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Dynamical characterization of topological phases beyond the minimal models
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Dynamical characterization of topological phases under quantum quench dynamics has been demonstrated
as a powerful and efficient tool. Previous studies have focused on systems of which the Hamiltonian consists of
matrices that commute with each other and satisfy Clifford algebra. In this work we consider the characterization
of topological phases with Hamiltonians that are beyond the minimal model. Specifically, the quantum quench
dynamics of two types of layered systems is studied, which consist of matrices of Hamiltonians that do not all
satisfy Clifford algebra. We find that the terms which anticommute with others can hold common band-inversion
surfaces, which controls the topology of all the bands, but for other terms, there is no universal behavior and they
need to be treated case by case.
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I. INTRODUCTION

Topological phases of matter were originally defined in
equilibrium in terms of topological invariants by the bulk
Hamiltonian in momentum space or by the number of
edge states on the boundary of the material [1,2]. These
two approaches are related to each other by the so-called
bulk-edge correspondence [3,4]. In recent years, the bulk-
edge correspondence has been generalized to the so-called
bulk-edge-hinge (corner) correspondence, in which the states
localized on the intersection of two boundaries are protected
by the topology of the material. Such topological phases
are called higher-order topological insulators [5,6]. Mean-
while, many studies show that the topological structure of
a system can also be probed by nonequilibrium quench
dynamics in both theory [7–12] and experiment [13–18].
Specifically, a different kind of bulk-edge correspondence,
based on nonequilibrium dynamics, has been proposed by Liu
and co-workers through the so-called dynamical spin-texture
fields on the band-inversion surfaces (BISs) in time-averaged
spin polarization (TASP). It has been formulated in theory
[19–21] and realized in the experiment [22,23]. Later, it was
generalized to Floquet systems [24] and higher-order topo-
logical insulators [25]. Compared with traditional equilibrium
approaches, the method of Liu and co-workers not only shows
band topology from a different angle, but also has high feasi-
bility and experimental accuracy.

However, most of the nonequilibrium approaches carried
out so far on topological systems have focused on simple
models like the Su-Schrieffer-Heeger model [26] and Haldane
model (or Chern insulator) [27]. The studies of Liu and co-
workers also only consider examples of minimal models in
which the Hamiltonians can be expanded in terms of � matri-
ces, all satisfying Clifford algebra. In such minimal models,
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the topological invariant of the band can be expressed by the
coefficient of the � matrices in a very simple way and there-
fore BISs and spin-texture fields appear in a natural way. One
way of extending the minimal model is in the higher-order
topological insulators by the nested configurations of the BIS
[25,28]. It was mentioned that models beyond the minimal
model are possible in such models. However, one still wonders
how far the procedure of the minimal model can be applied in
the case of generic multiband Hamiltonians.

In this paper we generalize the idea of Liu and co-workers
and consider systems that are beyond their minimal models.
In these systems, the Hamiltonians are expanded by matrices
that do not satisfy Clifford algebra: Some terms anticommute
with others but some do not. Specifically, we consider layered
systems with the same type of layer but with two different
types of stacking, giving rise to two different topological
structures [29–32]. Though these models have some similari-
ties to minimal models, they are more general. One of them,
AB − BA stacking, can be block diagonalized and therefore
can be separated into subsystems, i.e., minimal models, but
the other one, BA stacking, cannot.

We describe the quench dynamics of the layered systems
and characterize the topology of these systems. Our findings
are as follows. The terms which anticommute with others
can hold a common BIS and control the topology of all the
bands without referring to the information of other terms.
However, with the band dispersion considered, the condition
for a term to have a BIS is relaxed as follows: If it is nonzero
at all momentum values, it can keep the gap open for any
deformation of the other terms. This holds for both AB − BA
stacking and BA stacking systems. Inside the subsystems of
AB − BA stacking, there exist BISs that control the topology
of the subsystems. In order to clarify the whole topological
number, these subsystems need to be treated separately. The
BA stacking systems need to be treated as a whole. In addition,
the interlayer hopping can also be obtained from the TASP
itself in these two stacking systems.

The paper is organized as follows. In Sec. II we intro-
duce two stacking types of layered systems, AB − BA and
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BA stacking, and their topology. In Sec. III we show the way
to quench the system and characterize topology for bilayer
systems, providing the essence of the method. In Sec. IV we
generalize the results into multilayer systems, showing this
method to be generically useful. In Sec. V we summarize and
discuss possible future directions.

II. LAYERED SYSTEMS

In this section we introduce the layered systems and dis-
cuss their band topology. First, we consider the following
Hamiltonian for the monolayer system:

H1 =
[

h3 h1 − ih2

h1 + ih2 −h3

]
. (1)

This Hamiltonian can describe interactions within two spin-
1
2 states such as the Qi-Wu-Zhang model [33] or sublattice
degrees of freedom such as the Haldane model [27]. Then the
two types of layered systems can be given. One is the AB −
BA stacking system, which means that the interlayer hopping
has the direction both from the A of the first layer to the B of
the second layer and from the B of the first layer to the A of
the second layer. The other is the BA stacking system, which
means that the interlayer hopping is only from the B of the first
layer to the A of the second layer (AB stacking system has the
same spectrum). For convenience, we leave all the details of
the derivation to the Appendixes.

A. The AB − BA stacking system

The bilayer AB − BA stacking system is defined as

H2
AB-BA =

⎡⎢⎢⎣
h3 h1 − ih2 t

h1 + ih2 −h3 t
t h3 h1 − ih2

t h1 + ih2 −h3

⎤⎥⎥⎦
=

3∑
i=1

hi1 ⊗ σi + tσ1 ⊗ σ1, (2)

where t is the interlayer hopping amplitude. The schematic
diagram of this bilayer system is shown in Fig. 1. The energy
spectrum is

E±
I = ±

√
(h1 + t )2 + h2

2 + h2
3 = ±EI ,

E±
II = ±

√
(h1 − t )2 + h2

2 + h2
3 = ±EII . (3)

The Chern number of this bilayer system is the sum of
the Chern numbers of the two subsystems I and II (for de-
tails, see Appendix C). As shown in Fig. 2(a), we plot the
phase diagram of the above bilayer system. One can see the
following from the phase diagram. (i) If the monolayer sys-
tem H1 is topologically trivial, the AB − BA stacking system
remains trivial for all t . (ii) If the monolayer model H1 is
topologically nontrivial, the AB − BA stacking system will
undergo a phase transition by tuning t at a finite m. The phase
transitions happen at (t, m) such that h1 ± t = h2 = h3 = 0.
Thus, in order to focus on the effect of interlayer hopping on
the layered systems, H1 is always assumed to be topological
in the following.

