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Multipartite nonlocality is a measure of multipartite quantum correlations. In this paper we investigate the
influence of symmetry-breaking perturbations upon ground-state nonlocality by considering several typical
finite-size quantum models, including the transverse-field Ising chains, the XY (X X) chains, and the XX Z chains.
We find that even a slight perturbation can reshape the nonlocality curve dramatically. For instance, in the
XY chains, a perturbation can induce an oscillation behavior in the nonlocality curve. A clear microscopic
mechanism for the results is proposed. Furthermore, we also connect the behaviors to the macroscopic symmetry
properties of the chains and make some predictions on general models.
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I. INTRODUCTION

Quantum entanglement in low-dimensional quantum sys-
tems has been investigated for more than 20 years [1,2]. In
particular, bipartite quantum entanglement entropy has been
widely used to characterize quantum phase transitions (QPTs)
in various one-dimensional (1D) quantum chains. On the one
hand, it indeed provides a valuable perspective for us to un-
derstand QPTs [3-5]. On the other hand, the corresponding
findings have promoted great developments of the tensor-
network algorithms and software [6-8].

For many-body quantum systems, bipartite settings may
not be able to disclose all the mystery of entanglement in
the systems. Thereby, multipartite quantum correlations have
attracted much attention [9-18], and a recent review pa-
per can be found in [19]. There are many approaches to
characterize multipartite correlations, among which multipar-
tite quantum nonlocality plays an important role [20—44].
Multipartite nonlocality can be detected by the violation of
Bell-type inequalities. In experimental research, some re-
markable progress has been made [45-49]. For instance, in
Ref. [49], multipartite nonlocality in quantum systems with n
up to 14 has been observed experimentally. In theoretical re-
search, multipartite nonlocality in low-dimensional quantum
chains has also attracted much attention [50-56]. Multipartite
correlation measures, which aim to reveal underlying fine
structures in quantum systems, are usually rather difficult to
calculate. Nevertheless, multipartite nonlocality achieves a
certain balance between the amount of quantum information
it reveals and the amount of calculation it needs. On the one
hand, nonlocality does not tend to reveal all fine structures
of multipartite correlations. Instead, it uses a hierarchy ap-
proach [26], which may be rough but is still quite informative,
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to provide an overall description of multipartite correlations.
Indeed, it is able to distinguish between a complete series of
quantum states, i.e., from product states to genuine n-partite
correlated states. On the other hand, based upon the develop
of tensor-network algorithms, multipartite nonlocality can be
efficiently calculated for both finite-size long quantum chains
[51] and infinite-size chains [56].

Multipartite nonlocality has been used to characterize
quantum correlations in various low-dimensional quantum
lattices, such as 1D spin chains [50-52,57-61], Heisenberg
spin ladders [54], two-dimensional quantum lattices [41,62],
and many others [55]. Some general results have already
been established. For instance, in typical quantum lattices,
multipartite nonlocality can provide a remarkable approach
to characterize both traditional QPTs [59] and some novel
QPTs such as the topological QPTs [61]. Moreover, a transfer-
matrix theory has been established recently, which offers a
unified description about the scaling of multipartite nonlo-
cality in translation-invariant quantum chains [56]. One can
see that multipartite nonlocality provides a perspective for us
to increase our knowledge about low-dimensional quantum
lattices.

It deserves mention that symmetry and its breaking in
quantum systems is a valuable topic [63-70]. In particular,
the influence of the symmetry breaking upon quantum entan-
glement and quantum correlations has already been discussed
in detail in several papers [67-70]. These studies mainly
considered the discrete Z, symmetry. In our studies about
multipartite nonlocality with tensor-network algorithms, the
issue about symmetry breaking may have appeared vaguely,
and results which seem to contradict each other were reported.
That is, in finite-size transverse-field Ising chains, genuine
n-partite nonlocality was observed [53], while in infinite-size
transverse-field Ising chains, nonlocality was not observed
in the same parameter regions [51]. These confusing results
may just result from symmetry breaking. On the one hand,
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for finite-size chains, since good quantum numbers can be
adopted easily in the numerical simulations [7,8], the con-
verged wave functions are symmetry-preserved ground states.
On the other hand, for tensor-network simulations of infinite-
size chains, the discrete symmetry may be spontaneously
broken [71], and the converged wave functions are symmetry-
broken ground states. Thereby, our first motivation is to study
whether or not the presence or absence of genuine n-partite
nonlocality is related to the preservation or breaking of the
symmetry in the ground states of the chains.

Our second motivation is that, in real experiments,
symmetry-breaking perturbations may emerge naturally.
We also take the transverse-field Ising model with H =
Y oioi, +h)_of, for instance, where i denotes the mag-
netic field and the model has a Z, symmetry. Nevertheless, in a
real experiment, it is difficult, if possible, to apply a magnetic
field to the z axis exactly. A slight offset of the direction of the
magnetic field from the z axis (by a small angle 6 2 0) would
intermediately result in a perturbed Hamiltonian, such as
H= Y ojof +hcos® ) of +hsinb ) o}, in which the
Z, symmetry is broken no matter how small 9 is. Therefore,
analysis about symmetry-breaking effects would be valuable
to understand potential complex results of multipartite nonlo-
cality in real experiments.

In this paper, we will investigate multipartite nonlocality
and symmetry breaking in 1D finite-size quantum chains. To
proceed, we will compare (1) chains with some symmetry and
(2) chains with slight perturbations which break the symme-
try. Several typical models, such as the transverse-field Ising
model, the XY (X X) model, and the XX Z model, will be used
as our test bed. It deserves mention that not just the discrete
Z, symmetry but also continuous symmetries will be consid-
ered. The influence of symmetry breaking upon multipartite
nonlocality in these models will be characterized explicitly.
Furthermore, some unexpected results, such as a symmetry-
breaking-induced oscillation of multipartite nonlocality, will
be reported.

This paper is organized as follows. In Sec. II the concept
of multipartite nonlocality is introduced. Some numerical de-
tails are also explained. Results for the transverse-field Ising
model, the XY (XX) model, and the XXZ model will be re-
ported in Sec. III, IV, and V, respectively. A summary of the
paper is presented in Sec. VI.

