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Superluminal tunneling times without superluminal signaling: Fading
of the MacColl-Hartman effect at early times
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A curious feature of quantum tunneling known as the MacColl-Hartman effect results in the numerical
observation that particles can traverse a barrier with effective superluminal speed. However, because tunneling
is never certain, any attempt to use this effect to send a signal faster than light would require sending many
particles. In this work, we consider sending—in parallel, without interactions between particles—sufficiently
many particles to ensure at the least one of them tunnels. In this case, in spite of the time advance of the mean
time for a single tunneling particle, the mean time to send one bit of information is larger for tunneling particles
than for the same number of free photons. This removes any possibility of superluminal signaling. We show
that the mean time to send one bit using N particles is determined by the early-time tail of the distribution of
tunneling times for one particle and that, when this early-time tail is highly accurately modeled using steepest
descent, the MacColl-Hartman effect is seen to fade away.
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I. INTRODUCTION

Means of measuring quantum tunneling time have been
debated for decades, with renewed interest in recent years
[1–26]. In some interpretations, the time for a wave packet
to traverse a barrier can be faster than the time it would
take an equivalent photon wave packet traveling through free
space. This results from the MacColl-Hartman effect [27,28],
which says the phase time of tunneled particles is independent
of barrier width for sufficiently wide barriers—theoretically
allowing for arbitrarily fast speeds.

In previous works [22–24], we assessed the problem rel-
ativistically with the Dirac equation and nonrelativistically
with the Schrödinger equation and verified the effect. We also
showed the relationship between the phase time, the flight
time, and other tunneling times. In contrast to attosecond
experiments that purport to find instantaneous, zero-time tun-
neling [29], our previous works demonstrated that tunneling
times are short but finite (similar to the experimental findings
of, e.g., Ref. [30]). We further showed that the phase time
is the appropriate way of measuring the barrier interaction
time and it can lead to faster-than-light times. Additionally, we
demonstrated that “momentum filtering”—the disproportion-
ate selection of higher-momentum components of the wave
packet due to tunneling—cannot be used to explain away this
tunneling-related speedup, as the speedup occurs even when
controlling for momentum filtering. Lastly, we dismissed ar-
guments relating to a lack of “causal” connection between the
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pre- and post-tunnel wave packet by showing that the tunneled
wave packet’s features depended heavily on the initial wave
packet.

The controversial result [31–37] we supplied was sup-
ported by an argument for why the faster-than-light times
do not imply superluminal signaling, let alone violations of
causality: the drastic loss of amplitude of the tunneled wave
packet more than compensates for the small “speedup,” mean-
ing nontunneled photons are always preferable for sending
signals as quickly as possible.

That argument relied on steepest-descent approximations
(SDAs) [38,39] of the evolving wave function at the most
probable transmission time. Other times were treated with
Taylor expansions about that time. This work seeks to make
our previous conclusions more rigorous by clarifying what
constitutes superluminal signaling and drawing attention to
early-time portions of the transmission time probability dis-
tribution. Modeling the distribution at early times leads
to a time-dependent SDA which reveals a previously un-
known phenomenon: the MacColl-Hartman effect effectively
fades away at early times far away from the most probable
time—the very times that are key to the question of superlu-
minal signaling. At short times—the fastest arrival times for
the transmitted wave packet—probability distributions nearly
match the leading portions of free particle wave packets trav-
eling at the initial subluminal velocity. While this result is
based on SDAs, it is supported by numerical calculations
which are exquisitely accurate at these times. While the time
scales required to test these results experimentally are still
out of reach, the underlying result that the MacColl-Hartman
effect fades away at early times—relevant in the many-particle
limit—is in principle testable with simple experimental
designs, similar to time-of-flight experiments such as [40,41]
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and ones presented recently in [30,42,43], which follow
a long line of inconclusive tunneling time experiments
[29,44–53].