FIG. 1. Lattice realization of H2
AB-BA on a square bilayer lattice,

in which up and down spins represent A and B degrees of freedom,
respectively. The monolayer Hamiltonian is from the Qi-Wu-
Zhang model, in which h1 = sin kx , h2 = sin ky, and h3 = m − cos
kx − cos ky.

The AB − BA stacking multilayer models has the
Hamiltonian

HN
AB-BA =

⎡⎢⎢⎢⎣
∑3

i=1 hiσi tσ1

tσ1
∑3

i=1 hi tσ1

tσ1
∑3

i=1 hi · · ·
· · · · · ·

⎤⎥⎥⎥⎦ (4)

FIG. 2. Phase diagrams of HN
AB-BA with h1 = sin kx , h2 = sin ky,

and h3 = m − cos kx − cos ky. The number of layers N is (a) 2, (b) 3,
(c) 4, and (d) 5. The numbers marked in red denote the topological
numbers in the corresponding regions.
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FIG. 3. Lattice realization of H2
BA on a hexagonal bilayer lattice,

in which white and black circles represent the A and B sublattice
degrees of freedom, respectively. The monolayer Hamiltonian is
from the Haldane model.

and its energy spectrum is

E±
r = ±

√
(h1 − 2t cos θr )2 + h2

2 + h2
3 = ±Er, (5)

with θr = rπ
N+1 , r = 1, 2, . . . , N . The Chern number of the

multilayer system is the sum of all the Chern numbers of
the subsystems labeled r (for details, see Appendix C). The
multilayer system may also have phase transitions by the tun-
ing parameter t . The phase transitions happen at (t, m) such
that h1 − 2t cos θr = h2 = h3 = 0 for each r. If the monolayer
system H1 is topologically nontrivial, when tuning t from 0 to
∞, the AB − BA system will transit from a nontrivial topology
into a final trivial one for even layered systems and into a
topological phase with the absolute value of Chern number

1 for odd layered systems; otherwise, the AB − BA system
remains trivial for all t . The phase diagrams of the AB − BA
stacking multilayer system with N = 3, 4, and 5 are given in
Figs. 2(b), 2(c), and 2(d), respectively.

B. The BA stacking system

The bilayer BA stacking system is described by the
Hamiltonian

H2
BA =

⎡⎢⎢⎣
h3 h1 − ih2

h1 + ih2 −h3 t
t h3 h1 − ih2

h1 + ih2 −h3

⎤⎥⎥⎦
=

3∑
i=1

hi1 ⊗ σi + t

2
(σ1 ⊗ σ1 + σ2 ⊗ σ2). (6)

The schematic diagram of this bilayer system is shown in
Fig. 3. The energy spectrum is

E±
1 = ±

√√√√√h2
3 +

⎡⎣√(
t

2

)2

+ h2
1 + h2

2 + t

2

⎤⎦2

,

E±
2 = ±

√√√√√h2
3 +

⎡⎣√(
t

2

)2

+ h2
1 + h2

2 − t

2

⎤⎦2

, (7)

in which E+
1 � E+

2 > E−
2 � E−

1 and the equality takes place
at t = 0. The spectrum tells us that at half filling, the gap is
not closed except at t → ∞. Therefore, the Chern number of
the bilayer BA stacking model at any value of t is the same
as the one at t = 0, which is twice that of the monolayer
system. The phase diagram of the above bilayer system is
shown in Fig. 4(a).

The multilayer BA stacking systems have many stacking types; here we consider only the one that is most common and stable
in multilayer graphene, i.e., Bernal stacking. It is natural to believe that it is also stable in other hexagonal lattices. The multilayer
BA stacking system has the 2N×2N Hamiltonian

HN
BA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h3 h1 − ih2

h1 + ih2 −h3 t
t h3 h1 − ih2 t

h1 + ih2 −h3

h3 h1 − ih2

t h1 + h2 −h3 · · ·
· · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

The spectrum is

E±
r = ±

√
h2

3 + (√
h2

1 + h2
2 + t2 cos2 θr + t cos θr

)2
, (9)

with θr = rπ
N+1 and r = 1, 2, . . . , N . The situation of the mul-

tilayer BA stacking system is similar to the bilayer system at
half filling. The Chern number of the BA stacking model at any
value of t is the same as the one at t = 0, which is N times

than the Chern number of the monolayer model. The phase
diagram of the multilayer BA stacking model with N = 3 is
given in Fig. 4(b).

III. DYNAMICAL CHARACTERIZATION
IN BILAYER SYSTEMS

In this section we show the way to characterize the bulk
topology of the bilayer systems based on the TASP through
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FIG. 4. Phase diagrams of H2
BA and H3

BA with h1 = sin kx , h2 =
sin ky, and h3 = m − cos kx − cos ky. The numbers marked in red
denote the topological numbers in the corresponding regions.

quench dynamics. Unlike the minimal models, not all the
terms in the Hamiltonian of layered systems satisfy Clifford
algebra and there is no standard mapping of the coefficients hi

of these terms onto an effective field as in the two-level sys-
tem. Therefore, the BIS, which emerges on the TASP, should
be carefully defined. For simplicity, we use the Hamiltonian of
the Qi-Wu-Zhang model for the Hamiltonian of the monolayer
model for the density plots in this section.