II. BELL-TYPE INEQUALITIES AND MULTIPARTITE
QUANTUM NONLOCALITY

A. A brief review of Bell inequalities

The field of Bell-type inequalities and multipartite non-
locality is still in rapid development, and there are various
types of Bell inequalities in the literature [20-44]. On the
one hand, for certain specific quantum states, one usually
needs to construct specific Bell inequalities. For instance, the
Mermin-Klyshko-Svetlichny (MKS) inequality is maximally
violated by the Greenberger-Horne-Zeilinger (GHZ) state

Waiz) = —=(1000) + [111)) [72]. For the W state [Yw) =

%(|001) +1010) + |100)) [73], other Bell inequalities have
been constructed so as to exhibit strong violation [30]. On
the other hand, the complexity of the correlation functions

involved in these Bell inequalities also varies greatly. For in-
stance, in some Bell-type inequalities, n-site full-correlations
are involved [20-22]. Nevertheless, in order to facilitate ex-
perimental implementation, inequalities involving only one-
and two-site expectation values have also been constructed
[33,36,38—40] and have been used to characterize quantum
criticality [41]. Generally speaking, a specific class of Bell
inequalities just capture a subset of multipartite nonlocality
that could arise in quantum systems.

In this paper, we mainly consider the MKS inequalities,
which belong to the full-correlation-Bell-inequality family.
As mentioned above, the MKS inequalities are violated
maximally by the GHZ state and thus can be used to char-
acterize multipartite nonlocality in GHZ-like quantum states.
Moreover, previous studies [51,56] find that in various 1D
translation-invariant quantum chains, the measure S of the
MKS inequalities scales as S ~ 2k with k > 0, and thus
the lowest-rank MKS inequality S < 1 is violated strongly
in most situations. Therefore, the MKS inequalities have
successfully captured part of the multipartite nonlocality in
typical 1D quantum chains. Advanced tensor network tech-
niques have disclosed some insight for the success of these
inequalities [74]. That is, the coefficient tensor of the MKS
operator is translation-invariant, and there exists some hidden
matching between the MKS operator and the ground states of
translation-invariant 1D quantum chains.

It deserves mention that the violation of the MKS inequali-
ties is a sufficient but not necessary condition for the presence
of multipartite nonlocality in the concerned quantum states.
Therefore, the conclusions of this paper should be restricted
on the subset of multipartite nonlocality which the MKS in-
equalities can detect.

In the following part of this section, we will first introduce
the concept of two-site Clauser-Horne-Shimony-Holt (CHSH)
inequality and quantum nonlocality [31] in Sec. IIB, then
generalize to multipartite situations in Sec. IIC. In Sec. IID
we will introduce a quantity /C which is used to characterize
multipartite nonlocality in 1D translation-invariant quantum
chains. Numerical details are shown in Sec. II E.

B. CHSH inequality for n = 2

Consider a Bell experiment where sites 1 and 2 are mea-
sured by Alice and Bob, respectively. Alice carries out one
out of two possible measurements (labeled as a;, a}) on the
site 1, and the corresponding outcome is labeled as sy, 5] €
{—1, +1}. On the other hand, Bob carries out one out of two
possible measurements (labeled as a,, a,) on site 2, and the
outcome is §,, s, € {—1, +1}. By repeating the experiment for
many times, they obtain the expectation values of the product
of the outcomes, for instance, (s152), (5155), (s]52), and (ss5).
For any local realistic theory, one can prove that [31]

Sa(ar, ay, az, ay) = 5 (s1(s2 + 85)) + 5(s1(s2 — 55)) < L.
1
This inequality is called the CHSH inequality.

We shall translate Eq. (1) into the language of quantum
mechanics. First, for a two-qubit quantum state described by
a density matrix p,, we shall regard a; as some measurement
direction a; along which we measure the spin of site 1. If the
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spin turns out to be along the direction a;, we shall have s; =
1, and if the spin is along —a;, we have s; = —1. In this way,
the measurement is replaced by an operator

3‘1:01-0', (2)

with o0 = (6%, 67, 6%). a}, a», and d} are also treated straight-
forwardly.
Consequently, the CHSH inequality is translated as

Saa1, d), az, a5) = Tr(p2S:) < 1, 3)
where the two-qubit operator S, is defined as
S$rar,ay, a2, d5) = 351 ® (B2 +85) + 381 @ (2 = 8). (4

Furthermore, one removes any dependence on the local
measures [27,57,75-77] and thus rephrases Eq. (3) as

S, = max Tr(pS8,) < 1. (5)

{a1.a),a2,a,}

According to the local realistic theory, Eq. (5) should al-
ways hold. Nevertheless, for some quantum states p,, Eq. (5)
can be violated. Then we can conclude that p, presents some
kind of quantum correlations which cannot be described by
any local realistic theory, in other words, quantum nonlocality.

C. Mermin-Klyshko-Svetlichny inequalities for general n
1. Grouping number

In multipartite situations with n > 2, the structures (or
patterns) of multipartite quantum nonlocality can be rather
rich [26,30,32,35,75,78-81]. Let us consider multipartite non-
locality in a system consisting of merely three sites, a, b,
and c. All the possible structures of nonlocality are illustrated
in Fig. 1(a). First, we consider the structure {abc}. It means
that the three sites can just be divided into one group, where
each site shares nonlocal correlations with other sites. This
structure is usually called genuine three-partite nonlocality.
Second, we consider the other extreme case, the structure
{a|b|c}. It means that the three sites can be divided into three
groups, where no site could share any nonlocal correlation
with other sites. This structure presents no nonlocality at all.
Third, we consider an intermediate situation, for instance, the
structure {a|bc}. It means that the three sites can be divided
into two groups, where the site a is in one group and the sites
b and c are in the other group. Only b and ¢ share nonlocal
correlations with each other. Thus, for all other structures in
Fig. 1, their physical meaning can be understood straightfor-
wardly.

These structures indeed provide a fine description of mul-
tipartite nonlocality for small n. Nevertheless, when n is very
large, the structures would become so rich that analyzing the
structures becomes intractable. An alternative approach is to
use the grouping number g [26]. It is clear that the grouping
number of {abc} is g = 1, the grouping numbers of {a|bc},
{ab|c}, and {ac|b} are g = 2, and the grouping number of
{alb|c} is g = 3. Using this approach, for general n, all the
structures can always be classified into n families labeled by
g=1,2,..., n. The physical meaning of g is also quite clear,
that is, a larger (smaller) value of g (with 1 < g < n) denotes
a lower (higher) hierarchy of multipartite nonlocality.