We compute the probability distribution for the tunneled
flux as a function of time [54–56] for the understudied subject
[39,57–60] of a massive particle such as an electron traveling
at near light speed. In order to compare fast signal trans-
mission when one probability distribution is normalized (the
distribution of photon arrival times) while the other is not
(the distribution of tunneled electron times) we must consider
many parallel processes. Optimal signal transmission with
N particles is characterized by the “first-click distribution,”
the probability distribution for the earliest signal transmis-
sion time among N particles. Analysis of the first-click
distribution leads to the vanishing MacColl-Hartman effect
and the impossibility of superluminal signaling using the
effect.

II. DIRAC TUNNELING

Tunneling time has been studied extensively by ourselves
and others in the nonrelativistic regime using the Schrödinger
equation. The relativistic regime we consider here has very
similar physics and much of the intuition from one regime
carries over into the other (the observables we use are defined
in the same way in both cases, for instance). The principal
difference is the dispersion relationship which morphs from
quadratic to linear as velocity approaches c. This manifests
as slower wave-packet broadening. The time for broadening
scales as γ 2, where γ = 1√

1−v2/c2
is the ubiquitous Lorentz

factor. Also, the tunneling momentum filtering effect–see
below–is smaller than the equivalent for nonrelativistic tun-
neling.

The time evolution of relativistic electrons is governed by
the Dirac equation. The (time-dependent) Dirac equation has
the following form in 1+1 dimensions:

ih̄
∂

∂t

(
ψ0

ψ1

)
= H

(
ψ0

ψ1

)
, (1)

where symbols have their usual meanings in relativistic quan-
tum mechanics, and

H =mc2

(
1 0
0 −1

)
+ ich̄

(
0 1
1 0

)
∂

∂z
+ V (z). (2)

This follows from the (3+1)-dimensional Dirac equa-
tion when the potential depends only on z; the x and y degrees
of freedom separate and the two components here correspond
to the conserved spin state of spin up. Flux in the z direction
at z2, the observation point to the right of the barrier, is

J = − i

h̄
[H,�(z2,∞)] = c

(
0 1
1 0

)
δ(z − z2), (3)

where �(z2,∞) is the step function which equals 1 inside the
interval and zero otherwise. The time-dependent flux, which
is specific to the initial wave packet, is the expectation value
of J:

P(t ) = 2c Re[ψ∗
0 (z2, t )ψ1(z2, t )]. (4)

We consider a single rectangular barrier: V (z) = Vtop for
z1 < z < z2 and V (z) = 0 otherwise. The rectangular barrier
provides the best-case scenario to see possible superluminal
signaling, as all of the wave-packet components with en-
ergy less than the barrier top (plus the particle rest energy)
must tunnel across the entire width of the barrier. For a
smooth potential such as a Gaussian barrier, the tunneling
gap gets smaller for wave-packet components with energy
approaching the above-barrier threshold [24]. These com-
ponents consequently have a diminishing MacColl-Hartman
effect.

Here we expand on and refine a similar method introduced
in [22]. To compute the time-evolving wave packet, we trans-
form from the energy representation,

ψ (z, t ) =
∫ ∞

−∞
dE bE exp

(−iEt

h̄

)
ψE (z), (5)

where the expansion coefficient, bE , is determined from the
initial wave packet. In terms of momentum,

p(E ) =
√

E2/c2 − m2c2, (6)

the integral representation of the evolving wave packet takes
on a simple form if the initial wave packet is a Gaus-
sian (with a spinor factor) far to the left of the barrier.
Specifically,

ψ (z, t ) = K
∫ ∞

−∞
d p exp

(
− (p − p0)2

2�

)
T (p)u(p)

× exp

[
i

(
p(z − z0) − E (p)t

h̄

)]
, (7)

where K is a normalization factor and

u(p) =
(

1
cp

E (p)+mc2

)
(8)

is a two-component spinor. The transmission amplitude for a
single barrier has the form [39]

T (p) = exp (−ipl/h̄)

cosh (ql/h̄) + 1+α2

2α
sinh (ql/h̄)

