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Fluctuation theorems for genuine quantum mechanical regimes

T. A. B. Pinto Silva1,2,* and R. M. Angelo 1

1Department of Physics, Federal University of Paraná, P. O. Box 19044, 81531-980, Curitiba, Paraná, Brazil
2Schulich Faculty of Chemistry and Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel

(Received 14 March 2023; accepted 9 May 2023; published 18 May 2023)

Of indisputable relevance for nonequilibrium thermodynamics, fluctuations theorems have been generalized
to the framework of quantum thermodynamics, with the notion of work playing a key role in such contexts. The
typical approach consists of treating work as a stochastic variable and the acting system as an eminently classical
device with a deterministic dynamics. Inspired by technological advances in the field of quantum machines, here
we look for corrections to work fluctuations theorems when the acting system is allowed to enter the quantum
domain. This entails including the acting system in the dynamics and letting it share a nonclassical state with
the system acted upon. Moreover, favoring a mechanical perspective to this program, we employ a concept of
work observable. For simplicity, we choose as theoretical platform the autonomous dynamics of a two-particle
system with an elastic coupling. For some specific processes, we derive several fluctuation theorems within both
the quantum and classical statistical arenas. In the quantum results, we find that, along with entanglement and
quantum coherence, aspects of inertia also play a significant role since they regulate the route to mechanical
equilibrium.
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I. INTRODUCTION

Fluctuation theorems (FTs) have been extended from
the field of stochastic thermodynamics to general quantum
scenarios [1–7], standing out as insightful relations connect-
ing fluctuating quantities to aspects of thermal equilibrium.
Among the regarded fluctuating quantities, work plays a
prominent role for two reasons: (i) it is of key relevance for
complete statements of the energy conservation law and (ii)
work FTs yield sensible formulations of the second law of
thermodynamics in terms of equilibrium free energy.

Paramount for any unambiguous definition of work is the
specification of both the “acting system” (from now on re-
ferred to as agent), the one that applies the driving force, and
the “system acted upon” (hereafter, receiver), the one which
the force is applied on. Of course, in light of Newton’s third
law, there is no fundamental reason preventing one to assign
to a given physical system the role of either agent or receiver
(this labeling is done by free choice), but the notion of work
and internal energy can only make sense through such a clear
definition.

In the usual stochastic thermodynamics scenarios, the
agent1 is classical in essence, meaning that it is rigidly
controlled by an external observer who assigns to it a predeter-
mined time dependence [see Fig. 1(a)]. In effect, the agent’s
influence over time is entirely encoded in a function λt ≡
λ(t ) [6,7,9], a prescription also adopted in the formalism of
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1In fact, there are some approaches in which the classicalization

is introduced in the receiver’s dynamics instead of the agent’s [8].
Nonetheless, this is not the usual perspective.

statistical physics [10]. As a result, the Hamiltonian describ-
ing the receiver’s dynamics is an explicitly time-dependent
function usually written in the form H (t ) ≡ H (λt ) = H0 +
V (λt ), whereH0 is the so-called bare Hamiltonian and V (λt )
is an interaction term [7,11]. Within this perspective, concepts
of work and acclaimed work FTs [7,12–14] were proposed,
with work depending either implicitly or explicitly on λt

[11,15].
Among the results known today, the Jarzynski equality

[12] certainly stands out, being suitable for a large set of
applications and experimental platforms (see [1,7,16,17] and
references therein), with some extensions to more general
scenarios [7,18,19]. Departing from the so-called inclusive
work [11],Winc(t, 0) = ∫ t

0 dt ′ ∂H (t ′ )
∂t ′ , Jarzynski arrived at

〈e−βWinc (t,0)〉 = Zt

Z0
, (1)

with Zt = ∫
d� e−βH (t ) denoting the partition function at the

instant t and d� the infinitesimal phase-space volume acces-
sible to the receiver. In another vein, it was only posteriorly
acknowledged [7,11,15,20] that a distinct fundamental rela-
tion had already been derived by Bochkov and Kuzovlev (BK)
in their late 1970s article [13]. BK deduced the equality

〈e−βWexc(t,0)〉 = 1 (2)

under assumptions very similar to those of Jarzynski’s ap-
proach, except that an exclusive form of work, Wexc(t, 0) =∫ t

0 dt ′ dH0
dt ′ , was used instead. The distinction between inclusive

and exclusive work led not only to different FTs, as in Eqs. (1)
and (2), but also to different work-energy relations, this being
the source of an intense debate [11,15,21–25]. It turns out that
the inclusive approach used to deduce the Jarzynski equality
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FIG. 1. (a) Stochastic thermodynamics nonautonomous sce-
nario. In the usual setting, a receiver R is prepared at t = 0 in a
thermal state fully uncorrelated with the state of an agent A. For
t > 0, R stops interacting with the thermal bath (of temperature
T ) and interacts only with A whose position λt is deterministically
controlled by an external device. As a result, A does positive work
on R, and the usual forms of work FTs [e.g., Eqs. (1) and (2)]
are obtained. (b) Quantum autonomous scenario. The controlling
device is turned off and the (closed) system A + R is abandoned to
evolve autonomously, eventually via strong interactions and prepared
in nonclassical states (possessing quantum coherence and quantum
correlations). Again, A does work on R, but now the underlying
statistics and work FTs are entirely dictated by the rules of quantum
mechanics, this being the case also for the very notion of work.

is close to a thermodynamical picture of work [8,26], where
the interaction energy with external bodies is accounted as
part of the internal energy. On the other hand, the exclu-
sive definition has its essential features very closely related
to those of a mechanical notion of work, as in the Newto-
nian description of massive point particles, where the internal
energy does not generally encompass external degrees of
freedom [22].

When going to a quantum regime, the usual route to de-
scribe work and work FTs has been to directly quantize the
classical Hamiltonian H (t ) into a time-dependent operator
H (t ) ≡ H (λt ) describing the internal energy, with the agent’s
influence being encoded in the control parameter λt . As a
consequence, λt -dependent work definitions analogous to the
classical ones were proposed [8,27–36]. Still in the nonau-
tonomous context, a debate emerged around the fact that some
of the work definitions lead to results that deviate from the
usual classical FTs [28–30,37,38]. Indeed, it was later shown
that work definitions could not simultaneously satisfy two
natural requirements, namely, (i) that mean energy variation
corresponds to average work and (ii) that work statistics
agree with usual classical results for initial states with no
coherence in the energy basis [36]. As a result, further work
definitions were introduced and modified work FTs deduced
[7,29,37,39]. In none of these approaches, however, is the role
of the agent’s configuration critically addressed from a purely
quantum substratum, so that the use of a classical parameter
λt was unavoidable.