(a)

{alblc} {ablc} {albe} {ac|b} {abc}
© 0 : @ O ° © ®@ o ® o
© G © © .o
g=3 g=2 g=1
(b)

o [e] [e] (o] o o o o =r g:’l’], =r K=0
o o o o o o o o

- g<n = 0<K<j
o o o o o o o o
© 0 0 0 ::: 0 0 o o — gKn— k=1

FIG. 1. (a) Various patterns of multipartite nonlocality in three-
site systems consisting of sites a, b, and c. Pink shadings indicate the
groups in which the sites can share nonlocal correlations with each
other. The grouping number g offers a rough approach to classifying
these structures. (b) In 1D quantum chains, a quantity K € [0, 1
is more convenient to characterize multipartite nonlocality. IC = 0
indicates that no nonlocality is observed by current Bell inequality,
and I = % indicates high-hierarchy multipartite nonlocality.

2. Mermin-Klyshko-Svetlichny inequalities

For general n-qubit quantum state p,, its grouping number
g can be detected by MKS inequalities. To proceed similarly
to Eq. (2) for each qubit i with i =1, 2, ..., n, one defines
two local operators as

$i=d;-0. (6)

Then the n-qubit MKS operator S, can be recursively defined
as [20-22,26,78]

16 ~ ~
oy, @) = 58,1 ® (8, +8))

+38 @G, —5). (D

R /
Sn(alvalv ..

One may see that S, is an n-qubit generalization of the two-
qubit operator S, in Eq. (4).

For a general p,, suppose its grouping number is g, then
the following MKS inequalities should always hold [26]:

S — |maxi Tr(p,S,) <27°, forn-g even, ®)
maxg Tr(p,87) <27°, forn-g odd,
where {a} denotes the set of 2n wunit vectors

{a,d),...,a,,a,)} and SF =8, +8)/v/2. 1t is clear
that the CHSH inequality in Eq. (5) can be regarded as an
instance of the MKS inequalities withn = g = 2.

If Eq. (8) is violated, the grouping number of the state p,
would be (at most) g — 1. Therefore, these MKS inequalities
with g = 2,3, ..., n form a complete series. The lowest rank
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one is just
S, < L )

If it is not violated, no quantum nonlocality is observed by the
current Bell-type inequality. If it is violated, p, presents (at
least) the lowest hierarchy of multipartite nonlocality.

The highest rank one is

S, <2'7. (10)
If it is violated, the grouping number would just be 1. In
other words, p, presents the highest hierarchy of multipartite
nonlocality, genuine n-partite nonlocality.
For a given quantum state, one figures out the measure S,
and then the grouping number g can be indicated by

g=n—T2log,S,]. (11)

As we have mentioned, the violation of the Bell-type inequal-
ity in Eq. (8) is only a sufficient but not necessary condition
for the presence of multipartite nonlocality. Consequently,
Eq. (11) provides just an upper bound for the grouping num-
ber.

D. Multipartite nonlocality quantity /C in 1D quantum chains

In this paper we consider global multipartite nonlocality of
the ground states |v,) of a special class of quantum systems,
ID quantum chains with a large n. In most situations, we
are not interested in the specific value of the grouping num-
ber. Instead, a qualitative analysis of multipartite nonlocality
would be sufficient to capture the ground-state properties of
the chains. Thereby, we ignore the parity of n — g in Eq. (8)
and consider just the case where n — g is an even number.

In quantum lattice theory, we are usually interested in the
large-n behavior. Nevertheless, both the grouping number g
and the measure S, may diverge in the large-n limit. There-
fore, it may be valuable to construct some quantity which
needs to (1) keep finite in the large-n limit and (2) be infor-
mative. At first glance, it is intuitive to consider the quantity

G = lim &. (12)
n—>o00 n
Generally, one has
0<g«l. (13)

G is quite informative, that is, a larger value of G denotes a
lower hierarchy of multipartite nonlocality.

With Eq. (11), one can easily figure out G by the calculation
quantity S, as

— [21log, S,
G — fim "= 12102251
n— 00 n

| lim 210825

n— 00 n

log, S,
—=1—2 lim &2 (14)

n— 00 n

. 1 S, .
It becomes convenient to define 2£2=" as a new quantity,

log, S,
K= 282 (15)
n

and then one will have

G=1-21Ilm K. (16)
n—o0
According to Egs. (13) and (16), it is clear that
0< lim K < 3. (17)
n—o0

Compared with G, K seems to be a more intuitive quantity for
characterizing multipartite nonlocality, that is, a larger value
of IC denotes a higher hierarchy of multipartite nonlocality.

It is worth noting that K has a close connection with the
scaling behavior of §,. In various 1D translation-invariant
quantum chains, S, scales as [51,56]

log, Sy ~ kn + b, (18)

where the slope k and the intercept b are n-independent. Com-
paring Egs. (15) and (18), one can see that lim [ is just the
n—oo

slope k in this scaling formula.

Based upon the above considerations, we will use the quan-
tity K to characterize multipartite nonlocality in 1D quantum
chains in this paper.

E. Numerical details

The concerned state is the ground states |y/,) of the
quantum chains. Thus, in Eq. (8), p, shall be rephrased as
Pn = |¥g) (¥,l, and the expectation value Tr(p,S,) shall be
rephrased as (1/fg|§n|1/fg). Moreover, the number 7 is just the
length N of the chains.

Our numerical calculations consist of two steps. In the
first step, we need to figure out the ground states |;). When
N < 12, we figure out |/,) exactly by exact diagonalization.
When N > 12, we use Itensor [8] to figure out the ground-
state wave functions |y,) of the concerned 1D quantum chains
in the form of matrix product states (MPSs) [7]. When no
additional specifications are given, we consider N-site chains
with an even N and with open boundary conditions. When
optimizing the MPSs, we set the maximal bond dimension
as x =200, and we always sweep the lattices up to 100
times so as to ensure the convergence of the wave functions.
Moreover, when Z, symmetry is present in the chains, we use
the symmetry in our calculation as as to improve the accuracy
of the wave functions [8].

In the second step, we figure out the global multipar-
tite nonlocality measure S, for the ground states |[y,).
According to Eq. (8), one needs to carry out a global optimiza-
tion of f(a;,a, ..., a, a,) = (YelSp(ai,a, ... a, a,)|y,)
with respect to 2n unit vectors. This problem has been solved
by the two-site update algorithm proposed in [51]. The ba-
sic idea is that, in each step of the optimization, one just
optimizes the objective function f with respect to the four
vectors a;, @;, a1, and a;,; on two sites i and i + 1, with all
the other 2n — 4 vectors fixed. After a solution is figured out,
one updates the vectors on these two sites and moves on to
optimize vectors on the next two sites. One sweeps the entire
lattice for several times until some convergence is obtained.
In practice, the two-site update algorithm may be trapped in
some local minimum. The issue can be overcome by adopting
multirandom initial points and carrying out the optimizations
independently for many rounds. In our calculation in this

052216-4



MULTIPARTITE NONLOCALITY AND SYMMETRY ...