, (9)

where

α = i
q

p

(
E + m

E − Vtop + m

)
, (10)

q =
√

m2c2 − (
E − Vtop

)2
/c2, (11)

and l = z2 − z1 is the width of the barrier.
The evolving wave packet is computed very accurately

below using Eq. (7) with a nonuniform momentum grid
with grid point density chosen to remove cusps in the in-
tegrand associated with critical points (where q = 0). Note
that we carefully choose the initial wave-packet position
such that there is negligible (∼10−30) initial amplitude in-
side the barrier and we choose its width such that there is
negligible above-barrier transmission and such that momen-
tum filtering is negligible. We also compute the evolving
wave packet using the SDA. Specifically, ψ (z, t ) ∼ ψsd(z, t ),
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where

ψsd(z, t ) = K
(2π )1/2∣∣∣ ∂2F

∂ p2 (p
, t )
∣∣∣1/2 u

(
p


)
exp

(
i

h̄
F (p
, t )

)
, (12)

F (p, t ) = −ih̄

(
− (p − p0)2

2�
+ ln [T (p)]

)
− E (p)t, (13)

and p
 solves

p − p0

�
− d ln [T (p)]

d p
+ i

h̄

dE (p)

d p
t = 0 (14)

or

p − p0

�
= i

h̄
[τ (p) − t]v(p), (15)

in terms of velocity, v(p), and the complex phase time,

τ (p) = −ih̄
d ln [T (p(E ))]

dE
. (16)

Henceforth 
-superscripted variables are evaluated at p
.
Here, the SDA is an asymptotic approximation correspond-

ing to the h̄ → 0 limit. This means the accuracy of the
approximation depends on action along the integration path
being large compared with h̄. This accuracy is verified below
by comparison with very accurate numerical calculations.

In our previous work, Eq. (15) was solved for t = tmp, the
time for which the tunneling time distribution in the SDA,
Psd(t ), is a maximum. If Psd(t ) is normalized to integrate
to 1, it becomes the postselected transmission time distri-
bution. Since Psd(t ) is approximately symmetrical about its
maximum, tmp is approximately the mean postselected trans-
mission time in the SDA. F (p
, t ) was evaluated for other
times by expanding to second order in t − tmp. The result-
ing “frozen” SDA to the tunneling time distribution has the
form

Psd0(t ) =Ctrans,sd0

v

mp

(π�)1/2
∣∣�


mp

∣∣
× exp

⎛
⎝− v


mp
2

�
∣∣�


mp

∣∣2 (t − tmp)2

⎞
⎠, (17)

where �

mp = �(p


mp),

�(p) = i
h̄

�
+ d

d p
[v(p)τ (p)] − tmp

mγ 2
, (18)

and

Ctrans,sd0 = (E0 + mc2)γ 

mp(

E 

mp + mc2

)
γ0

exp

(
−2

h̄
Im[F (p


mp, tmp)]

)
(19)

is the associated transmission probability approximation.
Here, variables subscripted by “mp” are evaluated at the most
probable time. Equations (17) and (19) were found to closely
match accurate numerical computations, as long as the energy
of the incoming wave packet was well below Vtop + mc2. Oth-
erwise, there is an additional above-barrier component. Note
that we also choose wave-packet initial energies such that

“Klein zone” [61] contributions and pair-production effects
are negligible.

Note that, when evaluated at tmp, the real component
of τ 
 corresponds to the Wigner phase time [2,51] and the
imaginary component corresponds to the Pollak-Miller imag-
inary time [1]. In [23], the Wigner phase time was shown
to be the tunneling time, but here we generalize these con-
cepts to functions that vary with physical time t . At times
other than the most probable, the real and imaginary parts
of τ 
 correspond to “effective” phase times and Pollak-
Miller times, and hence the properties of these effective
times may differ when evaluated at earlier or later physical
times.