Now, what if the external control is turned off and the
composite system “agent + receiver” is let to evolve au-
tonomously, as depicted in Fig. 1(b)? How can one compute

and make sense of work FTs? With the ever-growing interest
in thermodynamics phenomena in the quantum regime, the
search for generalizations of the concept of work and FTs
for autonomous scenarios started to make sense. Within this
agenda, autonomous machines have been analyzed [40–43],
the effects of correlations, coherences, degeneracy, thermal
fluctuations, and information resources on thermodynamics
have been studied [44–48], and batteries (or work reservoirs)
have explicitly been considered in the dynamics [49,50].
Alternatively, some constraints (sometimes taken as general
quantum FTs) have been obtained for a general class of sys-
tems [51–53] and other forms to statistically describe work
and other thermodynamics properties have been discussed
[54–58]. Still, no detailed analysis has so far been reported
describing how the well-known FTs are affected in dynamics
far away from the usual stochastic thermodynamics regimes,
in particular when the agent is no longer classical. Filling this
gap is the primary goal of the present work.

Here, we examine how work FTs manifest themselves
when we push the system a bit further into the quantum
domain. Basically, we pursue a fundamentally mechanical
treatment characterized by two key elements. First, we let
the agent be submitted, along with the receiver, to a closed
energy-conserving autonomous dynamics, upon which no ex-
ternal control λt is ever imposed. In particular, we allow
the composite system “agent + receiver” to be prepared
in nontrivial quantum states, eventually encoding coherence,
quantum correlations, and local thermal effects. Moreover,
we allow the subsystems to strongly interact with each other
without demanding the interaction to be time-independent or
even to fade over time [51–53]. To the best of our knowledge,
these regimes remained widely unexplored so far. Second,
we abandon the usual thermodynamical essence assigned to
work in favor of an operator-based model, which naturally
attaches a fundamentally quantum mechanical character to
this concept. In effect, this model treats work as a Heisen-
berg observable admitting an eigensystem for each given
process and genuine quantum fluctuations [59]. Despite some
skepticism to treating work as an observable [5,7,30,37], the
work observable formalism was shown to be experimentally
testable and physically sound, besides being approachable as
a two-time element of reality. At last, taking the operator W as
the work done by the agent on the receiver, we compute the av-
erage 〈e−β1W 〉, with β1 being an effective inverse temperature
underlying the receiver’s initial state. To free the discussion of
unnecessary technicalities, our theoretical platform is chosen
to be as simple as possible: we consider a two-particle system,
with elastic coupling, evolving over specific time intervals.
Although the framework here introduced to evaluate 〈e−β1W 〉
can be applied to more general scenarios, this simple system
suffices to show that work FTs may depend on the features
of the receiver and agent. Our results are then compared
with the BK equality (2), which is closer to the mechanical
paradigm than Jarzynski’s formula (1). To highlight the gen-
uinely quantum aspects of our results, we conduct classical
studies in parallel employing the usual Newtonian notion of
work, with its statistics being raised in accordance with the
Liouvillian framework. Although our work FTs are shown
to accurately retrieve BK’s equality in some regimes (see
also the Appendix for a related discussion), they manifest

052211-2



FLUCTUATION THEOREMS FOR GENUINE QUANTUM … PHYSICAL REVIEW A 107, 052211 (2023)

themselves rather differently, and somewhat surprisingly, in
quantum instances.

II. CLASSICAL AUTONOMOUS SCENARIO

We start by investigating the classical statistical frame-
work, wherein the celebrated FTs were originally derived.
Consider two particles of masses m1,2 interacting via an elastic
potential of characteristic constant k. The autonomous dynam-
ics is governed by the Hamiltonian function

H = p2
1

2m1
+ p2

2

2m2
+ k

2
(x2 − x1)2, (3)

where xi (pi) is the position (momentum) of the ith particle.
Henceforth, particle 1 (2) will assume the role of receiver
(agent). Within a mechanical perspective, the workW(t2, t1)
done by particle 2 on particle 1 during the time interval [t1, t2],
is defined as

W(t2, t1) :=
∫ t2

t1

dt m1ẍ1 ẋ1 = �K, (4)

where �K=K1(t2)−K1(t1), with K1(t )= m1 ẋ2
1 (t )

2 being the
kinetic energy of particle 1 (receiver’s internal energy). Thus,
Eq. (4) is the usual statement of the energy-work theorem [60].

Aiming at computing the statistics underlying W(t2, t1),
we explicitly solve the Hamilton equations in terms
of the initial phase-space point �0 = (x0

1, p0
1, x0

2, p0
2) ≡

[x1(0), p1(0), x2(0), p2(0)]. The procedure is facilitated by the
use of the center-of-mass and relative coordinates

xcm = (m1x1 + m2x2)/M,

xr = x2 − x1,

pcm = p1 + p2,

pr = μ(p2/m2 − p1/m1), (5)

with μ = m1m2/M and M = m1 + m2. In the transformed
Hamiltonian H = p2

cm/2M + p2
r /2μ + kx2

r /2, the new de-
grees of freedom decouple and the trajectories are trivially
derived

xt
cm = x0

cm + p0
cmt/M,

xt
r = x0

r cos (ωt ) + (p0
r /μω) sin (ωt ),

pt
cm = p0

cm,

pt
r = p0

r cos (ωt ) − μωx0
r sin (ωt ), (6)

with ω = √
k/μ. Returning to the original variables, we can

write an expression for the momentum of particle 1 at a
generic time t ,

pt
1(�0) = a(t ) p0

1 + b(t ) p0
2 + c(t )

(
x0

2 − x0
1

)
, (7)

a(t ) = [m1 + m2 cos (ωt )]/M,

b(t ) = [1 − cos (ωt )]m1/M,

c(t ) = μω sin (ωt ). (8)

As a result, we are able to write the kinetic energy K1(t ) and
the work W(t2, t1) as explicit functions of the initial phase
point �0. For the sake of analytical convenience (which will be

specially welcome within the quantum context treated posteri-
orly), hereafter we restrict our analysis to processes occurring
within the time intervals [t1, t2] = [0, vτ ], with v an odd inte-
ger and τ = π/ω. With the notationW(�0) ≡W(vτ, 0), the
resulting work can be written as

W(�0) = 2

M2

(
m1 p0

2 − m2 p0
1

)(
p0

1 + p0
2

)
. (9)

To raise the work statistics, we consider an initial distribution

(�0), so that the mean value of a well-behaved function
f [W(�0)] is given by

〈 f (W)〉
 =
∫

d�0 f [W(�0)] 
(�0). (10)

Case studies

Focusing on scenarios associated with the BK equality, we
consider, as our first case study, the initial thermal-Gaussian
(TG) distribution