PHYSICAL REVIEW A 107, 052216 (2023)

05 (a) N =10 (b) N =20 (¢c) N=30 (d) N =40 (e) N =50
04 '/_— .‘/—— ./———'
Krr Krr Krr Kr1 & Krr
) 08 Kr1 Krr Kr1 Krr Krr
0.2
0.1
0
0 1 2 3 1 2 3 2 3 1 2 3 1 2 3
A A A A A

FIG. 2. Multipartite nonlocality in finite-size transverse-field Ising chains (i.e., H = 1 )_ o0}, + >_ 07), with N the length of the chains
and X the reciprocal of the magnetic field. A. = 1 is the critical point in the thermodynamic limit. KCz;(A) corresponds to the original Z-
symmetric chain, and it increases monotonously. Kr; corresponds to the chain whose Z, symmetry is broken by a slight perturbation (i.e.,
H! =38 o with § = 107*). Nonlocality is destroyed dramatically by the perturbation for A > 1, and consequently K71(1) presents a sharp

peak in the vicinity of A, = 1 in the large-N limit.

paper, for each set of physical parameters, we always carry
out 20 rounds of optimizations independently. Finally, we use
Eq. (15) to figure out K.

In this paper both chains with some symmetry-breaking
perturbations and chains without perturbation will be consid-
ered. Thus, it may be helpful to state some conventions in
advance. Chains without perturbation will be called the orig-
inal chains. The corresponding model Hamiltonian and the
nonlocality measure will be denoted by H and IC, respectively.
When some perturbations are taken into account, the chains
will be called the perturbed chains. Then the Hamiltonian
and the nonlocality measure will be denoted by A and K,
respectively.

III. TRANSVERSE-FIELD ISING MODEL

The first toy model is the 1D transverse-field Ising model.
Although it seems to be an overly simple model, it is valuable
to clarify some confusing results reported previously in finite
and infinite-size chains [51,53]. More importantly, the corre-
sponding mechanism will offer a cornerstone for us to analyze
more complex results in the next sections.

The Hamiltonian of the model is given by

N-1 N
— X X Z
H—JE al-oiﬂ—i—hg o},
i=1 i=1

where J is the spin-spin coupling constant and 7 is the strength
of the magnetic field. The phenomenon which attracts our
attention occurs in the low-field regions. Therefore, in order
to offer a better description of our results, we parametrize the
Hamiltonian as

19)

N—1 N
Hr; = A Zo—ixai)fi—l + ZO’iZ, (20)
i=1 i=1

with A = % the reciprocal of the magnetic field. It is clear
that when A decreases from oo to 0, the system undergoes
a magnetization (or polarization) process. In the thermody-
namic limit, a QPT occurs at the critical point A, = 1. The
system has a Z, symmetry, that is, the Hamiltonian remains
unchanged when the model is rotated around the z axis by
m. This Z, symmetry is spontaneously broken in the phase
A > A, when N — o0.

For the original finite-size Ising chains, the multipartite
nonlocality has been analyzed in detail in Ref. [53]. We still
present the results in this paper, so as to compare them with
the perturbed chains.

The nonlocality curve [C7; () is illustrated in Fig. 2, with
N up to 50. One sees that Cr; increases monotonously from
0 (with A = 0) to % (with A — 00). It captures the process in
which the ground states gradually change from product states
to highly nonlocal states. [Detailed analysis shows that the
highest-rank MKS inequality in Eq. (10) is indeed violated,
thus genuine n-partite nonlocality is observed.] Moreover,
when N is large enough, the KCr;()) curves with different N
tend to overlap with each other. It means that the behavior
in the thermodynamic limit is captured. Thereby, we have
established an overall description about nonlocality in the
original Ising chains with the quantity Cr;.

When a symmetry-breaking perturbation is present, the
behavior could change dramatically. We consider a perturbed
model given by

Hr; = Hr; + H, (21)
where the slight perturbation is described by
H =34 Z o, (22)

with a perturbation strength § = 10~*. The effect of changing
the value of § will be discussed in next section. It is clear
that this perturbation breaks the Z, symmetry of the chains.
The corresponding numerical results I@T,(k) are also shown in
Fig. 2, where the Kr1()) curves are not monotonous anymore.
Instead, they present a peak. When N is large enough, the peak
locates in the vicinity of A, = 1.

By comparing K7;()) and KT[()\.), we can see that when N
is large enough, in the phase A < A, the nonlocality is nearly
unaffected by the perturbation, and for A > A. the nonlocality
is dramatically destroyed by the perturbation. The underlying
mechanics can be clarified by considering two extremes, i.e.,
A =0 and A — oco. When A =0, the ground state of the
original chainis | || --- | }), where | |) is an eigenstate of
the Pauli operator o° with eigenvalue —1. Considering the Z,
symmetry, if one rotates this state around the z axis by m, one
would get a state with the same energy. Nevertheless, it is clear
that the rotation just produces the same state. In other words,
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this ground state is unique. Therefore, the results conform
to the first-order perturbation theory, [Kr;(1) — Iﬁn()\)| ~
8. That is why the ground-state nonlocality is quite robust
against perturbations when § is rather small. When A — oo,
the situation is quite different. It is clear that a ground state
is, for instance, |[1010---1010), where |1) and |0) are the
eigenstates of the Pauli operator o*. Considering the Z, sym-
metry, when one rotates this state around the z-axis by 7, one
would get another state [0101 - - - 0101) with the same energy.
In other words, the ground states are degenerate. Thereby,
the first-order perturbation theory is not applicable any more.
Instead, the ground states may be influenced dramatically or
slightly by the perturbations, depending upon the nature of
the perturbations. For the perturbation H; considered in this
paper, it breaks the Z, symmetry and lifts the degeneracy. That
is why the ground-state nonlocality is influenced dramatically
by the perturbation.

Based upon the above results, we conclude that Z,-
symmetry-breaking perturbation indeed greatly affects the
presence or absence of genuine n-partite nonlocality in finite-
size chains.

Z, symmetry is just a discrete symmetry. We mention that
in quantum lattices, continuous symmetries can also emerge
naturally. Therefore, in next sections, we will consider contin-
uous symmetries. We will show that continuous symmetries
play a quite interesting role in the behavior of multipartite
nonlocality in perturbed 1D quantum chains.