The Gaussian approximation to the tunneling time distri-
bution provided by Eq. (17) manifests the MacColl-Hartman
effect via the expression for the most probable time. The
condition for the most probable time is the condition for
ImF (p
, t ) to be a minimum. This occurs when p
 is real. In
this case, t = Re(τ ). Specifically,

tmp = t 

mp(z0, z1) + σ 


mp, (20)

where t 

mp(z0, z1) = (z1 − z0)/v


mp is the time required to travel
from z0 to the left edge of the barrier, z1, at speed, v


mp.
Because velocity is highly insensitive to shifts in momentum
in the relativistic regime, this speed is almost the same as the
initial speed of the wave packet. The extra term, σ 


mp, can
be viewed as an underbarrier contribution to the mean time.
Most notable is that σ 


mp quickly asymptotes to a constant with
increasing barrier width. This is the MacColl-Hartman effect.
Some attosecond experiments have suggested that a tunneling
electron spends no time under the barrier, which corresponds
to leaving out the σ 


mp term above. While σ 

mp is small, it is not

zero and is evident in numerical results.

III. FIRST-CLICK DISTRIBUTION

Previously we showed that the tunneling time probability
distribution, P(t ), peaks earlier than the corresponding free
photon arrival time distribution, Pγ (t ). We claimed this does
not imply superluminal signaling because P(t ) < Pγ (t ) for
all t , for all cases computed. Here, we make this connection
more explicit.

Suppose we wish to send an alert as quickly as possible
and are successful if at least a single particle reaches our
destination—the message is received and interpreted as a bi-
nary 1 if the particle is detected at z2. To compensate for the
low transmission probability, Ctrans, we send a large number
N of particles (independently and in parallel). Receipt of the
signal is ensured only if N is much larger than 1/Ctrans. The
time scale for receipt of the signal is characterized by what we
call the “first-click” distribution, the probability distribution
for the first time at which one of the N particles is detected
at z2 (the first “click” the detector makes), noting that most of
these particles will never be detected. In order to construct a
normalized one-particle distribution, we define

P̃(t ) = P(t ) + (1 − Ctrans)δ(t − T ), (21)

where T is larger than any time of interest (we take the
T → ∞ limit, to account for reflected particles). We now
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write

P1st (t ) =
∫ ∞

0
dt1 . . .

∫ ∞

0
dtN P̃(t1) . . . P̃(tN )δ(t − min(t j ))

= N!
∫ ∞

0
dt1 . . .

∫ ∞

tN−1

dtN P̃(t1) . . . P̃(tN )δ(t − t1)

= NP̃(t )(N − 1)!
∫ ∞

t
dt2 . . .

∫ ∞

tN−1

dtN P̃(t2) . . . P̃(tN )

= NP(t )C̃N−1(t ), (22)

where

C̃(t ) =
∫ ∞

t
dt ′P̃(t ′) (23)

is the probability of not detecting a particle before time = t .
Equation (22) is simply interpreted. The probability of a

first click in the time interval t to t + dt is

P1st (t )dt = NP(t )dt C̃N−1(t ), (24)

i.e., the probability that particle 1 is detected in the time
interval multiplied by the probability that no other particles
have yet been detected. The N factor arises because any of
the N particles could have been detected. In the context of
Brownian-particle first-passage time distributions, this for-
mula appears in [62] (Eq. 15 on p. 6).

Properties of the first-click distribution, derived in the
Appendix, are listed as follows.

(1) The first-click distribution integrates to∫ ∞

0
dt P1st(t ) = 1 − exp (−NCtrans). (25)

If the number of particles is much greater than C−1
trans, a first

click occurs with virtual certainty.
Other properties of the first-click distribution require an

explicit model for the P(t ) distribution. For this purpose, we
use the frozen SDA of Eq. (17). This approximation is ulti-
mately not good enough to assess whether tunneling electrons
can ever have a mean first-click time earlier than for the
same number of photons. But it is sufficient to derive these
properties.

(2) If N � 1/Ctrans, the mean first-click time is given by

t1st = tmp − δt

(
ln

(
NCtrans

2π1/2

))1/2

, (26)

where tmp is, as above, the postselected mean transmission
time and

δt = �1/2
∣∣�


mp

∣∣
v



mp

(27)

is the width of Psd0(t ). Equation (27) shows how the use of
many particles advances the detection time. Since this ad-
vancement depends on N only via NCtrans, we see how small
transmission probability delays the advancement.

