ψ̃m〉. (A9)

Substituting Eq. (A7) and the corresponding ρ0 into
Eq. (A4), we can get the TASP of higher-dimensional systems.
For the three-dimensional chiral topological insulator in the
main text, Oi is the Dirac matrix γi and the TASP in arbitrary
quenching processes is

〈γi〉 = −hf
0hint

0 + h2
1 + h2

2 + h2
3

εf · εint

hf
i

εf
, (A10)

where εf = [
∑3

i=0(hf
i )

2]1/2 and εint = [
∑3

i=0 (hint
i )2]1/2. Simi-

lar to the two-level system, for the case mint
0 = −mf

0 = m, we
arrive at sin2 k = (m2 − 9)/(3t2

so − 9), and thus − m√
3
� tso �

m√
3
.
In a slow quench, a time-dependent Hamiltonian with

quench protocol g/t is given as

H(t ) = h(t ) · σ =
( g

t + εf cos θ εf sin θe−iϕ

εf sin θeiϕ − g
t − εf cos θ

)
. (A11)

The evolution of the state vector is fully determined by
the Schrödinger equation ih̄ d

dt |ψ (k, t )〉 = H(t )|ψ (k, t )〉 after
preparing an initial state |ψ (k, tint )〉. In general, up to a total
phase factor φ, the state vector at the long-time limit can be
given as [32,33]:

|ψ (t )〉 = √
Pue−iεft |+〉 + √

Pd eiεft+φ|−〉. (A12)

Here, φ = 0 in the case of sudden quench. |±〉 satisfy the
eigenequation Hf|±〉 = ±εf|±〉.

Then the TASP can be obtained by using the relation
〈±|Hf|±〉 = ±εf and ignoring the terms dependent on the
time,

〈σi〉 = (Pu − Pd )
∂εf

∂hf
i

= (Pu − Pd )
hf

i

εf
. (A13)

FIG. 10. The schematic diagram of topological charges. The
gray region represents the region enclosed by the rings. Here, tso =
0.2t0.

Thus, there exist some common spin polarizations with
(Pu − Pd ) = 0 in all the components of TASP. Here, we define
the direction k⊥ to be perpendicular to (Pu − Pd ) = 0. Thus,
the dynamical field on (Pu − Pd ) = 0 can be shown to be
proportional to the spin-orbit field hso:

−∂k⊥〈σso,i〉 ∝ lim
k⊥→0

1

2k⊥

hso,i + O(k⊥)

εf + O(k⊥)
2k⊥ = hso,i

εf
. (A14)

with i = 1, 2. hso = (h1, h2) is a two-component vector. Simi-
larly, one can also show the dynamical field is proportional to
spin-orbit field in sudden quench.

The above result of slow quench can also be applied to the
three-dimensional topological systems [32,33].

APPENDIX B: THE CHARGE CONFIGURATIONS IN
DIFFERENT PROCESSES AND THE TRANSLATION OF

THE TASP BETWEEN TWO REVERSED PROCESSES

The charge configurations. In general, the vector field can
be decomposed into h0 = hz and hso = (hy, hx ). hso = 0 are
the positions of topological charges. As shown in Fig. 10,
we plot the different charge configurations in all types of
quenching processes. When we quench the system from a
trivial phase to another trivial phase, there is no rings, and
thus no topological charge is enclosed by the rings. When we
quench the system from a trivial phase to a topological phase
with C = −1, a topological charge −1 located at kx = ky = 0
is enclosed by both BIS and SIS, and thus gives the Chern
number C = −1. Similarly, another two topological charges
+1 at (0, π ) and (π, 0) are also included when the system
is quenched from a trivial phase to a topological phase with
C = +1, which renders the Chern number being changed to
1 + 1 − 1 = +1. Furthermore, when we quench the system
from a topological phase to a trivial phase, a topological
charge −1(+1) is enclosed by the SIS, and thus gives the
Chern number C = −1(+1). Finally, when we quench the
system from a topological phase to another topological phase,
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FIG. 11. (a) The schematic diagram of translation between two
reversed processes. The arrow represents the direction of translation.

a topological charge −1 is enclosed by the ISIS and another
topological charge +1 is enclosed by both BIS and FSIS.
Therefore, both the initial and final phase of the system can
be characterized. These results are consistent with those given
in the main text by the dynamical field.

The translation of the TASP. As shown in Fig. 11, we
show a schematic diagram of translation between two reversed
processes. One can easily see that the TASP between protocols
g/t and −g/t in the square region marked in red have the
relation 〈σi(k)〉g/t = −〈σi(k + π )〉−g/t .

APPENDIX C: THE TASP OF THE CHERN INSULATOR
WITH HIGH INTEGER INVARIANT AND LAYERED

SYSTEMS

Chern insulator with high integer invariant. We
consider a model with the effective field h(k) =

FIG. 12. (a) The TASP of topological insulators with high integer
invariant. (b) The dynamical field on the BIS and FSIS. The results
are obtained by a slow quench from mz = 1.5t0 to 0.5t0 with tso =
0.2t0.

(tso sin 2kx, tso sin 2ky, mz − t0 cos kx − t0 cos ky). While the
trivial phase corresponds to |mz| > 2t0, the topological phases
are distinguished as (i) t0 < mz < 2t0 with the Chern number
C = −1; (ii) 0 < mz < t0 with C = 3; (iii) −t0 < mz < 0
with C = −3; (iv) −2t0 < mz < −t0 with C = 1. We provide
the results of quenching the system from the phase with
C = −1 to the phase with C = 3 (see Fig. 12). Three rings
also appear in the TASP, but the corresponding dynamical
field on BIS and FSIS winds three times, implying the final
topological invariant C = 3. The dynamical field on the ISIS
gives an initial topological invariant −1. Thus, both the initial
and final phases can be characterized.

Layered systems. We have given a dynamical characteri-
zation of layered systems in Ref. [38]. For AB&BA stacking
systems, N-layer systems can be split into N subsystems and
each subsystem is a Chern insulator. Thus, the results shown
in main text can be naturally applied to the layered systems.
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