IV. XY MODEL

We consider the 1D XY model described by the Hamilto-
nian

N—
TV a1
Hyy =:A~§E: ( 001+ —— 2

l+1> + Zaz )
(23)

where A is the reciprocal of the magnetic field, and y is
the anisotropic parameter in the x-y plane. When y = 1, the
model reduces into the transverse-field Ising model studied in
the previous section. When y = 0, the model transforms into
the XX model,

N- N
= % Z 004, +0; Ul+1) + Zaizv 24
i=1 i=1
which has a U(1) symmetry, i.e., rotation invariance in the x-y
plane. On the other hand, for general 0 < y < 1, the model
would have a Z, symmetry, just as in the transverse-field Ising
model.

From the point of view of symmetry, Hyx (with y = 0)
and Hyy (with 0 < ¥ < 1) belong to two different classes,
and therefore the two are often considered separately [69].
Nevertheless, as we will show, when a perturbation exists,
the nonlocality curve of finite-size XY chains can exhibit an
interesting oscillation, which is closely related to the breaking
of the U(1) symmetry of the XX model.

In the following parts, we will first report some accurate
results for the original XY chains by considering just N = 12,
and then take perturbations into account. After that, the mech-
anisms behind the numerical results will be analyzed.

A. Original XY chains

First of all, we consider the original model defined in
Eq. (23) without any perturbation. The numerical results C())
with N = 12 are illustrated in Fig. 3. We use Kyx, Kxy, and
K77 to denote the results withy = 0,0 <y < 1l,and y = 1,
respectively. In Fig. 3(a), Kxx (1) exhibits a series of plateaus.
This behavior results from the U(1) symmetry of the model.
Because of this continuous symmetry, the Hilbert space is
divided into many subspaces, and the ground state resides in
some of these subspaces, depending upon the magnetic field
(i.e., A). As A changes, the ground state jumps between these
subspaces, and then the nonlocality quantity Kyxx(X) also
changes suddenly. It needs to be mentioned that the magnetic-
field term (i.e., Y| o) commutes with the Hamiltonian, and
thus the magnetic field just modifies the eigenvalues of the
Hamiltonian but does not change the eigenstates. Thereby, in
each subspace, the ground state (and consequently the ground-
state nonlocality) keeps constant. That is why Kxx (1) exhibits
a series of plateaus in Fig. 3(a).

For y = 0.2 in Fig. 3(b), where the U(1) symmetry is
absent, we observe two results. First, Cyy (1) does not exhibit
any plateau anymore. It reveals that the magnetic-field term
does not commute with the Hamiltonian and thus the magnetic
field affects the eigenstates of the model. Second, compared
with Kxx(A), the sudden changes in Kxy (1) become weak-
ened. In fact, in Fig. 3, when y increases further, the Kyy (1)
curve becomes smooth gradually.

B. Perturbed chains with § = 1074
Next, we consider a perturbed XY model described by

Hyy = Hxy + H,, (25)

where the perturbation is also given by
H =6 Z o, (26)
with § = 10~*. The corresponding results K (1) are illustrated

in Fig. 3.

For y = 0 in Fig. 3(a), where the original model has U(1)
symmetry, the nonlocality is nearly unaffected by the pertur-
bation, i.e., Kxx (1) ~ Kxx(1).

For y =0.2 in Fig. 3(b), in the vicinity of the level-
crossing points [indicated by the sudden changes of Cxy (A)],
the nonlocality suffers dramatic influence from the perturba-
tion, and Kyy (1) presents rather sharp valleys.

For y = 0.4 in Fig. 3(c), Kxy (1) is further modified and
presents an oscillation behavior, i.e., multibroad peaks and
sharp valleys.

When y increases from y = 0.6 in Fig. 3(d) to y =1 in
Fig. 3(h), one can see that (1) most of the peaks in Kxy (1) are
weakened gradually and disappear but (2) the leftmost peak
gradually rises and finally transforms into the single peak in
Kr1(}) reported in the previous section.

C. Perturbed chains with various §

The phenomenon with § = 10~* in Fig. 3 is quite rich; for
instance, the oscillation is observed for some y but is absent
for other y. At first glance, the underlying mechanism is not
clear. Testing other strengths of the perturbation may help us
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FIG. 3. Multipartite nonlocality in finite-size XY chains, H =AY [(1 + y)o/0,, + (1 — y)o} ,H] + > of, with N =12. y is the

anisotropic parameter and X is the reciprocal of the magnetic field. A, = 1 is the critical point for infinite-size chains. KCxx, Kxy, and
K correspond to the original chains with various y. For y = 0, the chain has a U(1) symmetry, and thus Kyyx (1) exhibits step-by-step
changes. For y > 0, the U(1) symmetry is broken, and [Cxy (1) becomes smooth gradually. ICXX, ICXy, and Ky, correspond to the chains with
a Z,-breaking perturbation H, = § ) o;* with § = 1074, With y = 0, Kyx (1) is almost unaffected by the perturbation. With y = 0.2, Kxy (V)
suffers dramatic influence from the perturbation at some Ass and presents rather sharp valleys. As y increases further (i.e., y < 0.7), Kxy(})
exhibits an oscillation behavior. This oscillation is related to the breaking of both U(1) and Z, symmetries.

to find some clues. Therefore, in Fig. 4 we take the chain with
y = 0.65 as an example, and illustrate the nonlocality curves
for various §. Results for the original XY chain (i.e., § = 0) are
also shown for comparison. It is clear that the value of § has a
strong modulation effect upon the oscillation behavior. When
8 is rather large (§ = 10~*), the nonlocality is destroyed in
some regions. When § is small enough (§ = 107°), neverthe-
less, a complete oscillation curve is recovered. These results
reveal that the presence or absence of the oscillation in Fig. 3
is not an inherent characteristic of the corresponding models.
Instead, it may depend upon the relative strength between the
external perturbations and some internal property, such as the
energy gap, of the chains.