(3) If N � 1/Ctrans, the width of the first-click distribution
is given by

δt1st = δt

2
[
e ln

(NCtrans
2π1/2

)]1/2 . (28)

This shows the narrowing of the width of detection times
resulting from the use of many particles. Related to this prop-
erty is the observation that the first-click distribution drops
very sharply at times just beyond t1st. This is key to signal
transmission, since if no particle is detected by t1st + δt1st/4,
the signal can almost certainly be interpreted as a binary 0. We
choose one-quarter width here to account for the asymmetry
of the first-click distribution—it is narrower on the long time
side.

(4) Our principal interest is whether the first-click dis-
tribution for electrons can peak earlier than that for the
same number of free photons—the luminal benchmark. Be-
cause the number of particles is typically very large, the
first-click distribution peaks when the cumulative probabil-
ity distribution, C(t ) = 1 − C̃(t ), reaches 1/N . This is the
time by which observation of at least one particle is likely.
Beyond this time, the high power of the complementary cu-
mulative distribution, C̃(t ), in Eq. (22) makes the first-click
distribution decay rapidly. These facts lead to the following
observation. If one distribution, for instance the distribution
for photons in a vacuum, is larger than another, for instance
the distribution for tunneling electrons, then the cumulative
probability of the larger distribution will reach 1/N first.
The question of which first-click distribution peaks first is
equivalent to the question of whether the electron distribution
P(t ) exceeds the corresponding photon distribution at early
times.

If we can show that transmission time distributions for
tunneling electrons are smaller than those for photons for all
times up to tmp, then the MacColl-Hartman effect cannot be
used to transmit signals faster than is possible using light. This
is what has been found so far, numerically. Since Psd0(t ) is
analytic, and generally well approximates P(t ), it is a natural
starting point to support this observation. However, Psd0(t ) can
exceed Pγ (t ). To see this, note that because the rate of wave-
packet broadening is vastly reduced in the relativistic case,
the width of the electron and photon distributions are very
nearly the same in all computations. The main differences
between them are the reduced normalization of the electron
distribution and its earlier postselected mean time. As Psd0(t )
and Pγ (t ) are both Gaussians, they are both upside-down
parabolas on a logarithmic scale. The electron’s parabola is
shifted to the “right” and “down” relative to the photon’s. If
this depiction were truly accurate, then there would be an early
time when the electron parabola crosses the photon parabola
[see Eq. (26)].

For example, suppose that δt is the same for the tunneling
electron and the photon—this is approximately true. The dif-
ference between photon and electron mean first-click times is
then given by

t1st,γ − t1st = tmp,γ − tmp

× −δt

(√
ln

(
N

2π1/2

)
−

√
ln

(
NCtrans

2π1/2

))
.

(29)

The first difference on the right of Eq. (29) is positive—
the MacColl-Hartman effect—while the second difference (in
parentheses) is negative. Because increasing N increases the
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FIG. 1. Electron transmission time distribution (thick solid lines)
and associated first-click distribution (thin solid lines) for N = 1012.
The dotted lines are the corresponding SDAs. Also shown are corre-
sponding transmission time and first-click distributions for photons
propagating in a vacuum (dashed thick and thin lines, respectively).
In both panels, the initial wave packet is 120 λ̄ (1 λ̄ = 386 fm: the
reduced Compton wavelength of an electron) to the right of the
barrier with mean velocity 0.99c. The unit of time is λ̄/c = 1.29
zs. In the top panel, the initial wave packet width and barrier width
are both 10 λ̄. The barrier height is 7.5 mc2. The accurate numerical
transmission time distribution is computed using a grid of 105 points.
It is cut off at its short time accuracy limit, 10−36. In the bottom panel,
the initial wave packet and barrier widths are 6 and 8 λ̄, respectively.
The barrier height is 6.52 mc2. The grid had 106 points, giving a short
time accuracy limit of 10−27.

magnitude of the second term without affecting the first, a
sufficiently large N will make the mean first-click time of the
electrons earlier than that of the photons.