TG(�0) = T�1

(
x0

1, p0
1

)
Gr̄2,σ2

(
x0

2, p0
2

)
, (11)

which assigns to the receiver the thermal distribution

T�(x, p) :=
exp

(
− p2

2�2

)
√

2π�2

(x), (12)

where � := √
m/β is a “thermal momentum uncertainty”

(which also is an indirect measure of temperature), β is an
inverse temperature, and 
(x) is a generic probability distribu-
tion.2 By its turn, the agent is given the Gaussian distribution
Gr̄,σ (x, p) ≡ Gx̄,σx (x)Gp̄,σ (p), with r̄ = (x̄, p̄), σx = h̄/(2σ ),
and

Gū,σu (u) :=
exp

[
− (u−ū)2

2σ 2
u

]
√

2πσ 2
u

, (13)

where ū and σu, respectively, denote the center and the
width of the Gaussian distribution. By use of the distribution
(11), the averaging prescribed by Eq. (10) for the function
f [W(�0)] = e−βW(�0 ) results in

〈e−β1W〉
TG
= m1 + m2

|m1 − m2| . (14)

In comparison with the BK formula (2), the differences are
clear and insightful, specially with regard to the finite inertia
of the agent. Notably, the BK formula is recovered as m1

m2
→ 0,

the limit in which xt
2 → xt

cm = x0
cm + p0

cmt/m2. This is the pre-
cise regime for which the BK equality was deduced, viz. the
one presuming that the agent acts as a deterministic classical
driver whose dynamics (not necessarily uniform) can in no
way be disturbed by the receiver. Therefore, the dependence
of the result (14) on the masses is a direct consequence of the
autonomous character of the dynamics under scrutiny. Also
noticeable is the fact that Eq. (14) does not depend on the
details of the preparation, such as r̄2, σ2, and �1 = √

m1/β1.
This particular aspect may be a consequence of the quadratic

2In some thermodynamic instances, 
(x) was chosen to character-
ize a particle confined in a box [10,61].
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structure of the model and eventual peculiarities underlying
the chosen time interval. In any case, this reveals that, as long
as the condition m2 � m1 is satisfied, the BK equality holds
even in the regime of a highly fluctuating agent distribution
for which the notion of a deterministic classical control can
no longer be sustained. In fact, as discussed in the Appendix,
this is a special case of a more general result for autonomous
dynamics: the BK equality can actually be retrieved when-
ever the agent’s dynamics is sufficiently independent of the
receiver’s degrees of freedom.

We now conduct our second case study, wherein both
receiver and agent are initially given thermal states with
respective inverse temperatures β1 and β2. The composite
thermal-thermal (TT) distribution reads


TT(�0) = T�1

(
x0

1, p0
1

)
T�2

(
x0

2, p0
2

)
, (15)

where �i = √
mi/βi with i ∈ {1, 2}. The calculations show

that the result is identical to the previous one, that is,
〈e−β1W〉
TT

= 〈e−β1W〉
TG
. Again, the inertial aspects are seen

to prevail over any other elements of the preparation, even the
arbitrary temperatures β1,2.

The situation gets more interesting when we come to our
third case study. Here we let not only thermal ingredients be
present but also correlations. The initial distribution is chosen
to be


c(�0) = T�1

(
x0

1, p0
1

)

x

(
x0

2

)
δD

(
p0

2 − cp0
1

)
, (16)

where δD is the Dirac delta function, c ∈ R�0 is a dimension-
less parameter whose role is discussed below, and again 
x(x0

2 )
is a generic probability distribution. It is not difficult to check
that both marginals are thermal distributions, that is,


i
(
x0

i , p0
i

) ≡
∫∫

dx0
j d p0

j 
c(�0) = T�i

(
x0

i , p0
i

)
, (17)

with i, j ∈ {1, 2} and j 
= i. An interesting aspect is the
appearance of the local inverse temperature β2(c) ≡ β1

c2
m2
m1

deriving from the connection �2 = c�1. We see, therefore,
that c is a direct estimate of both the correlations between
the particles and the agent’s thermal momentum uncertainty.
Through the procedure established previously, we arrive at

〈e−β1W〉
c
= m1 + m2

|m1 − m2 + 2m1c| . (18)

In direct comparison with Eq. (14), the above result demon-
strates that classical correlations can influence work FTs in a
relevant way. In particular, for m1 = m2, one has 〈e−β1W〉
c

=
1
c = √

β2/β1, which makes explicit the strong dependence
of the result also on the local temperatures. From a broader
perspective, result (18) reveals an interesting generalization of
the BK formula: by getting apart from the typical thermody-
namics setting wherein the agent is a deterministic driver, we
find that work FTs can strongly depend on both inertia and, via
correlations, agent’s effective temperature, T2 = [kBβ2(c)]−1.

With the aim of getting more insight about our results, it
is opportune to make some digression on energetics. Direct
application of Jensen’s inequality, 〈g(X )〉 � g(〈X 〉), with g a
convex function and X a random variable, allows us to express
the Jarzynski equality (1) in the form 〈Winc(t, 0)〉 � �F ,
where Ft = −β−1 lnZt denotes the equilibrium free energy
at instant t and �F = Ft − F0. This inequality bounds the

mean inclusive work with quantities directly associated with
the thermodynamic equilibrium and allows one to make in-
ferences, through the sign of �F , about the spontaneity of a
physical process. On the other hand, no symptom of thermo-
dynamic equilibrium shows up straightforwardly in the BK
equality (2). Still, the derivation of this formula presumes
important thermodynamic elements, namely, the preparation
of a thermal state for the receiver and an external classical
control. These aspects are crucial for a deeper understanding
of the relation 〈Wexc(t, 0)〉 � 0 bounding the mean exclusive
work. Basically, this inequality states that the agent can only
deliver energy to the receiver. This can be explained via the
following rationale. One, the thermal state imposes to the
receiver a scenario of energetic minimization constrained to
a certain temperature. Two, the agent has no need to con-
sume energy from its interaction with the receiver because the
agent’s dynamics is deterministically pumped by an external
control. Thus, the average result of such dynamics cannot be
other than an increase of the receiver’s internal energy. To
make contact with this framework, we rephrase our results as

〈W〉
 � −β−1
1 ln 〈e−β1W〉
 . (19)

For the processes under scrutiny, the work FTs (14) and (18)
have shown to be independent of thermodynamic equilibrium
quantities, like β1 and �1, and strongly dependent on inertia,
which is the physical element capable of tuning the mechan-
ical equilibrium. In effect, when m1(2) � m2(1) one of the
particles approximately remains in uniform motion (mechan-
ical equilibrium). Although the BK formula is retrieved in
this regime, the scenarios are still different, since in BK’s ap-
proach the agent’s motion, being dictated by λt , does not need
to be uniform. On the other hand, whenever 〈e−β1W〉
 � 1,
the work FTs largely deviate form the BK formula, and the
lower bound in relation (19) can become significantly nega-
tive, meaning that the agent is now allowed to draw energy
from the receiver. This regime is favored when m1 � m2,
an instance in which energy exchange between agent and
receiver is expected to be ubiquitous throughout the dynamics
and, hence, the concept of mechanical equilibrium evaporates.
Interestingly, we see by Eq. (18) that, even in the regime of
mechanical equilibrium (m2 � m1), an amount c = (m2−m1 )

2m1
of classical correlations is able to significantly disturb the
directionally of the energetic flow typical of the BK scenario.
Given the above, it is fair to conclude that the work FTs we
thus far obtained make important connections with elements
of mechanical (instead of thermodynamic) equilibrium.