A. Common BISs

In the case of layered systems, the Clifford algebra is not
satisfied for all terms in the Hamiltonian except a special term
h31 ⊗ σ3. The term h31 ⊗ σ3 anticommutes with all other
terms and can be used to define the common BIS in the
AB − BA stacking model as well as the bilayer BA stacking
model. The process is as follows.

First, we prepare an initial state as

ρ0 = 1

2
⊗ 1

2
(1 − σ3) = 1

2

[
1 0
0 1

]
⊗

[
0 0
0 1

]

= 1

2

⎡⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎦, (10)

which is a mixed state of two eigenstates of the prequench
Hamiltonian H0 = h31 ⊗ σ3 with the same eigenvalue. Then
we can suddenly quench H0 into the postquench Hamiltonian
H2, which may be H2

AB-BA or H2
BA. After a long time of unitary

evolution, we can obtain the corresponding TASP

〈1 ⊗ σi〉ρ0
= −h3

∑
m

〈ψ̃m|1 ⊗ σi|ψ̃m〉
4Em

, (11)

where |ψ̃m〉 and Em are the normalized eigenvector and the
eigenvalue of the postquench Hamiltonian at the mth level,
respectively (see Appendix E for the derivation).

Thus, the BIS, where all the components of TASP vanish,
can be identified at the region with momentum points

B = {k|〈1 ⊗ −→σ 〉ρ0
= 0}. (12)

Alternatively, from the perspective of the Hamiltonian, the
BIS is at the region with momentum points where h3 = 0,
which is consistent with the definition of the BIS in Ref. [19].

In particular, we have

〈1 ⊗ σ3〉ρ0
= −h2

3

∑
m

1

4E2
m

. (13)

Let us explain the condition for BISs. As long as there is
some hi �= 0 in the whole Brillouin zone which keeps the gap
open regardless of other terms, we can continuously deform
the Hamiltonian into H = hi1 ⊗ σi, which is a trivial one,
so the disappearance of the BIS means that the postquench
Hamiltonian is topologically trivial. However, when there
is a BIS appearing (or the surface where hi = 0) we are
not allowed to deform Hamiltonian freely to H = hi1 ⊗ σi;
therefore, this may mean that the postquench Hamiltonian is
topological. As one can see from Eqs. (3), (5), (7), and (9),
E2 is the sum of h2

3 and other positive terms (see [34] for a
general proof), so h3 satisfies this condition quite obviously.
Of course, in order to know whether the system is truly
topological we need to consider further information of the
dynamical topological invariants, which is explained in the
rest of this section. Thus, this BIS is as powerful as the one in
the minimal models like the monolayer system H1 in (1) for
the characterization of bulk topology. Here we need to empha-
size that this special term h31 ⊗ σ3 that anticommutes with all
other terms is a sufficient condition for having a BIS, but not
a necessary one. As we will see in the following sections, for
other terms that do not anticommute with all other terms, the
characterization procedure depends very much on the energy
spectrum considered. To be specific, for the AB − BA stacking
model, h1 ± t and h2 satisfy the condition for defining the BIS
while for the BA stacking model h1 and h2 satisfy the condition
above.

B. Dynamical characterization in the AB − BA stacking system

In this section we show how to capture the bulk topology
of the postquench Hamiltonian of the bilayer AB − BA sys-
tem. Starting from ρ0 = 1

2 ⊗ 1
2 (1 − σ j ), j = 1, 2, 3, a mixed

eigenstate of the Hamiltonian H0 = h j1 ⊗ σ j , we suddenly
quench the Hamiltonian H0 into H2

AB-BA in (2). Then the exact
form of TASP can be obtained as

〈1 ⊗ σi〉ρ0
= −hi

I h
j
I

2E2
I

− hi
II h

j
II

2E2
II

, i = 1, 2, 3, (14)

in which h1
I =h1 + t , h2

I =h2, h3
I =h3, h1

II =h1 − t , h2
II = h2,

and h3
II = h3.

However, Eq. (14) gives the overlap between two topo-
logical structures, namely, the BISs and the dynamical
spin-texture fields. The BISs can be defined for h2 and h3

but not for h1. Therefore, in order to show the topological
information independently, we consider splitting the TASP in
(14) into two subspaces.

By defining D± = 1
2 (1 ± σ1), we obtain the long-time av-

erage of the operators Oi
I = 2D+ ⊗ σi and Oi

II = 2D− ⊗ σi,
which we call generalized time-averaged spin polarization
(GTASP) hereafter, as follows:〈

Oi
I

〉
ρ0

= −hi
I h

j
I

E2
I

, (15)

〈
Oi

II

〉
ρ0

= hi
II h

j
II

E2
II

. (16)
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FIG. 5. (a) The GTASP and topological characterization of HI .
(b) The GTASP and topological characterization of HII . Here m = 1,
t = 0.4, and ρ0 = 1

2 ⊗ 1
2 (1 − σ3). The common rings emergent in

(a) and (b) are the so-called BISs. Along the BISs the winding of
dynamical fields g̃I and g̃II give a nontrivial topological number −1.
The white arrows represent the two components of (a i) and (a ii) g̃I

and (b i) and (b ii) g̃II and linear combinations of the components
(a iii) g̃I and (b iii) g̃II .

At this time, the two BISs are well defined and identified in
the corresponding subspace:

BI = {k|〈−→OI〉ρ0
= 0}, (17)

BII = {k|〈−→OII〉ρ0
= 0}. (18)

Then, after measuring the corresponding dynamical spin-
texture fields, i.e., gradient fields of GTASP, on BI and BII ,
we can easily characterize the bulk topology of the system.
The gradient fields in two subspaces are

˜gi
I (k) = − 1

Nk
∂k⊥

〈
Oi

I

〉
ρ0

. (19)

˜gi
II (k) = − 1

Nk
∂k⊥

〈
Oi

II

〉
ρ0

. (20)

Here k⊥ is perpendicular to the BI,II and Nk is the normaliza-
tion factor. After some algebra, we arrive at

˜gi
I (k)

∣∣∣
k∈BI

= hi
I (0, k‖)∑

i �= j

[
hi

I (0, k‖)
]2 = ĥso,i

I , (21)

˜gi
II (k)

∣∣∣
k∈BII

= hi
II (0, k‖)∑

i �= j

[
hi

II (0, k‖)
]2 = ĥso,i

II . (22)

Here both g̃I and g̃II are vectors with two compo-
nents. If we choose the initial state ρ0 = 1

2 ⊗ 1
2 (1 − σ3),

g̃I = ĥ
so
I = (ĥ1

I , ĥ2
I ) and g̃II = ĥ

so
II = (ĥ1

II , ĥ2
II ).