As this effect is not seen in accurate numerical calculations
of P(t ), the Psd0(t ) model cannot be sufficiently accurate to
answer the superluminal signaling question. However, if we
perform a more accurate SDA separately for every t , as op-
posed to expanding about tmp, and denote this new distribution
as Psd(t ), we find that this quantity never exceeds Pγ (t ).

IV. NUMERICAL RESULTS

The first-click (for N = 1012 particles) and corresponding
P(t ) distributions are shown in Fig. 1. Corresponding dis-
tributions for photons in a vacuum are also shown. We find

that the suppression of the tunneling time distribution by the
tunneling probability manifests as a delay in the advancement
of the first-click time until N exceeds C−1

trans. In particular,
though the transmission time distribution peaks earlier than
the equivalent distribution for photons, the first-click distri-
bution for photons always peaks earlier. Also shown (dotted
lines) are the tunneling time distributions (and associated
first-click distributions) computed using the steepest descent
method at every time, Psd(t ).

The initial wave-packet widths for the top and bottom
panels of Fig. 1 are approximately 11 and 7 de Broglie wave-
lengths, respectively. The bottom panel is close to a best-case
scenario: it is narrow in position space to reduce the width
of P(t ) and enhance the impact of the MacColl-Hartman
time advance. Any alterations would diminish the MacColl-
Hartman effect: a higher barrier energy or an increased
barrier width would decrease the tunneling probability, a de-
creased barrier width would decrease the MacColl-Hartman
time advance, a lower barrier energy would produce mostly
above-barrier transmission, and a wave packet narrower in
position space would be so broad in momentum space that the
above-barrier and Klein zone contributions would dominate.
In all cases, the impact of the MacColl-Hartman effect is
reduced.

The observed distributions are composed of a Gaussian
peak at short times plus a slowly decaying exponential tail
at longer times. The tail arises from the above-barrier portion
of the initial wave packet, which is not modeled in our current
SDA, as we only considered the below-barrier contribution to
it. There is, in fact, a series of saddle points, only the first
of which corresponds to the tunneling contribution below the
barrier. The others all correspond to above-barrier contribu-
tions with increasing numbers of oscillations in the imaginary
direction in space. Each saddle point would contribute a Gaus-
sian in time to the overall distribution, but with amplitude
exponentially small in the number of imaginary space oscilla-
tions. When combined, they would produce an exponentially
decaying long-time tail with negligible contribution at short
times.

To see why Psd(t ) never crosses Pγ (t ), while Psd0(t ) does,
suppose we compute an SDA at some time, t1, other than the
most probable time. Just as Psd0(t ) is obtained by expanding
ln[Psd(t )] to second order around tmp, a model Psd1(t ) can
be obtained by expanding instead about t1. ln Psd1(t ) is an
upside-down parabola, just like ln Psd0(t ). The difference is
that the parameters of the parabola are determined by the
SDA at a different value of the physical time. Equation (15)
shows that the physical time enters into the calculation only
through its difference with Reτ (p
). As Reτ (p
) varies, the
effective center of the upside-down parabola varies. In partic-
ular, at early times Reτ (p
) shifts from its MacColl-Hartman
advanced value to a later time corresponding to subluminal
effective speed.

To understand the early-time behavior of Reτ 
, we first
study p
 at these times. From Eq. (15) we see that, as t moves
away from tmp, only the imaginary part of p
 varies. For early
times, the imaginary part of p
 is positive. Figure 2 shows the
path of p
 in the complex momentum plane and the contour
lines of Reτ (p), while Fig. 3 focuses on just τ 
 as it varies
with physical time t .
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FIG. 2. Contour lines of Reτ (p) in the complex p plane for the
wave packet and barrier of the bottom panel of Fig. 1. The thick
contour corresponds to Reτ (p) = 128, which is how long it would
take a photon traveling in a vacuum to reach the observation point.
Also shown is the path (large dots) taken by p
. It starts (t = 0) in the
upper left corner, swoops down and to the right to the real axis when
t = tmp, then swoops down and back to the left at longer times. The
dots are plotted every 10 λ̄/c.