III. QUANTUM AUTONOMOUS SCENARIO

In full analogy with the classical model studied in the
previous section, we now consider particles of masses m1

and m2 evolving autonomously under the unitary dynamics
implied by the Hamiltonian operator

H = P2
1

2m1
+ P2

2

2m2
+ k

2
(X2 − X1)2, (20)

where Xi (Pi) is the position (momentum) operator of the ith
particle. The quantum preparation ρ and H act on the joint
Hilbert space H = H1 ⊗ H2. As before, particle 1 (2) will
play the role of the receiver (agent).
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Since we are interested in exploring FTs under a mechan-
ical perspective, we employ the definition of work proposed
in Ref. [59]. Accordingly, we use the Heisenberg picture,
wherein the operators evolve in time according to the re-
lation O ≡ O(t ) = U †

t OsUt , where Os is the corresponding
Schrödinger operator and Ut = exp(−iHst/h̄) is the time
evolution operator. In this framework, the velocity and the
acceleration of the receiver can be expressed respectively as
Ẋ1 = [X1, H]/ih̄ and Ẍ1 = [Ẋ1, H]/ih̄. The quantum mechan-
ical work done by the agent on the receiver within a time
interval [t1, t2] is then defined as [59]

W (t2, t1) :=
∫ t2

t1

dt m1
{Ẋ1, Ẍ1}

2
= �K, (21)

where �K=K1(t2)−K1(t1), with K1(t )= m1Ẋ 2
1 (t )

2 being the
kinetic energy of particle 1 (receiver’s internal energy). Defi-
nition (21) can be seen as the quantum analog of (4), i.e., the
Heisenberg statement of the energy-work theorem, which, as
shown in Ref. [59], is just a specialization of a more general
formulation for quantum systems.

We now proceed to obtain explicit expressions for
W (t2, t1). Again, we decouple the Hamiltonian operator as
H = P2

cm/2M + P2
r /2μ + kX 2

r /2, by means of the operator
transformation

Xcm = (m1X1 + m2X2)/M,

Xr = X2 − X1,

Pcm = P1 + P2,

Pr = μ(P2/m2 − P1/m1). (22)

As in the classical model, the analytical solutions are very
simple and allow us to write [59]

P1(t ) = a(t ) Ps
1 + b(t ) Ps

2 + c(t )
(
X s

2 − X s
1

)
, (23)

with the same functions a(t ), b(t ), and c(t ) defined in Eqs. (8).
Restricting again our analysis to the time interval [t1, t2] =
[0, vτ ], with τ = π/ω and v an odd integer, and introducing
the compact notation W = W (vτ, 0), we find

W = 2

M2

(
m1Ps

2 − m2Ps
1

)(
Ps

1 + Ps
2

)
(24)

for the operator work done by the agent on the receiver in
the process defined by the time interval [0, vτ ]. It is clear
that W is diagonal in the composite basis {|p1, p2〉}, with
eigenvalues wp1,p2 = 2

M2 (m1 p2 − m2 p1)(p1 + p2) keeping a
direct conceptual connection with the classical work (9). Here
is the fundamental reason behind our choice of such very
particular time intervals; although allowed by our formalism,
other choices would demand the numerical diagonalization
of W . (Possibly, they would also yield different FTs.) Result
(24) tells us that by jointly measuring Ps

1,2, one prepares an
amount wp1,p2 of work in the interval [0, vτ ]. It is worth
noticing that one does not really “measure” work by measur-
ing the momenta. As discussed in Ref. [59] and readily seen
from the computations above, a work measurement cannot be
performed (not even within the classical paradigm) simply be-
cause a two-time observable is not definable at a single time.
Instead, we “prepare” work for the interval [0, vτ ] through the
establishment of ρ at t = 0.

Having computed the work observable (24), we can raise
the statistics associated with any well-behaved function f (W )
for an initial state ρ acting on the joint space H via

〈 f (W )〉ρ =
∫∫

d p1 d p2 f (wp1,p2 ) 
(p1, p2), (25)

where 
(p1, p2) = 〈p1, p2|ρ|p1, p2〉. In what follows, we an-
alyze the expectation value of the operator f (W ) = e−β1W

in instances analogous to those considered in the classical
context, but also, and most importantly, in fundamentally
quantum scenarios. For the sake of notational compactness
and analytical convenience, we introduce the parameters

ε ≡ σ1

�1
and γ ≡ σ1

�1

σ2

�1
, (26)

in terms of which most of the discussion that follows will be
conducted. The interpretations of σ1,2 and �1 are the same
ones employed in the classical scenarios of Sec. II.

A. Thermal-Gaussian state

Let us start with the case involving a thermal-Gaussian
state given by

ρTG = T�1 (σ1) ⊗ Gr̄2,σ2 , (27)

where Gr̄2,σ2 = |r̄2〉 〈r̄2| denotes a pure Gaussian state, mean-
ing that

〈x2|r̄2〉 =
(

2σ 2
2

π h̄2

)1/4

e− σ2
2 (x2−x̄2 )2

h̄2 + i p̄2x2
h̄ ,

(28)

〈p2|r̄2〉 = (
2πσ 2

2

)−1/4
e
− (p2− p̄2 )2

4σ2
2

− i(p2− p̄2 )x̄2
h̄

,

where r̄2 = (x̄2, p̄2) is the centroid and σ2 is the agent’s mo-
mentum uncertainty. For the receiver, we have the effective
thermal state

T�1 (σ1) = (
2π�2

1

)−1/2
∫

d p e
− p2

2�2
1 G(0,p),σ1 , (29)

where we recall that �1 = √
m1/β1. Being able to avoid the

singularities and normalization problems typical of continuum
bases and being very convenient for analytical computations,
this state actually is an approximation to a genuine thermal
state with inverse temperature β1. This can be checked from
the matrix elements

〈p′
1|T�1(σ1)|p1〉=

exp
[ − p′

1
2+p2

1

4�2
1(1+ε2 )

− (p′
1−p1 )2

8�2
1ε

2(1+ε2 )