The bulk topological number can be obtained by the sum
of the dynamical invariants defined in each subspace along
the BISs,

w = wI + wII = 1

2π

(∫
BISI

g̃I d g̃I +
∫

BISII

g̃II d g̃II

)
. (23)

As shown in Figs. 5(a) and 5(b), we plot the GTASP of HI

and HII , respectively, for the case when the Chern number
is −2 for the initial state ρ0 = 1

2 ⊗ 1
2 (1 − σ3). On the black

dashed ring, all the components of GTASP vanish and thus

we identify it as BI,II . The gradient fields ˜gI,II (k) (arrows)
plotted along the BISs show topological number −1 for each
subspace. The bilayer system with a topological number −2
is successfully characterized. In addition, using h1

I = h1(k) +
t = 0, we can obtain t as −h1(k|h1

I =0). This correspond to
the the white line across the BIS in Fig. 5(ai). Obviously,
if the white line across the BIS disappears, meaning h1

I �= 0
anywhere in the Brillouin zone, the model is topologically
trivial (see Appendix A).

C. Dynamical characterization in the BA stacking system

The BA bilayer system is not a minimal model nor can it
be block diagonalized in a simple way, meaning there is no
independent subsystem as in minimal models, so there is no
simple way to calculate the Chern number directly. Similar
to the preceding section, for initial state ρ0 = 1

2 ⊗ 1
2 (1 − σ j ),

j = 1, 2, 3, we can obtain the TASP of bilayer system H2
BA as

〈1 ⊗ σi〉ρ0
= −hih jAi j, (24)

in which Ai j are coefficients and there is no summation over i
and j. Here we fortunately find that the zeros of TASP remain
the same as the monolayer model. The reason is that t does not
induce the gap closing, so the topological structure remains
the same. Thus the BIS can be defined following the original
minimal model:

B = {k|〈1 ⊗ −→σ 〉ρ0
= 0}. (25)

One may wonder that why BISs still work for terms like
h11 ⊗ σ1 and h21 ⊗ σ2 that do not anticommute with all other
terms. The reason can be seen in the dispersions (7) and (9):
When we keep the condition, for instance, h1 �= 0 throughout
the Brillouin zone, the gap is not closed as we continuously
deform the Hamiltonian into H = h11 ⊗ σ1, which is a trivial
one, and this shows that the original Hamiltonian is topo-
logically trivial. Moreover, this condition works for all the
BISs in AB − BA systems as well. Therefore, this condition
is necessary for a BIS to be useful for the models being
considered in this paper.

Next we measure the dynamical spin-texture fields on the
BIS, which can be obtained from the gradient of TASP

˜gi(k) = − 1

Nk
∂k⊥〈1 ⊗ σi〉ρ0

, (26)

in which the difference is calculated as

	〈1 ⊗ σi〉ρ0

∣∣
k⊥→0 ∝ −2(Ai jhi )|(0,k‖ )k⊥. (27)

Thus,

˜gp(k)
∣∣∣
k∈B

= Apjhp

(Apjhp)2 + (Aq jhq)2
, (28)

with p �= q �= j and p, q, j = 1, 2, 3. Specifically, if we
choose the initial state ρ0 = 1

2 ⊗ 1
2 (1 − σ3), g̃1 and g̃2 are

equal to A13h1
(A13h1 )2+(A23h2 )2 and A23h2

(A23h2 )2+(A13h1 )2 , respectively. Al-
though there is a rescaling in g̃i, it does not change the bulk
topology. The topological number should be given by the
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FIG. 6. The TASP and topological characterization of H2
BA. Here

m = 1 and t = 0.4. The initial state ρ0 is (a) 1
2 ⊗ 1

2 (1 − σ3) and
(b) 1

2 ⊗ 1
2 (1 − σ1). The white arrows represent (a i), (a ii), (b i), and

(b ii) the two components of g̃ and (a iii) and (b iii) g̃ as a linear
combination of the components.

winding of the dynamical field on the BIS

w = 2

2π

(∫
B

g̃ d g̃
)

. (29)

The TASP of the BA stacking system does not reflect the
exact value of the Chern number, but only reflects whether
the system is topological. However, since the only missing
information is related to the number of layers, which is 2, we
just added it as a coefficient by hand in the definition of w.

As shown in Figs. 6(a) and 6(b), we plot the TASP of
the bilayer BA stacking system for the case when the Chern
number is −2 for ρ0 = 1

2 ⊗ 1
2 (1 − σ3) and ρ0 = 1

2 ⊗ 1
2 (1 −

σ1), respectively. On dashed curves, all the components of
TASP vanish and thus we identify it as a BIS. The gradient
fields g̃(k) (arrows) plotted along the BISs show topological
number −2.

In addition, as shown in Fig. 7, taking the initial state
ρ0 = 1

2 ⊗ 1
2 (1 − σ3) as an example, we plot the component

of TASP 〈1 ⊗ σ1〉ρ0
with different interlayer hopping t . When

increasing the interlayer hopping t , the maximum value of
TASP decreases and thus we can obtain the value of the
interlayer hopping t by the variation of the amplitude of TASP
as shown in Fig. 8. If we choose the monolayer model as the
Haldane model, the results will be similar (see Appendix B).

FIG. 7. Component of TASP 〈1 ⊗ σ1〉ρ0
of H 2

BA for different val-
ues of interlayer hopping t : (a) t = 0, (b) t = 0.9, and (c) t = 1.8.