D. Microscopic mechanisms: Interplay between perturbation
and energy gap

In order to clarify the microscopic mechanisms for these
oscillations in detail, we have additionally illustrated the
corresponding energy gap AE for both the original chains
and the perturbed chains in Fig. 5. By comparing the non-
locality curves (Fig. 3) and the energy gap curves (Fig. 5),
we find that there are two mechanisms for how the oscil-
lation occurs in the model. First, the model has a series
of energy-level crossings. In fact, it is clear that there is a

0.5 T T T T
v =0.65

0.4

03 r

0.1t

0 0.5 1 1.5 2

FIG. 4. Multipartite nonlocality in XY chains (with N = 12 and

y = 0.65) for various perturbation strength 4.

one-to-one correspondence between the sharp valleys of
Kxy(X) in Figs. 3(b) and 3(c) and the level crossings (where
the energy gap vanishes) in Figs. 5(b) and 5(c). Second, the
energy gap needs to be rather small. For y = 0in Fig. 5(a), the
energy gap is quite large. Consequently, a slight perturbation
is not sufficient to destroy the ground state, and thus we have
Kxx(1) ~ Kxx(1) in Fig. 3(a). When y increases, never-
theless, as shown in Fig. 5, the AE(X) curve is suppressed
ambiguously, especially in the vicinity of the level-crossing
points. Then, if some perturbation is imposed, the ground state
can be influenced considerably. Consequently, in the vicinity
of each level-crossing point, we find Kxy (1) < Kxy (1). That
is why Kxy (1) presents multiple sharp valleys for y = 0.4 in
Fig. 3(c).

It is reasonable that the influence of the perturbation upon
the ground state depends upon the relative strength of the
perturbation with respect to the energy gap,

° (27
AE’
x1073  (a)y=0 (b)y=0.2 (¢)y=04
4 perturbed chains
3 original chains
32
1
0 ! : ! Y
1 15 2 25 1 15 2 25 1 15 2 25
A A A

FIG. 5. Energy gap AFE in finite-size XY chains with N = 12.
The black dots correspond to the original XY model without per-
turbation. At some special As, the gap is closed, which indicates
ground-state level crossings. As y increases from (a) to (c), the
AE()) curve is suppressed ambiguously. Red solid lines correspond
to the perturbed chains with H! = § Y o with § = 10~*. When y
is large enough (which means AE is small enough), the perturbation
has considerable influence upon the energy gap in the vicinity of the
level-crossing points, for instance, A = 1.92 in (c).
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FIG. 6. Finite-size effects of multipartite nonlocality in XY chains
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with a Z,-breaking perturbation H] =8 )" o;* for various N. The

anisotropic parameter is ¥ = 0.65, and the perturbation strength is § = 10~*. Both open boundary conditions [(a)—(f)] and periodic boundary

conditions [(al)—(f1)] are considered. As N increases, the oscillations
underlying mechanism is explained in the text.

When AE — 0, the perturbation effect would be little, and

when E — 00, the perturbation effect would be significant.
We mention that in the XY chains, as y increases, the energy
gap AE becomes smaller. In other words, for fixed § = 10~
is enhanced gradually. That is why as y increases the

AE
Kxy (A) curve is suppressed gradually and the oscillation van-

ishes finally in Fig. 3. In this way, all the phenomena in Fig. 3
have a clear and consistent explanation.

E. Finite-size effects

We would like to mention that the microscopic mecha-
nisms revealed above can help us to carry out some valuable
qualitative analysis. For instance, one may wonder what
would happen in chains with a large N. For the XY model with
y # 1, when we give our attention to the energy spectrum, it is
easy to check that as N increases, there are two key finite-size
effects:

(i) The number of level crossings would be increased.

(ii) The energy gap AE would be decreased.

In fact, for a small N, there will be an ambiguous step-
by-step change in the behavior of any observable (such as the
magnetic moment and multipartite nonlocality). For a large N,
nevertheless, the number of level crossings would be rather
large, and the step-by-step change in the observable curve
would become smooth gradually.

These two finite-size effects about the energy spectrum
can help us to figure out the finite-size effects on multipartite
nonlocality. First, since the oscillation is related to the energy-
level crossings, the finite-size effect (i) immediately causes the
oscillations to become even more frequent when N is large.
Second, since the influence of the perturbation upon nonlo-

cality is determined by the relative strength -2~ Af - the finite-size

become more frequent, and the ICXY (1) curve is suppressed. The

effect (ii) indicates that when N increases, the destructive
influence of the perturbation upon ground-state nonlocality
would become stronger, in other words, the nonlocality quan-
tity would become smaller. These two behaviors have been
confirmed ambiguously in Fig. 6 by considering models with
N =17,8,9,...,12, and with both open boundary conditions
(OBCs) and periodic boundary conditions (PBCs).

Moreover, in Fig. 7 we have shown numerical results with
N up to 50. Let us first consider, for instance, y = 0.2. We
have already shown that Kxy is quite close to Kyy when
N = 12 in Fig. 3(b). With N = 50 in Fig. 7(b), the difference
between Kyy and Kyy becomes much larger. In other words,
as N increases, the perturbation effect is indeed enhanced,
which is consistent with our above qualitative analysis. Then
we turn our attention to ¥ = 0.4. One can see that compared
with N = 12 in Fig. 3(c), the effect of the perturbation with
N = 50 in Fig. 7(c) is so strong that the oscillation is com-
pletely destroyed. We would like to mention that according to
our theory, the oscillation can always be recovered as long
as the relative strength AE is appropriate, for instance, by
decreasing the perturbation strength §.

F. Role of symmetries

While the microscopic energy-level structures have indeed
offered us a unified explanation, it would also be valuable
to connect the oscillation behavior to some macroscopic
properties of the chains, so as to help us to generalize the
observations to some other models which present similar
macroscopic properties. We argue that the emergence of the
oscillations is associated with the breaking of the symme-
tries in the chains. First, for the finite-size XX chains with
U(1) symmetry, the energy gap is large. In this situation,
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FIG. 7. Multipartite nonlocality in finite-size XY chains. All the settings are consistent with Fig. 3, except N = 50. It suggests that when
N is large, the oscillation in Kxy (1) tends to be observed in chains with a small nonzero y [which slightly breaks the U(1) symmetry] and an

additional perturbation H; (which breaks the Z, symmetry).

the ground state (and the ground-state nonlocality) is robust
against slight perturbations. However, just because of this
U(1) symmetry, as we have explained, under the magnetic
field, the ground-state energy would undertake a series of
level crossings. Second, when this U(1) symmetry is slightly
broken and is reduced into a Z, symmetry, these level cross-
ings are kept, but the corresponding energy gap is weakened
gradually. This makes it possible for the ground state to be
destroyed by slight perturbations. Third, in the vicinity of
each level-crossing point of the Z,-symmetric chains, when a
Z»-breaking perturbation is imposed, the ground state can be
easily destroyed, and then the nonlocality curve would present
a sharp valley.

According to the above discussions, we expect that the
oscillation of nonlocality may also be observed in some other
finite-size models. One can (i) find a U(1)-symmetric lattice
under a magnetic field, (ii) use anisotropy to break the U(1)
symmetry so as to preserve the series of level crossings but
weaken the energy gap, and then (iii) impose Z,-breaking
perturbations.