]
√

2π�2
1(1 + ε2)

,

which renders, as ε → 0, vanishing coherences and the pop-
ulations 〈p1|T�1 (σ1)|p1〉 ∝ e−β1K1 with K1 = p2

1/2m1. That
is, when the momentum fluctuation σ1 of the Gaussian state
G(0,p),σ1 is much smaller than the thermal fluctuation �1,
then T�1 (σ1) approaches a fully incoherent mixture (in the
kinetic energy basis) with thermal populations. Consequently,
whenever ε � 1, ρTG as defined by Eq. (27) is a reasonable
quantum analog of 
TG as given by Eq. (11). Following the
prescription indicated by Eq. (25), with f (W ) = e−β1W , we
arrive at

〈e−β1W 〉ρTG
= (m1 + m2)

M
exp

(
2m2

1ε
2 p̄2

2

M2�2
1

)
, (30)
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where

M ≡
√

(m1 − m2)2 − 4m1(m1γ 2 + m2ε2). (31)

The above FT, which was derived under the convergence
condition M2 > 0 for generic values of σ1,2 and �1, clearly
depends on the equilibrium temperature, through �1, but also
on the momentum uncertainties σ1,2 and the masses m1,2,
whose values regulate the connection with mechanical equi-
librium. Now, the series expansion to first order in ε, for
arbitrary σ2, yields

〈e−β1W 〉ρTG
∼= m1 + m2

|m2 − m1| �, (32)

where � ≡ [1 − ( 2m1γ

m1−m2
)2]

− 1
2
. Note that the instance of a

localized agent (σ2 � �1) is allowed as long as the conver-
gence condition is preserved. On the other hand, when the
agent looses spatial localization, so that ε � γ � 1, then
we retrieve the classical result (14), that is, 〈e−β1W 〉ρTG

∼=
〈e−β1W〉
TG

, and no dependence on the temperature �1 re-
mains. Again, inertia is seen to play a role in the FT and BK’s
formula for the nonautonomous scenario is readily retrieved
for m2 � m1. It is worth emphasizing that the BK context is
conceptually approached only when, in addition to m2 � m1,
we consider a dispersion-free state for the agent. However, this
does not guarantee a prescription λt for the agent’s motion, so
that, strictly speaking, BK’s regime is still not attained.

B. Thermal-thermal state

In analogy with the classical distribution (15), our next case
study focus on the effective thermal-thermal state

ρTT = T�1 (σ1) ⊗ T�2 (σ2), (33)

where T�i (σi ) has the same structure as state (29). As shown
before, when σi � �i these reduced states become thermal,
with respective inverse temperatures βi. Direct calculations
for generic values of parameters give the exact result

〈e−β1W 〉ρTT
= (m1 + m2)√

M2 + ε2m2
1( �2/�1)2

, (34)

provided that M2 + ε2m2
1(�2/�1)2 > 0. In the regime where

ε � γ � 1, we obtain the same approximated results of the
previous case, so that 〈e−β1W 〉ρTT

∼= 〈e−β1W 〉ρTG
. However, it is

clear that the ratio of temperatures plays a significant role in
general.

C. Momentum-momentum correlation state

Consider the classically correlated quantum state

ρc =
∫

d p
e
− p2

2�2
1√

2π�2
1

G(0,p),σ ⊗ G(0,cp),σ , (35)

with c ∈ R�0 being a parameter that correlates the mo-
menta of the particles, in analogy with the scenario defined
by Eq. (16). Notice that here we have σ2 = σ1 = σ .
Again, directly from prescription (25) we deduce, for generic

parameters, that

〈e−β1W 〉ρc
= m1 + m2√

(m1 − m2 + 2m1c)2 − F
(36)

under the convergence condition F � (m1 − m2 + 2m1c)2,
where

F = 4m2
1

[
ε4 + ε2

(
c + m2

m1

)]
. (37)

Whenever the momentum fluctuations of the Gaussian states
are small enough (σ1,2 = σ � �1), so that ε � 1, then the
reduced states ρ1 = Tr2ρc and ρ2 = Tr1ρc can be locally iden-
tified as thermal, with inverse temperatures β1 and β2 = β1

c2
m2
m1

,
respectively. In this regime, we find F ∼= 0 and

〈e−β1W 〉ρc
∼= m1 + m2

|m1 − m2 + 2m1c| , (38)

which agrees with the classical expression (18). Maybe not so
surprisingly, in the regime where ε � 1 we thus far found a
complete match between classical and quantum predictions
with regard to work FTs within a mechanical perspective.
Next, we analyze scenarios without classical counterparts.

D. Agent in quantum superposition

Let us consider now the preparation

ρTS = T�1 (σ1) ⊗ (ξ + χ )

N
, (39)

where

ξ = |r̄2〉 〈r̄2| + |r̄′
2〉 〈r̄′

2| ,
χ = |r̄2〉 〈r̄′

2| + |r̄′
2〉 〈r̄2| , (40)

with |r̄2〉 and |r̄′
2〉 Gaussian states with center at r̄2 =

(x̄2, p̄2) and r̄′
2 = r̄2 + (δx, 0), respectively, and momentum

uncertainty σ2. δx is a generic spatial displacement and
the normalization factor is given N = Tr(χ + ξ ) = 2[1 +
exp(−η2/8)], where η ≡ 2σ2δx/h̄. In this case, we arrive at

〈e−β1W 〉ρTS
= 〈e−β1W 〉ρTG

(
1 + e−� η2

1 + e− 1
8 η2

)
cos �, (41)

where

� ≡ 1 +
(

2m1γ

M

)2

, � ≡ h̄ p̄2

δx�
2
1

(
εη

m1

M

)2
, (42)

again with the convergence condition M2 > 0. Interestingly
enough, we see that the “Gaussian influence” of the agent’s
initial state factorizes from the other terms, those which en-
code via η the superposition elements.