FIG. 8. Relation between the TASP 〈1 ⊗ σ〉ρ0
and interlayer

hopping t . We choose the momentum points, at which the corre-
sponding components of the TASP have the maximum absolute value
when t = 0, to show the specific relation between the components
of the TASP and interlayer hopping t . Specifically, in 〈1 ⊗ σ1〉ρ0

,
〈1 ⊗ σ2〉ρ0

, and 〈1 ⊗ σ3〉ρ0
, we choose the momentum points ( π

4 , 0),
(0, π

4 ), and (0,0), respectively. At the momentum points ( π

4 , 0) and
(0, π

4 ), both 〈1 ⊗ σ1〉ρ0
and 〈1 ⊗ σ2〉ρ0

are equal to 1
2+t2 . At the

momentum point (0,0), 〈1 ⊗ σ3〉ρ0
is equal to 2+t2

2+2t2 .

IV. DYNAMICAL CHARACTERIZATION
IN THE MULTILAYER SYSTEM

In this section we discuss the situation in the system with
more than two layers. The common BIS is the same as in
Sec. III A except that we need to replace ρ0 = 1

2 ⊗ 1
2 (1 − σ3)

by ρ0 = 1
N ⊗ 1

2 (1 − σ3), so we are not going to repeat the
discussion here. The other parts of the discussion in Sec. III
can be easily generalized in the following sections.

A. Dynamical characterization in the multilayer
AB − BA stacking system

For an N-layer AB − BA stacking system, there is a way
to quench the subsystems independently too. The procedure
is parallel to the bilayer case. Starting from ρ0 = 1

N ⊗ 1
2 (1 −

σ j ), j = 1, 2, 3, a mixed eigenstate of the Hamiltonian H0 =
h j1 ⊗ σ j , we quench the Hamiltonian into HN

AB-BA in Eq. (4).
The TASP is

〈1 ⊗ σi〉ρ0
= −

N∑
r=1

hi
rh j

r

2E2
r

. (30)

The result of TASP in Eq. (30) gives the overlap of N topo-
logical structures. Instead we find the GTASP

〈araT
r ⊗ σi〉ρ0

= −hi
rh j

r

E2
r

, (31)

in which ar =
√

2
N+1 (sin θr, sin 2θr, . . . , sin Nθr )T , h1

r =
h1 − 2t cos θr , h2

r = h2, and h3
r = h3, with θr = rπ

N+1 and r =
1, 2, . . . , N . Each set of araT

r ⊗ σ1, araT
r ⊗ σ2, and araT

r ⊗ σ3
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exists in a subspace that is orthogonal to others and the
GTASP can characterize the topology of each subspace. The
BIS in each subspace is written as

Br = {
k|〈araT

r ⊗ σi
〉
ρ0

= 0
}

(32)

or Br is at the region where h j
r = 0. The dynamical spin-

texture fields in each subspace can also be obtained by
calculating

˜gi
r (k) = − 1

Nk
∂k⊥

〈
araT

r ⊗ σi
〉
ρ0

. (33)

After some algebra, we get

˜gi
r (k)

∣∣∣
k∈Br

= hi
r (0, k‖)∑

i �= j

[
hi

r (0, k‖)
]2 = ĥso,i

r . (34)

In addition, the bulk topological number is the sum of the
dynamical invariants defined in the subspaces as

w =
N∑

r=1

wr =
N∑

r=1

1

2π

∫
B

g̃rd g̃r . (35)

B. Dynamical characterization in the multilayer
BA stacking system

Following the same procedure as in Sec. III C, starting
from ρ0 = 1

N ⊗ 1
2 (1 − σ j ), j = 1, 2, 3, we quench the Hamil-

tonian into HN
BA and then obtain the TASP. After some algebra,

we have

〈1 ⊗ σi〉ρ0
= −hih jA

(N )
i j , (36)

in which there is no summation over i and j. The A(N )
i j are

the coefficients that depend on the numbers of layers. Like the
bilayer BA stacking system, the BIS can be defined as

B = {k|〈1 ⊗ −→σ 〉ρ0
= 0}. (37)

Let us look at the dynamical spin-texture fields

˜gi(k) = − 1

Nk
∂k⊥〈1 ⊗ σi〉ρ0

. (38)

For the initial state

ρ0 = 1

N
⊗ 1

2
(1 − σ j ),

whose BIS is at hj = 0, the difference is calculated as

	〈1 ⊗ σi〉ρ0

∣∣
k⊥→0 ∝ −2

(
A(N )

i j hso,i
)∣∣

(0,k‖ )k⊥. (39)

Thus,

˜gp(k)
∣∣∣
k∈B

= A(N )
p j hp(

A(N )
p j hp

)2 + (
A(N )

q j hq
)2 , (40)

with p �= q �= j and p, q, j = 1, 2, 3.
The topological number of the BA stacking N-layer sys-

tem is N times higher than that of the monolayer case and
there is no phase transition by tuning t from zero to infin-
ity. The TASP does not reflect the value of the topological
number of the multilayer BA stacking system because the
N layers of the structure overlap with each other in the

density plot in the Brillouin zone. However, they do re-
flect whether the system is topological. The exact value of
the topological number for the N-layered system should be
given by

w = N

2π

(∫
B

g̃ d g̃
)

. (41)

V. CONCLUSION

We have studied the dynamical characterization of topol-
ogy in two types of layered systems, which are beyond the
minimal models. We found that the term that anticommutes
with all other terms still has the common BIS in this two
layered systems. For the AB − BA system, because of block
diagonalization, in order to fully describe the topology, we
need to redefine the BIS and observables for spin-texture
fields in the subspaces, while for the BA system, the previous
BIS and observables are still working. The condition for a
term to have a BIS is relaxed into the following: If it is nonzero
at all momentum values, it can keep the gap open for any
deformation of the other terms. In addition, the magnitude of
interlayer hopping can also be obtained from the TASP itself
in these two stacking systems.