V. XXZ MODEL

Our last model is the finite-size X X Z chains,

N—-1
Hyxz =Y A(ofoly, +0l0},,) +oi0i,.  (28)
i=1

with N the length of the chains and A the anisotropic pa-
rameter. For A = 1, the model reduces into the Heisenberg
model and has an SU(2) symmetry. A, = 1 is also the critical
point in the thermodynamic limit. For any A # 1, the SU(2)
symmetry is reduced into U (1) ® Z, symmetries. That is, the
Hamiltonian remains unchanged when (i) the model is rotated
around the z axis by any angle or (ii) the model is rotated
around the x axis (or y axis) by 7.

For the original XXZ chains without any perturbation, the
nonlocality quantity Kyxz(A) is shown in Fig. 8.Kxxz(A)
always presents a minimum at the critical point A, = 1.
For A <1 and A > 1, Kxxz(A) decreases and increases
monotonously, respectively. Especially, when N — oo, one
has Cxxz(A =0) — % Itis quite clear that this situation with
A =0 is physically equivalent to the transverse-field Ising
chains with A — oo.

We then consider a perturbed X X Z model given by

Hxxz = Hxxz + H,, (29)

where H, denotes a staggered perturbation [67] which breaks
the Z, symmetry and respects the U(1) symmetry,

N
H! =58 (-1)o}, (30)
i=1

with 8§ = 10~*. The corresponding Kxxz(A) is shown in
Fig. 8. It deserves mention that although the U(1) symmetry
is involved, no oscillation is observed. The underlying reason
is that the ground states of the XX Z chains are confined to the
> _;0i = 0 subspace, which prevents them from undergoing a
series of level crossings as in the XY chains.

We shall discuss the whole Kxxz(A) curve in Fig. 8 in
three parts: A &~ 1, A <« 1, and A > 1. First, for A ~ 1, the
ground state is protected by the SU(2) symmetry (i.e., AE is

large and thus A‘S—E is weak) and suffers little influence from

the slight perturbation. Thus we find I@xxz()») ~ Kxxz(A).
Second, in the large-A regions, according to Eq. (28), the in-
plane U(1)-invariant term Y ooy, + aiy aiﬁ_l (thatis, the XX
term) plays a major role. We have mentioned in the previous
section that the energy gap AE of the XX model is also large.
Consequently, for A > 1 one also sees ’axxz()») ~ Kxxz(L).
Third, in the small-A regions, according to Eq. (28), the Z,-
invariant term ) oo}, | plays a major role, where the ground
states tend to be doubly degenerate. In this situation, it is
expected that the ground states can easily be destroyed by
the Z,-breaking perturbation H,. Thus, one can see that the
nonlocality for A < 1 is dramatically destroyed by the per-
turbation. As a result, Ky xz(A) presents an additional peak at
some A = Apeax With 0 < Apeq < 1.

It may be interesting to investigate whether this peak point
would approach the critical point A, = 1 in the large-N limit.
Thus, we have carried out scaling analysis upon the location
of the peak; see Fig. 9. Using the data dots with N = 30, 40,
and 50, linear fitting gives Apesx = —7.469% + 0.6484 (the
red solid line). Using the data dots with N = 10, 20, 30, 40,
and 50, linear fitting gives Apexx = —6.139%\, + 0.6165 (the
blue dashed line). These fitting results suggest that in the
large-N limit, the peak would not locate at the critical point
A, = 1. Therefore, we expect that this perturbation-induced
peak would survive in the large-N limit.
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FIG. 8. Multipartite nonlocality in finite-size XX Z chains, H = A ) (0j'0}; + o]0}, ) + > o007, , with N the length of the chains and
A the anisotropic parameter. A, = 1 is the critical point in the thermodynamic limit. Kxxz(A) presents a valley at A, = 1. When a staggered
perturbation H, =8 Y (—1)'of with § = 10~* is imposed, nonlocality is destroyed dramatically in the weak-A regions, and then Kxxz(A)

presents a perturbation-induced peak in the region 0 < A < 1.

VI. SUMMARY AND DISCUSSION

In this paper we have theoretically investigated the influ-
ence of symmetry-breaking perturbations upon ground-state
nonlocality in several typical finite-size 1D quantum mod-
els, including the transverse-field Ising chains, the XY (XX)
chains, and the XXZ chains. We mention that multipartite
nonlocality in these models have been studied extensively
in previous works [51,53,59,60,74]. Nevertheless, part of
the underlying mechanisms behind these earlier observations
remained unclear. In this paper, by considering symmetry-
breaking perturbations, some previously observed behaviors
have been reproduced, and the corresponding mechanisms
have been clarified. We shall discuss each of these behaviors
in detail.

The first result deserving discussion is about the conflicting
results in the transverse-field Ising chains. Reference [53]
reported that in the finite-size situation, genuine n-partite
nonlocality was observed and the nonlocality curve was a
monotonous curve, while Refs. [51,59] reported that in the
infinite-size situation, genuine nonlocality was not observed
and the nonlocality curve presented a peak. The underlying

1 T T T T
. data dots
linear fitting of the leftmost three dots

075 T — — — linear fitting of the five dots 1
3 N
S X
S 057 4
<
~
0.25 I~ ~ 4
~
~
~
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0 0.025 0.05 0.075 0.1
1
N

FIG. 9. Scaling analysis of the location of the perturbation-
induced peak in the Cyxz(A) curve in Fig. 8. Linear fitting suggests
that in the large-N limit, the peak would not locate at the critical point
A= 1.

mechanism for these two sets of conflicting results remained
unclear.

In this paper, similar conflicting behaviors have been repro-
duced by considering Z,-symmetry-breaking perturbations in
finite-size chains; see Fig. 2. This shows ambiguously that in
finite-size quantum chains, Z,-symmetry breaking can reshape
the property of multipartite nonlocality dramatically.

One may argue that what people are more interesting
in would be infinite-size quantum chains without any arti-
ficial perturbation, as have been studied in Refs. [51,59].
We mention that the results reported in this paper can be
easily extrapolated to infinite-size chains with § — 0. Let
us resort to the relative perturbation strength with respect to
the energy gap, ﬁ, which determines the influence of the
symmetry-breaking perturbation upon the ground-state non-
locality. In the Ising chains, for A < A, AE keeps finite in the
large-N limit. Therefore, when the symmetry-breaking per-
turbation tends to vanish (§ — 0), one would have ﬁ — 0,
and thus the nonlocality should suffer no influence from the
perturbation. For A > A., it is well known that the ground
states are doubly degenerate (AE = 0). Therefore, even if
8§ — 0, ﬁ would not vanish, and thus the nonlocality may
suffer dramatic influence and be destroyed. In this way,
it is quite reasonable that the single-peak curve observed
in the finite-size chains under Z,-symmetry-breaking per-
turbations (Fig. 2) can survive in infinite-size chains with
8 — 0. Therefore, we believe the key mechanism for the
single-peak nonlocality curve (and consequently the van-
ish of genuine n-partite nonlocality in the large-A limit) in
infinite-size Ising chains [51,59] is the Z, symmetry and its
breaking.