Different scenarios can emerge from the above result. First,
when the local state of the receiver is nearly thermal (ε � 1)
and no restriction is imposed on the agent initial state, we have
〈e−βW 〉ρTS

∼= m1+m2
|m1−m2| , which is no different from the results

found when the agent starts in a Gaussian or thermal state.
On the other hand, if we consider in addition that σ2 � �1,
so that |r̄2〉 and |r̄′

2〉 turn out to be extremely sharp Gaussian
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FIG. 2. Attenuation factor � as a function of the interference
parameter η = 2σ2δx/h̄ and the mass ratio m1/m2, in the regime
σ1 � �1 � σ2 (which is equivalent to ε � γ � 1), for γ = 0.25.
The combined effects of inertia and interference are seen to be mostly
significant in the upper half plane.

states, then we get

〈e−β1W 〉ρTS
∼= (m1 + m2)

|m1 − m2| � �, (43)

where � ≡ 1+exp(−η2�2/8)
1+exp(−η2/8) . In this case, the role of interference

can be analyzed through η and �. Note that η = 2σ2δx/h̄ dic-
tates whether a spatial interference pattern is detectable for the
preparation: if η � 1, meaning that the distance δx between
the wave packets is much greater than their width h̄

2σ2
, then

no interference pattern is visible via position measurements,
although the agent’s initial state is a coherent superposition.
In this case, one has � � 1, and the expression (43) reduces to
Eq. (32), which can be shown to be the FT also when the agent
state is prepared in the mixture ξ/2. On the other hand, if η is
not too big, so that interference is observable for the agent’s
initial state, then � becomes smaller than unit and the FT is
significantly influenced by the agent’s spatial coherence.3 It
can readily be seen from the plot of � as a function of η and
m1/m2 (Fig. 2) how interference and inertia effects can be
combined to maximally influence the work FT. Interference
becomes most important when, to begin with, it meets the
conditions to manifest itself through position measurements
on the preparation (which means η small) and when the ratio
of masses comes closer to its upper bound (1 + 2γ )−1, regime
which is maximally far apart from the scenario of a heavy
agent.

3It is worth remarking that the implications of agent’s spatial co-
herence to the work FT cannot be thought of as emerging from local
elements solely. To see this, note that if γ = σ1σ2/�

2
1 (a “nonlocal”

parameter) could assume vanishing values, then � � 1 and � � 1,
so that no influence of coherence would survive.

E. Agent entangled with receiver

At last, we consider an entangled initial state, ρe =
|ψe〉 〈ψe|, where

|ψe〉 =
∫

d p
e
− p2

4�2
1√

4πκ�2
1

|0, p〉 ⊗ |ep, 0〉 , (44)

κ ≡ ε/
√

1 + ε2 + ϑ−2
e , |0, p〉 is a receiver’s Gaussian state

with center at the mean phase-space point r̄1 = (0, p) and
momentum uncertainty σ1, and |ep, 0〉 is an agent’s Gaussian
state with center at r̄2 = (ep, 0) and momentum uncertainty
σ2. The parameter e ∈ R�0 regulates the correlation of the
receiver’s momentum with the agent’s position. In the lim-
its σ1 → 0 and σ2 → ∞, the Gaussian states |0, p〉 and
|ep, 0〉 approach momentum and position eigenstates, respec-
tively, with |ψe〉 thus representing a highly entangled state.
Moreover, it can be shown that in these limits [as long as
(σ1σ2)−1 remains bounded] the reduced matrices 〈p′

1|ρ1|p1〉
and 〈x′

2|ρ2|x2〉 are nearly diagonal, with respective thermal
populations exp [−p2

1/(2�2
1)] and exp [−x2

2/(2e2�2
1)]. That

is, not only ρ1 is effectively thermal but also ρ2 approximates
a mixture of position eigenstates with Gaussian weights of
mean value 0 and dispersion e�1.

To make the discussion about quantum correlations quan-
titative, we compute the amount of entanglement E (ρe) =
1 − Trρ2

s encoded in ρe by measuring how far the purity Trρ2
s

of the subsystem s ∈ {1, 2} is from unit (the maximum purity).
Direct calculations lead to

E (ρe) = 1 −
√

ε2
(
1 + ε2 + ϑ−2

e

)
(1 + ε2)

(
ε2 + ϑ−2

e

) , (45)

where ϑe ≡ h̄/(2eσ1σ2). It is straightforward to check that
dE/de � 0, with equality holding for e = 0. This shows that
entanglement is a monotonic function of e, so that, modulo
its dimensional unit, this parameter is itself an estimate of en-
tanglement.4 It is also interesting to note limε→∞ E (ρe) = 0
while E (ρe) ∼= 1 − ε

√
1 + ϑ2

e for ε � 1 (so that ε = 0 im-
plies maximum entanglement).

Turning to the FT, in the present case the following exact
expression arises

〈e−β1W 〉ρe
= m1 + m2√

M2 + 4m2
1γ

2

1+ϑ2
e(1+ε2 )

. (46)

In the regime where ε � 1, we have

〈e−β1W 〉ρe

∼= m1 + m2√
(m1 − m2)2 − h̄2β2

1
e2(1+ϑ2

e )

. (47)

These results show how entanglement via e and ϑe can in-
fluence a work FT. It is interesting to assess whether purely

4While E (ρ0) = 0, one has E (ρ∞) ≡ lime→∞ E (ρe) =
1 − √

ε2/(1 + ε2), which does not reach its maximum value when
e does. However, the definitive monotonicity relation, including
maximum and minimum values, can be trivially established, for all
ε, between e and the rescaled measure E (ρe)/E (ρ∞).
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classical correlations would also cause a similar impact. To
this end, we consider the classically correlated state

ρc =
∫

d p
e
− p2

2�2
1√

2π�2
1

G(0,p),σ1 ⊗ G(cp,0),σ2 , (48)

which has the same form as ρc in Eq. (35) except that here
the momentum of particle 1 is classically correlated with the
position (instead of the momentum) of particle 2 through the
parameter c ∈ R�0. Just as for ρe, when σ1 → 0 and σ2 → ∞
with (σ1σ2)−1 remaining bounded, the reduced states become
nearly thermal. The exact FT, for arbitrary parameters, turns
out to be simply 〈e−β1W 〉ρc

= (m1 + m2)/M. When ε � 1
this result can be written as

〈e−β1W 〉ρc

∼= m1 + m2√
(m1 − m2)2 − h̄2β2

1
c2ϑ2

c

, (49)

where ϑc ≡ h̄/(2cσ1σ2). The formal comparison with result
(47) is now immediate. In particular, we see that the scenar-
ios are comparable when ϑe,c � 1. Also noteworthy is the
fact that the relation h̄β1/(cϑc) = 2β1σ1σ2 shows that relation
(49) is h̄-independent and, therefore, can be claimed to be a
fundamentally classical result. In any case, though, it is clear
that quantum and purely classical correlations, in combination
with the thermal and inertial aspects, generally have different
impacts on the work FT. This difference disappears as h̄β1/m2

is sufficiently small, for in this regime both results (47) and
(49) coalesce to the form typically found throughout this ar-
ticle, namely, (m1 + m2)/|m1 − m2|. Moreover, BK’s formula
is retrieved as m1 � m2.

Before closing this section, two remarks are in order. First,
with regard to energetics, application of Jensen’s inequal-
ity allows us to write, as in the classical context, 〈W 〉ρ �
−β−1

1 ln 〈e−β1W 〉ρ . The state of affairs is then such that, while
the BK equality (2) imposes that the average work can never
be negative in any time interval, here we show that there exist
processes wherein the lower bound for the average mechanical
work can assume negative values. This means that, within the
present perspective in which work is a Hermitian operator
and the system is autonomous, a finite-mass agent can also
draw energy from the receiver. Such a result reveals significant
deviations from the mechanical equilibrium emerging when
m2 � m1.