Since we studied two types of models and they share a
similar dynamical characterization of the topology because of
an anticommutation relation, it would be interesting to study
whether we will have a general quench characterization of the
topology for a Hamiltonian that does not have a term that
anticommutes with all the other terms. For instance, for a
Hamiltonian expanded by 3×3 Gell-Mann matrices satisfying
SU(3) algebra, the characterization will be more complicated.
Thus, it is interesting to see how the method of Liu and
co-workers can be applied.

It was discussed in [19] that for models beyond the minimal
models, it is possible to get a block-diagonalized form at each
point in the Brillouin zone and then the BIS can be defined.
However, our BA stacking model does not seem to fall into
this category: From the dispersions (7) and (9), as long as t
is not zero, they are not like the spectrum of σ · h for some
simple functions h and thus cannot be block diagonalizable in
most regions of the Brillouin zone.
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APPENDIX A: THE GTASP OF THE BILAYER
AB − BA STACKING SYSTEM FOR THE TRIVIAL

POSTQUENCH HAMILTONIAN

As plotted in Fig. 9, unlike the postquench Hamiltonian
in the main text, which lies in a topological regime, the
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FIG. 9. Components of GTASPs 〈O1
I,II 〉. Here m = 1, t = 1.2,

and ρ0 = 1
2 ⊗ 1

2 (1 − σ3).

components of GTASPs 〈O1
I,II〉 for the trivial postquench

Hamiltonian do not vanish on the line across the BIS.

APPENDIX B: THE TASP OF THE BILAYER BA STACKING
SYSTEM FOR THE HALDANE MODEL

As shown in Fig. 10, we plot the TASP of the bilayer BA
stacking system. The monolayer Hamiltonian describes the
Haldane model and its effective fields are h1 = 4

∑3
i=1 cos(k ·

ai ), h2 = 4
∑3

i=1 sin(k · ai ), and h3 = m − 2
∑3

i=1 sin(k · bi ).

Here a1 = (0, 1), a2 = ( −√
3

2 , −1
2 ), a3 = (

√
3

2 , −1
2 ), b1 =

(−√
3, 0), b2 = ( −√

3
2 , 3

2 ), and b3 = ( −√
3

2
−3
2 ). The parameter

m = 2
√

3, which makes the postquench Hamiltonian lie in the
topological regime. As we see, in each component of TASP,
there exit three black dashed rings, on which all the compo-
nents of TASP vanish. Thus, all three rings can be identified as
BISs. Taking one BIS (upper right) as an example, we measure
the dynamical field (arrows) on this BIS in the components of
TASP 〈1 ⊗ σ1〉ρ0

and 〈1 ⊗ σ2〉ρ0
, respectively, and then com-

bine them into the component 〈1 ⊗ σ3〉ρ0
. The winding of the

dynamical field on this BIS manifests a nontrivial topological
phase, which implies the system lies in the topological phase.
If the postquench Hamiltonian lies in the trivial regime, there
is no BIS appearing in the TASP.

FIG. 10. The TASP and topological characterization of H2
BA.

Here the monolayer Hamiltonian is from the Haldane model. The
initial state ρ0 is 1

2 ⊗ 1
2 (1 − σ3). To show the dynamical field better,

the combined field g̃ is normalized. The interlayer hopping t = 0.4.

APPENDIX C: SPECTRA OF LAYERED SYSTEMS

1. The AB − BA stacking system

The AB − BA stacking bilayer model is defined by the
Hamiltonian

H2
AB-BA :=

⎡⎢⎢⎣
h3 h1 − ih2 t

h1 + ih2 −h3 t
t h3 h1 − ih2

t h1 + ih2 −h3

⎤⎥⎥⎦
=

3∑
i=1

hi1 ⊗ σi + tσ1 ⊗ σ1, (C1)

in which the anticommutation relations are

{1 ⊗ σi,1 ⊗ σ j} = 21 ⊗ δi j,

{1 ⊗ σ2, σ1 ⊗ σ1} = 0, (C2)

{1 ⊗ σ3, σ1 ⊗ σ1} = 0.

We block diagonalize this Hamiltonian to get two subsystems

H2
AB-BA

′ = 1 + iσ2√
2

⊗ 1H2
AB-BA

1 − iσ2√
2

⊗ 1

= 1 + iσ2√
2

⊗ 1

(
3∑

i=1

hi1 ⊗ σi + tσ1 ⊗ σ1

)
1 − iσ2√

2
⊗ 1

=
3∑

i=1

hi1 ⊗ σi + tσ3 ⊗ σ1

=

⎡⎢⎢⎣
h3 h1 + t − ih2

h1 + t + ih2 −h3

h3 h1 − t − ih2

h1 − t + ih2 −h3

⎤⎥⎥⎦
=: HI ⊕ HII . (C3)
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Therefore, the spectrum is

E±
I = ±

√
(h1 + t )2 + h2

2 + h2
3 = ±EI ,

E±
II = ±

√
(h1 − t )2 + h2

2 + h2
3 = ±EII . (C4)

The multilayer AB − BA stacking model has the
Hamiltonian

HN
AB-BA =

⎡⎢⎢⎢⎣
∑3

i=1 hiσi tσ1

tσ1
∑3

i=1 hi tσ1

tσ1
∑3

i=1 hi · · ·
· · · · · ·

⎤⎥⎥⎥⎦
=

3∑
i=1

hi1 ⊗ σi + t�1 ⊗ σ1, (C5)

where

�1 :=

⎡⎢⎢⎢⎢⎣
0 1 0 0
1 0 1 0
0 1 0 1 · · ·
0 0 1 0

· · ·

⎤⎥⎥⎥⎥⎦ (C6)

and the anticommutation relations are

{1 ⊗ σi,1 ⊗ σ j} = 21 ⊗ δi j,

{1 ⊗ σ2, �1 ⊗ σ1} = 0, (C7)

{1 ⊗ σ3, �1 ⊗ σ1} = 0.