In Fig. 2, on the real p axis below ptop (the momentum
of the barrier height), Reτ (p) is almost constant—equal to
its MacColl-Hartman advanced value. τ (p) varies in the neg-
ative imaginary direction when p increases on the real axis
towards ptop. If p varies in the positive imaginary direction
(corresponding to the case of early times), then Fig. 2 shows
that Reτ (p) increases.

As t gets closer to zero, p
 varies more slowly. The asso-
ciated Re[τ (p
)] values are even less variable—in Fig. 2, the
contours of Re[τ (p
)] become widely spaced (as would the
contours of Im[τ (p
)] if plotted) and, in Fig. 3, the plots of
Re(τ 
) and Im(τ 
) as functions of physical time become flat.
Indeed, Fig. 3 shows that, as t → 0, Re[τ (p
)] approaches the
time a free particle traveling 0.998c would take, and this time

FIG. 3. Real (solid line) and imaginary (dashed line) parts of τ 


in the complex-p plane as functions of the physical time, t , for the
steepest-descent calculations shown in the bottom panel of Fig. 1.
The dot shows Reτ 
 at the most probable time. The real and imagi-
nary parts of τ 
 correspond respectively to the effective Wigner phase
times and Pollak-Miller imaginary times.

also matches the time one would expect given momentum
filtering of the initial 0.99c velocity wave packet.

The contours of Im[τ (p)] (not shown in Fig. 2) feature a
sharp trough along the real axis. What appears to be a cusp
in Fig. 3 for Im[τ (p
)] at tmp is actually just a very sharp
minimum. The sharpness results from the rapid variation in p


near the most probable time and the sharpness of the Im[τ (p)]
real axis trough in the p plane.

As an aside, we also note that although this work is focused
on the fading of the MacColl-Hartman advancement at early
times, we also see enhancement of the advancement at later
times in Fig. 3. The net effect of this is that the tunneled
wave packet is slightly “compressed” in comparison to a free
particle wave packet.

V. CONCLUSIONS

Other authors have advanced many arguments to explain
away the supposed superluminal transmission in quantum
tunneling, such as subtle ideas about the tunneling process
reshaping the wave packet [33]. Some authors have also ar-
gued that the “front” of the wave packet [13,63] is the source
of the tunneled particles to avoid speeds faster than light. In
a sense, this work corroborates those assertions, as the “first-
click distribution” is essentially a way of characterizing that
“front.” However, the arguments presented here do not make
claims about which particles in the distribution tunnel, but
only what can be said about the statistics of their time of ar-
rival, showing that they can never “outcompete” free-traveling
photons.

In our previous works, we clarified the relevance of dif-
ferent definitions to genuine, observable tunneling times and
showed which statements can be definitively made about
wave-packet reshaping in tunneling. Here, we expand that
argument, elaborating on the “signaling” aspect of the debate.
By making explicit how tunneling particles could be used to
send a signal as fast as possible, we find the true requirement
for superluminal signaling via the MacColl-Hartman effect.
Specifically, the (unnormalized) particle transmission time
distribution must exceed that for photons in a vacuum for
some early time (well ahead of the peak time). Having not
seen this for any of our accurate computations, we explained
the observation by showing that the MacColl-Hartman time
advance fades away when considering the short times relevant
to signaling via large numbers of particles. The MacColl-
Hartman time advance manifests in the phase time computed
using the SDA, when time is near the peak time. At early
times, the SDA gives an effective phase time without a time
advance.

Results presented here are for tunneling in one dimension.
Such a model arises naturally for an electron in three-
dimensional space directly impacting a barrier varying in
only one direction. We do not expect that adding x and y
dependence to the potential would impact the conclusions
of this paper. While studies in multiple dimensions are still
very much of interest [64], it would be much more difficult to
achieve the high level of accuracy required here to investigate
deep tunneling at early times. Also note that, in any case,
multidimensional tunneling typically reduces to the compu-
tation of instantons, which are one-dimensional curvilinear
pathways through barriers [65].
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We end by noting that, although the nonrelativistic case
was not studied in this work, we would anticipate similar
conclusions to be reached were one to perform equivalent
calculations there—the most meaningful physical difference
between the two cases is that in the nonrelativistic case, the
momentum dispersion effects are much larger, which serves
to further suppress the MacColl-Hartman effect. This would
further reduce the capacity of a signal composed of tunneled
particles to arrive ahead of a signal composed of free-traveling
particles.
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APPENDIX: PROPERTIES OF THE FIRST-CLICK
DISTRIBUTION