Second, work FTs are commonly tested by use of two-point
measurement (TPM) protocols and incoherent states in the
energy basis [1,7,30], so it is relevant to examine if and how
such methods would deal with the present proposal. Usually,
TPM protocols are employed to raise work statistics under the
premise that work is a stochastic energy change induced by an
external driving parameter λt [1,7,30]. This scheme enables
the experimental validation of important quantum FTs (see,
for instance, Refs. [1,7,17] and references therein) and it gives
a relatively simple and fairly general way of accounting for
work statistics in the quantum thermodynamics domain. It is
often applied to a system S described by a time-dependent
Hamiltonian Hs(t ) = Hs(λt ). After being prepared at t = 0
in a generic state ρS, the system is submitted to a projec-
tive measurement of energy at t1, thus jumping to an Hs(t1)

eigenstate |en〉 with probability pn = 〈en|ρS|en〉. The system
then evolves unitarily (via U�t , with �t = t2 − t1) until the
instant t2, when a second measurement is performed and a
random eigenvalue εm of Hs(t2) is obtained with probability
pm|n = | 〈εm|U�t |en〉 |2. In this run of the experiment, work
is computed as wmn = εm − en. After many runs, the work
probability density ℘w = ∑

mn pm|n pn δD(w − wmn) is built,
where

∫
dw℘w = 1. It follows that the kth moment of work

can be evaluated as wk = ∫
dw℘wwk = ∑

mn pm|npnw
k
mn. We

now examine an adaptation of this protocol to our mechan-
ical perspective. First, it is worth noticing from Eq. (23)
that the kinetic energy operator K1 of particle 1 at times
0 and vτ are such that [K1(vτ ), K1(0)] = 0. Therefore, it
might be expected [30] that the statistics underlying the work
observable W = K1(vτ ) − K1(0) would coincide with TPM
predictions. It turns out, however, that this does not materi-
alize for the entangled state ρe since the first measurement
of a TPM protocol cancels out the quantum correlation term.
To prove this point, we compute the probability density ℘pi =
[(|pi〉 〈pi| ⊗ 12)ρe] of finding a momentum pi, and a corre-
sponding kinetic energy p2

i /2m1, in the first measurement. We
find

℘pi =
exp

[
− p2

i

2(�2
1+σ 2

1 )

]
√

2π
(
�2

1 + σ 2
1

) . (50)

As soon as the first measurement is concluded, the state
of the system is approximately represented by G(0,p),σ1 ⊗
G(cp,0),σ2 , with σ1 sufficiently small. Now, considering the
same procedure for the classically correlated state ρc, we find
the same probability density for the first measurement, that
is, Tr[(|pi〉 〈pi| ⊗ 12)ρc] = ℘pi . Also, via state reduction, the
same state G(0,p),σ1 ⊗ G(cp,0),σ2 emerges after the measure-
ment. Therefore, the probability densities related to the first
measurement on ρe and ρc are the same and the states right
after it also coincide, so that the TPM statistics resulting for
ρe and ρc cannot be distinct. Therefore, a relation like Eq. (46)
cannot be experimentally verified through a TPM protocol,
even when the internal energies in the beginning and at the
end commute.

IV. CONCLUDING REMARKS

Crucial to the assessment of physical systems’ responses
to applied perturbations, FTs allow us to analyze averages
of fluctuating quantities in terms of physical aspects imposed
by thermodynamic equilibrium. Studies in these lines were
typically conducted under classical-like assumptions. Never-
theless, searching for the eventual effects of relaxing such
constraints is vital for one to build a better comprehension
of nonequilibrium thermodynamics, especially in the quantum
regime.

In this article, we avoid classicalities in several ways. We
consider (i) an exclusive work observable, (ii) a finite-mass
agent, (iii) an autonomous agent-receiver dynamics, and (iv)
fundamentally quantum global states which are thermal only
locally. Then, we compute work FTs for specific processes
and proved, by explicit examples, that the BK formula (2) can-
not be extended to such regimes. Interestingly, we have been
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able to show that quantum agent’s features such as inertia,
effective temperature, quantum coherence, and quantum cor-
relations with the receiver directly influence the work FTs. In
any case, the BK formula is retrieved for very massive agents,
a regime in which energy can only be delivered to the receiver
and the dynamics reaches mechanical equilibrium, with the
agent in uniform motion. (As shown in the Appendix, though,
the recovery of BK’s formula can occur in more general sce-
narios.) Apart from this very particular regime, our FTs show
how inertia and quantum resources lead to the breakdown
of the mechanical equilibrium. In fact, although our FTs are
derived for specific physical processes, we believe that the
dependence of FTs on inertia and quantum resources is a
fundamental characteristic of any truly autonomous quantum
system out of equilibrium. Finally, we show that the usually
adopted TPM protocol is unable to capture the influence of
entanglement on work FTs.

It is important to stress that the specializations made
throughout this article with regard to interactions and time
intervals (the physical processes) are motivated merely by an-
alytical convenience. By principle, our mechanical approach
to FTs applies to any autonomous quantum system. The key
premise is that work is a quantum observable to be computed
in the Heisenberg picture; everything else is just standard
quantum mechanics. As a consequence, as opposed to tradi-
tional results in the field of quantum thermodynamics, the FTs
emerging in autonomous contexts are expected to fundamen-
tally depend on the features of each dynamical system under
scrutiny.

It would be interesting to explore the work observable
formalism of Ref. [59] in further autonomous processes and
investigating whether some universal bound may eventually
pop out. As shown here, the notion of work observable al-
lows us to dig deeper into the extension of FTs to regimes
closer to the quantum domain, specially within a funda-
mentally mechanical perspective. We believe that some of
the predictions made here can be experimentally tested in
the near future through the promising trapped ion platforms
[62,63].
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APPENDIX: SUFFICIENT CONDITIONS FOR THE BK
LIMIT

Here we identify sufficient conditions enabling the emer-
gence of the BK equality (2) out of our work FTs. The analysis
will be conducted for both classical and quantum scenarios
with the focus on the agent’s dynamics.

1. Classical scenario

We assume that the receiver R can be any system whose in-
ternal energy is described by a classical HamiltonianHR(�R

t ),
where �R

t denotes R’s phase-space coordinate at time t . �R
t

can be the position-momentum pair of a single particle, or
even any set of canonical variables of a many-particle sys-
tem. Similarly, we consider a generic agent A with energy
HA and phase-space coordinate �A

t . The composite system
R + A evolves in time by means of a Hamiltonian function
H = HR +VRA +HA, where VRA is the coupling energy.
The joint phase-space coordinate at time t reads �t = �R

t �A
t .