To block diagonalize HN
AB-BA, we just need to diagonalize �1,

which is given by

�′
1 = S−1

�1
�1S�1 =

⎡⎢⎢⎣
2 cos θ1

2 cos θ2

· · ·
2 cos θN

⎤⎥⎥⎦,

(C8)

where

S�1 = (a1, a2, . . . , aN ),

ar =
√

2

N + 1
(sin θr, sin 2θr, . . . , sin Nθr )T ,

θr = rπ

N + 1
, r = 1, 2, . . . , N. (C9)

Therefore, the block-diagonalized Hamiltonian is

HN
AB-BA

′ =:
n⊕

r=1

Hr, (C10)

where

Hr =
3∑

i=1

hiσi − 2t cos θr, (C11)

and the spectrum is

E±
r = ±

√
(h1 − 2t cos θr )2 + h2

2 + h2
3 = ±Er,

r = 1, 2, . . . , N. (C12)

2. The BA stacking system

The bilayer BA stacking model is defined by the
Hamiltonian

H2
BA =

⎡⎢⎢⎣
h3 h1 − ih2

h1 + ih2 −h3 t
t h3 h1 − ih2

h1 + ih2 −h3

⎤⎥⎥⎦
=

3∑
i=1

hi1 ⊗ σi + t

2
(σ1 ⊗ σ1 + σ2 ⊗ σ2), (C13)

in which the anticommutation relations are

{1 ⊗ σi,1 ⊗ σ j} = 21 ⊗ δi j,

{1 ⊗ σ3, σ1 ⊗ σ1} = 0,

{1 ⊗ σ3, σ2 ⊗ σ2} = 0. (C14)

The spectrum is

E+
1 =

√√√√√h2
3 +

⎡⎣√(
t

2

)2

+ h2
1 + h2

2 + t

2

⎤⎦2

,

E+
2 =

√√√√√h2
3 +

⎡⎣√(
t

2

)2

+ h2
1 + h2

2 − t

2

⎤⎦2

,

E−
2 = −

√√√√√h2
3 +

⎡⎣√(
t

2

)2

+ h2
1 + h2

2 − t

2

⎤⎦2

,

E−
1 = −

√√√√√h2
3 +

⎡⎣√(
t

2

)2

+ h2
1 + h2

2 + t

2

⎤⎦2

,

E+
1 � E+

2 > E−
2 � E−

1 . (C15)

All the eigenenergies satisfy(
E2

m −
∑

i

h2
i

)2

= t2
(
E2

m − h2
3

)2
, (C16)

so the eigenvectors can be written as

|ψm〉 =

⎛⎜⎜⎜⎜⎝
t (h1 − ih2)(Em + h3)

t
(
E2

m − h2
3

)(
E2

m − ∑
i h2

i

)
(Em + h3)(

E2
m − ∑

i h2
i

)
(h1 + ih2)

⎞⎟⎟⎟⎟⎠ (C17)

and the normalization is

〈ψm|ψm〉 = 2t2Em(Em + h3)
(
E2

m − h2
3 + h2

1 + h2
2

)
.

Then we have

〈ψ̃m|1 ⊗ σ1|ψ̃m〉 = 2h1
(
E2

m − h2
3

)
Em

(
E2

m − h2
3 + h2

1 + h2
2

) , (C18)

〈ψ̃m|1 ⊗ σ2|ψ̃m〉 = 2h2
(
E2

m − h2
3

)
Em

(
E2

m − h2
3 + h2

1 + h2
2

) (C19)

and 〈ψ̃m|1 ⊗ σ3|ψ̃m〉 is calculated in Eq. (E4).
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The multilayer BA stacking models have many types; here we consider only the one that is the most common and stable in
multilayer graphene, Bernal stacking. It has the 2N×2N Hamiltonian

HN
BA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h3 h1 − ih2

h1 + ih2 −h3 t
t h3 h1 − ih2 t

h1 + ih2 −h3

h3 h1 − ih2

t h1 + h2 −h3 · · ·
· · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (C20)

in which the anticommutation relations are

{1 ⊗ σi,1 ⊗ σ j} = 21 ⊗ δi j,

{1 ⊗ σ3, �1 ⊗ σ1} = 0, (C21)

{1 ⊗ σ3, �2 ⊗ σ2} = 0,

where

�2 :=

⎡⎢⎢⎢⎢⎣
0 −i 0 0
i 0 −i 0
0 i 0 −i · · ·
0 0 i 0

· · ·

⎤⎥⎥⎥⎥⎦. (C22)

The spectrum is

E±
r = ±

√
h2

3 + (√
h2

1 + h2
2 + t2 cos2 θr + t cos θr

)2
,

θr = rπ

N + 1
, r = 1, 2, . . . , N. (C23)

All the energy eigenvalues satisfy (
E2

r −
∑

i

h2
i

)2

= 4t2
(
E2

r − h2
3

)2
cos2 θr, (C24)

so the eigenket can be written as

|�m〉T = ((
ψ1

m

)T
,
(
ψ2

m

)T
, . . . ,

(
ψN

m

)T )
,∣∣ψ2n−1

m

〉 =
(

2t (h1 − ih2)(Em + h3) cos θr sin[(2n − 1)θr]

2t
(
E2

m − h2
3

)
cos θr sin[(2n − 1)θr]

)
, (C25)

∣∣ψ2n
m

〉 =
((

E2
m − ∑

i h2
i

)
(Em + h3) sin(2nθr )(

E2
m − ∑

i h2
i

)
(h1 + ih2) sin(2nθr )

)

=

⎛⎜⎝2t (Em + h3)
√

E2
m − h2

3 cos θr sin(2nθr )

2t (h1 + ih2)
√

E2
m − h2

3 cos θr sin(2nθr )

⎞⎟⎠,

where m labels both ± and r and the normalization is

〈�m|�m〉 = 2t2 cos2 θr (Em + h3)
[
Em

(
E2

m − h2
3 + h2

1 + h2
2

)
(N + 1) − h3

(
E2

m − h2
3 − h2

1 − h2
2

)(
1 + (−1)N+1

)]
. (C26)