From Eqs. (22) and (23),

P1st (t ) = NP(t )

(
1 − NC(t )

N

)N−1

= P(t )

C(t )
NC(t ) exp [−NC(t )]

= d

dt
ln[C(t )] f (NC(t )), (A1)

where f (x) = x exp(−x). The function, f (x), has a maximum
at x = 1, with associated width

δx =
(

− d2

dx2
ln( f (x))|x=1

)1/2

= e1/2. (A2)

If N � C−1
trans, f (NC(t )) has a sharp maximum when C(t ) =

1/N ; i.e., ∫ t1st

0
dt1P(t1) = 1

N
. (A3)

Since the first factor in the expression for P1st (t ), in
Eq. (A1), is slowly varying compared to the second term,
the peak in the first arrival time distribution occurs at the
time of the peak in f —i.e., when the cumulative probability
distribution reaches 1/N . The width associated with this peak
is determined by

NC′(t )δt1st = δx

or

δt1st = 1

N

1

e1/2P(t1st )
. (A4)

To get the total probability of a first click we integrate
P1st (t ) over all time. This simplifies if Eq. (A1) is written in
the following equivalent form,

P1st (t ) = f (ab(t ))
d

dt
ln[b(t )], (A5)

where a = NCtrans and b(t ) = C(t )/Ctrans. Using this expres-
sion we get∫ ∞

0
dt P1st (t ) =

∫ ∞

0
dt f (ab(t ))

d

dt
ln[b(t )]

= { f (ab(t ))ln[b(t )]}∞0
−

∫ ∞

0
dt

[
d

dt
f (ab(t ))

]
ln[b(t )]

= −a
∫ 1

0
db(1 − ab)exp(−ab)ln(b)

=
∫ a

0
dx(x − 1)exp(−x)[ln(x) − ln(a)]

= {−[x ln(x) + 1]exp(−x)}a
0

− ln(a)[−x exp(−x)]a
0

= 1 − exp(−a) = 1 − exp(−NCtrans). (A6)

Here, we see that, for N much larger than 1/Ctrans, a first click
event becomes virtually certain.

To further characterize the first click distribution we need
an explicit form for the tunneling time distribution. This is
provided by the steepest descent model Psd0(t ) as a Gaussian
of the form

Psd0(t ) = Ctrans

π1/2δt
exp

[
−

(
t − tmp

δt

)2
]
. (A7)

In this case, defining t1dif = (t1st − tmp)/δt , the mean first
click time is determined by

1

N
= Ctrans

π1/2

∫ t1dif

0
dx exp(−x2) = Ctrans

2
erf (t1dif ). (A8)

If N � 1/Ctrans, we can use the asymptotic form of the error
function to get

1

N
= Ctrans

2π1/2

exp(t1dif )

t1dif
. (A9)

This leads to

t1st = tmp − xδt, (A10)

where x is the solution to the nonlinear equation,

x = a

2π1/2
exp(−x2) (A11)

or

x =
[
ln

( a

2π1/2

)
− ln(x)

]1/2
. (A12)

The latter equation can be solved by iteration, if a > 0.519.
To leading order (for large a),

t1st = tmp − δt

[
ln

(
NCtrans

2π1/2

)]1/2

. (A13)

So, the mean of the first click distribution is advanced to
earlier than tmp in proportion to [ln(NCtrans)]1/2, when N is
very large.

The width of the first click distribution is also made explicit
by the frozen steepest descent model. From Eq. (A4) and the
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above expression for Psd0(t ), we get

δt1st = δt

2 e1/2
[
ln

(NCtrans
2π1/2

)]1/2 (A14)

when N is large. We see that the first click distribution gradu-
ally becomes narrower, with increasing N .
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