The work done by A on R during a time interval [0, t] is equal
to the variation of R’s internal energy [59], that is,

W(t, 0) ≡W(�0, t ) = HR
(
�R

t (�0, t )
) −HR

(
�R

0

)
. (A1)

Observe that �R
t = �R

t (�0, t ) is an explicit statement of the
fact that, in general, the receiver phase-space coordinate at
time t may depend also on the agent’s initial condition.

To approach the context underlying the BK’s equality, we
assume an initial distribution 
(�0) whose receiver’s reduced
distribution is thermal, meaning that


R
(
�R

0

) =
∫

d�A
0 
(�0) = e−βHR (�R

0 )

Z
, (A2)

where d�A
0 is the agent’s infinitesimal phase-space volume at

time t = 0 and Z = ∫
d�R

0 exp[−βHR(�R
0 )]. To identify the

part of 
 that codifies the correlations between the subsystems,
we introduce the function C(�0) = 
(�0) − 
R(�R

0 )
A(�A
0 ),

with 
A(�A
0 ) = ∫

d�R
0 
(�0). With respect to the generic

energy-conserving autonomous dynamics declared so far, the
following statement holds.

Result 1. The BK equality (2) is attained in the afore-
mentioned autonomous scenario whenever the following two
conditions are satisfied simultaneously.

(1) The agent’s initial phase-space coordinate �A
0 , when

written in terms of the time t coordinate, does not de-
pend on the receiver’s coordinate. Formally, this reads �A

0 ≡
�A

0 (�A
t , t ), where �A

0 (�A
t , t ) denotes the agent’s initial condi-

tion that reaches the coordinate �A
t at time t .

(2) The correlations are such that∫
d�0 e−βW(�0,t ) C(�0) = 0. (A3)

Proof. Assumption 2 implies that

〈e−βW(t,0)〉 =
∫

d�0 e−βW(�0,t ) 
R
(
�R

0

)

A

(
�A

0

)
. (A4)

Using Eqs. (A1) and (A2), along with the Hamiltonian in-
variance of the phase-space volume (d�t = d�0), allows us
to rewrite Eq. (A4) as

〈e−βW(t,0)〉 = 1

Z

∫
d�t e−βHR (�R

t (�0,t ))
A
[
�A

0 (�t , t )
]
. (A5)

Assumption 1 ensures that 
A[�A
0 (�t , t )] = 
A[�A

0 (�A
t , t )].

Since d�t = d�R
t d�A

t ,
∫

d�A
t 
A[�A

0 (�A
t , t )] = 1, and∫

d�R
t e−βHR[�R

t (�0,t )] =
∫

d�R
0 e−βHR (�R

0 ) = Z, (A6)

then 〈e−βW(t,0)〉 = 1 immediately follows. �
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The above assumptions reflect two fundamental ingredi-
ents through which an autonomous dynamics can approach
the regime of deterministic control upon which the BK equal-
ity was originally grounded. Assumption 1 indirectly states
that the agent’s degrees of freedom at a specific time t are
independent of the receiver’s degrees of freedom at some
previous time. This embeds the idea that the agent’s dynam-
ics is barely influenced by the receiver. In other words, the
agent is allowed to control and deliver energy, but it is by
no means controlled. Of course, this regime is also favored
when the agent is much heavier than the receiver. By its turn,
assumption 2 requires that correlations must not be influential
to the work exponential average. Although these are admit-
tedly strong assumptions, they are still weaker than explicitly
controlling the agent in a deterministic manner over the entire
time interval. Importantly, these assumptions can be material-
ized in autonomous dynamics. The examples discussed in the
main text (for specific time intervals and heavy agents) show
that this is indeed the case, that is, the BK equality can emerge
out of strictly autonomous dynamics.

2. Quantum scenario

As in the classical case, we consider a generic quantum
state ρ acting on a Hilbert space H = HR ⊗ HA, which de-
scribes the physics of a system consisting of a receiver R
and an agent A. Again, the composite system R + A is as-
sumed to evolve autonomously according to a Hamiltonian
H = HR + VRA + HA, with HR(A) denoting the internal energy
of R (A) and VRA accounting for the coupling energy. The
quantum mechanical work is given by the two-time observable
[59]

W (t, 0) = HR(t ) − Hs
R , (A7)

where HR(t ) = U †
t Hs

RUt and Ut = exp(−iHt/h̄). Once again,
we assume that the receiver’s initial state is thermal:

ρR = TrAρ = e−βHs
R

Z
, (A8)

where Z = TrR(e−βHR ). Following the analogy with the clas-
sical case, we define the part C(ρ) = ρ − ρR ⊗ ρA of ρ

encompassing the correlations, with ρR,A being the reduced
states of ρ. Under these circumstances, we have the following
result.

Result 2. The BK equality (2) is attained in the aforemen-
tioned quantum autonomous scenario whenever the following
three conditions are satisfied simultaneously.

(1) For any operator 1R ⊗ Os
A, it holds that U †

t (1R ⊗
Os

A)Ut = 1R ⊗ O′
A(t ) and Ut (1R ⊗ Os

A)U †
t = 1R ⊗ O′′

A(t ),
with Os

A, O′
A(t ), and O′′

A(t ) acting on HA.
(2) The correlations are such that

Tr[e−βW (t,0)C(ρ)] = 0. (A9)

(3) The following relation is valid:

Tr
{[

e−βW (t,0) − e−βHR (t )eβHs
R
]
ρR ⊗ ρA

} = 0. (A10)

Proof. From assumption 2, it follows that

〈e−βW (t,0)〉 = Tr[e−βW (t,0)ρR ⊗ ρA]. (A11)
Using assumption 3 and Eqs. (A7) and (A8), we arrive at

Tr[e−βW (t,0)ρR ⊗ ρA] = 1

Z
Tr[e−βHR (t )1R ⊗ ρA]. (A12)

Assumption 1 and the cyclic property of the trace yield

Tr

[
e−βHR (t )

Z
1R ⊗ ρA

]
= Tr

[
e−βHR

Z
1R ⊗ ρ ′′

A(t )

]
= 1.

(A13)
Connecting the above equations gives 〈e−βW (t,0)〉 = 1. �

In both scenarios, the assumptions 1 and 2 have the same
function, namely, implementing the agent’s independence,
a crucial characteristic of BK’s approach. Assumption 3,
needed only in the quantum case, circumvents the difficulties
underlying the noncommutativity of the algebra. Finally, we
remark that the assumptions underlying the results 1 and 2
reflect only sufficient conditions for the recovery of the BK
equality. The question of whether these conditions are also
necessary, or whether other conditions are relevant, remains
to be investigated in future work.
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