The second result deserving mention is about the XXZ
chains. In Refs. [51,60] multipartite nonlocality in infinite-
size XXZ chains was studied, and it was found that in the
gapped antiferromagnetic phase (corresponding to A < A, =
1 for the XXZ model consider in this paper), the nonlocal-
ity curve presented a peak. This peak did not attract much
attention, and its underlying mechanism remained unclear. In
this paper, this peak has also been successfully reproduced by
considering Z,-symmetry-breaking perturbations in finite-size
XXZ chains (Fig. 8). Therefore, just as in the Ising model,
we believe the corresponding peak in the nonlocality curve in
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the infinite-size XX Z chains [51,60] is also related to the Z,
symmetry and its breaking.

The third behavior to be discussed is about the oscillation
in the nonlocality curves. In Refs. [54] and [74], similar
oscillation behaviors were observed in a spin ladder and an
XX chain, respectively. Due to a lack of understanding of
the underlying mechanism, Ref. [74] merely summarized the
commonality between the spin ladder and the XX chain, i.e.,
U(1) symmetry was present and an external magnetic field
was imposed. Nevertheless, the underlying function of the
symmetry and the magnetic field in generating the oscillation
was unclear.

In this paper we reveal that the presence of the U(1) sym-
metry and the magnetic field is to make sure that the ground
states can undergo a series of level crossings. Furthermore, we
show ambiguously that even if the U(1) symmetry is slightly
broken (and is reduced into a Z, symmetry), the oscillation
behavior can still be observed by a further breaking of the
Z, symmetry (Figs. 3, 6, and 7). Thus, the research about the
U(1) and Z, symmetries and their breaking not only reveals
the underlying mechanisms of the oscillation behavior but also
expands the scope in which the oscillation can occur.

Therefore, compared to previous works, the main contribu-
tion of this paper is that we have uncovered the important roles
of symmetries and their breaking in ground-state multipartite
nonlocality, which are ignored in previous papers.

We next provide a summary of this paper from the perspec-
tives of general microscopic mechanisms and macroscopic
symmetries. With the following summary, one shall be able
to make some reliable predictions about multipartite nonlo-
cality for some concerned quantum model by analyzing its
microscopic energy levels or macroscopic symmetries.

Microscopically, the influence of the perturbation upon
the ground-state nonlocality can be evaluated by the relative
perturbation strength A‘S—E. When ﬁ — 0 (for instance, in the
XX chains, AFE is rather large), the perturbation effect would
be weak. When ﬁ — oo (for instance, in the transverse-field
Ising chains with large A, AE — 0), the perturbation effect
would be significant. Furthermore, for models which have a
series of ground-state level crossings, in the vicinity of each
level-crossing point, A‘S—E is so large that the perturbation can
dramatically destroy the ground state. Consequently, oscilla-
tions would be observed.

Macroscopically, symmetries and their breaking can dra-
matically reshape the behavior of multipartite nonlocality in
1D quantum chains. First, the breaking of the discrete Z, sym-
metry plays a central role. Explicitly, suppose the following
three conditions are satisfied: (i) the original chain has a Z,
symmetry, (ii) a Z,-breaking perturbation is present, and (iii)
the relative perturbation strength ﬁ is large enough. Then
the ground state and its nonlocality can be easily destroyed.
This is just the situation in the transverse-field Ising chains
with A > A, =1, the XY chains with A > A, =1, and the
XXZ chains with A < A, = 1. Second, in addition to the dis-

crete Z, symmetry, the continuous U(1) symmetry also plays
an interesting role. For instance, in the XX chains, because
of the U(1l) symmetry, the ground states undergo a series
of level crossings. When anisotropy is considered, the U(1)
symmetry would decrease into the Z, symmetry, and mean-
while the series of level crossings can be preserved and the
energy gap is weakened. Then, when a Z,-symmetry-breaking
perturbation is present, at each of these level-crossing point,
the three conditions can be satisfied, and thus the ground
state and its nonlocality would be destroyed. Consequently,
perturbation-induced oscillations emerge in the nonlocality
curve. We expect that similar behaviors would be observed
in quantum models which have similar symmetries.

The line of this work is far from finished. (1) First, we
have studied just the influence of symmetry breaking upon
global nonlocality of the ground states |g) in this paper.
In a real Bell experiment upon solid materials, limited by
the experimental conditions, one may just be able to carry
out a Bell measure upon a certain subsystem, rather than the
entire material. Thereby, a study on the influence of symmetry
breaking upon subchain nonlocality (defined upon the reduced
density matrix p, of the concerned subsystem) in 1D quantum
chains may be valuable. (2) In the entire physical picture,
another fragment which is still missing is about the relation
between the global nonlocality and subchain nonlocality. For
instance, in the transverse-field Ising model, subchain nonlo-
cality exhibits a single-peak curve [51], and global nonlocality
can reproduce this behavior only if a Z,-symmetry-breaking
perturbation is imposed (Fig. 2). A similar phenomenon also
exists in the XX model, where subchain nonlocality ex-
hibits a oscillation behavior [74], and global nonlocality can
reproduce this behavior only if symmetry-breaking perturba-
tions are imposed (Fig. 3). This symmetry-breaking-induced
similarity between global nonlocality and subchain nonlo-
cality is a bit peculiar, and both a mathematical structure
and a physical mechanism to explain this behavior are still
missing and deserve some further revisiting. (3) Third, for
typical 1D quantum chains with short-range interactions, only
discrete symmetries (such as the Z, symmetry) may be spon-
taneously broken in infinite-size chains. That is why in the
finite-size situation the ground-state nonlocality can be de-
stroyed dramatically by Z,-symmetry-breaking perturbations.
When long-range interactions are taken into account, con-
tinuous symmetries [such as the U(1) symmetry] may also
be spontaneously broken [82]. Therefore, it is expected that
the breaking of the U(1) symmetry may play an even more
interesting role in multipartite nonlocality in long-range in-
teracting quantum chains, and may also deserve investigation.
We will consider these issues in our future studies.
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