Then we have

〈�̃m|1 ⊗ σ1|�̃m〉 = 2h1
(
E2

m − h2
3

)
Dm

,

〈�̃m|1 ⊗ σ2|�̃m〉 = 2h2
(
E2

m − h2
3

)
Dm

, (C27)

where

Dm = Em

(
Em

(
E2

m − h2
3 + h2

1 + h2
2

)
−1 + (−1)N+1

N + 1
h3
(
E2

m − h2
3 − h2

1 − h2
2

))
. (C28)
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APPENDIX D: DENSITY MATRICES
OF THE INITIAL STATES

We choose the prequench Hamiltonian by taking, for in-
stance, hi to be positive infinity so that

HP → hi1 ⊗ σi (no summation over i). (D1)

Considering bilayer models for simplicity, we have the
eigenequation(

hiσi − E± 0
0 hiσi − E±

)(
ξ±
η±

)
= 0, (D2)

with solutions

E± = ±hi,

ξ±ξ
†
± = |c1|2 1 ± σi

2
,

η±η
†
± = |c2|2 1 ± σi

2
,

|c1|2 + |c2|2 = 1. (D3)

So a pure initial state has the density matrix

ρ
p
± =

(
ξ±
η±

)(
ξ±
η±

)†

=
(

c1

c2

)(
c∗

1 c∗
2

) ⊗ 1 ± σi

2
, (D4)

while a mixed density matrix containing half (
ξ±
0 ) and

half ( 0
η±) is

ρm
± = 1

2

(
ξ±
0

)(
ξ±
0

)†

+ 1

2

(
0
η±

)(
0
η±

)†

= 1

2
⊗ 1 ± σi

2
. (D5)

APPENDIX E: DERIVATION OF THE COMMON BIS

The TASP for any Hamiltonian can be written as

〈1 ⊗ σi〉ρ0
= lim

T →∞
1

T

∫ T

0
dt Tr(ρ0eiHt1 ⊗ σie

−iHt )

=
∑

m

〈ψ̃m|ρ0|ψ̃m〉〈ψ̃m|1 ⊗ σi|ψ̃m〉. (E1)

If a Hamiltonian has the property

H = H0 + h31 ⊗ σ3, (E2)

{H0, h31 ⊗ σ3} = 0, (E3)

then

〈ψ̃m|1 ⊗ σ3|ψ̃m〉 = h3/Em, (E4)

where |ψ̃m〉 is the normalized eigenvector, Em is the eigen-
value of H , and the index m represents indices r and ±. This
is because, on the one hand,

〈ψ̃m|{H,1 ⊗ σ3}|ψ̃m〉 = 〈ψ̃m|{h31 ⊗ σ3,1 ⊗ σ3}|ψ̃m〉
= 2h3, (E5)

and, on the other hand,

〈ψ̃m|{H,1 ⊗ σ3}|ψ̃m〉 = 2Em〈ψ̃m|1 ⊗ σ3|ψ̃m〉. (E6)

Substituting Eqs. (E4) and (D5) into Eq. (E1), we get

〈1 ⊗ σi〉ρ0
= −h3

∑
m

〈ψ̃m|1 ⊗ σi|ψ̃r〉
4Em

. (E7)

Note that if we choose a pure state like Eq. (D4), in general,
we will not get a form like

〈1 ⊗ σi〉ρ0
∝ −h3, (E8)

so it is important that the initial state is chosen as Eq. (D5).

APPENDIX F: CALCULATION OF TIME-AVERAGED
SPIN POLARIZATION

1. The AB − BA system

First, we calculate the TASP in the bilayer case. Using
Eqs. (E4) and (E1), we calculate

〈1 ⊗ σi〉ρ0
= lim

T →∞
1

T

∫ T

0
dt Tr

(
ρ0eiH2

AB-BAt1 ⊗ σie
−iH2

AB-BAt
)

= lim
T →∞

1

T

∫ T

0
dt Tr

(
Sρ0S−1eiSH2

AB-BAS−1t S1

⊗σiS
−1e−iSH2

AB-BAS−1t
)

= lim
T →∞

1

T

∫ T

0
dt Tr

(
ρ0eiH2

AB-BA
′
t1 ⊗ σie

−iH2
AB-BA

′
t
)

(F1)

= lim
T →∞

1

T

∫ T

0
dt Tr

(
ρI

0eiHI tσie
−iHI t

+ρI
0eiHII tσie

−iHII t
)

= −hi
I h

j
I

2E2
I

− hi
II h

j
II

2E2
II

, (F2)

where we use

S = 1 + iσ2√
2

⊗ 1,

Sρ0S−1 = 1 + iσ2√
2

⊗ 1

(
1

2
⊗ 1

2
(1 − σ j )

)
1 − iσ2√

2
⊗ 1

= ρ0,

ρ0 = 1 − σ j

4
⊕ 1 − σ j

4
= ρI

0 ⊕ ρII
0 , (F3)

h1
I = h1 + t, h1

II = h1 − t, (F4)

h2
I = h2, h3

I = h3, h2
II = h2, h3

II = h3. (F5)

The H2
AB-BA can be block diagonalized by the transformation

S, so we will take advantage of this to organize the quench
process as well. In order to set them apart, we consider the
operators Oi

I and Oi
II to obtain

〈Oi
I〉ρ0

= −hi
I h

j
I

2E2
I

, (F6)

〈Oi
II〉ρ0

= −hi
II h

j
II

2E2
II

. (F7)
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This can be done by considering the two subspaces of 1 ⊗ σi

in Eq. (F1), (1
0) ⊗ σi and (0

1) ⊗ σi, such that

SOi
I S

−1 =
(

2
0

)
⊗ σi, (F8)

SOi
II S

−1 =
(

0
2

)
⊗ σi. (F9)

These equations can be solved by

Oi
I = (1 + σ1) ⊗ σi, (F10)

Oi
II = (1 − σ1) ⊗ σi. (F11)

Second, we calculate the TASP in the multilayer case

〈1 ⊗ σi〉ρ0
= lim

T →∞
1

T

∫ T

0
dt Tr(ρ0eiHn

AB-BAt1 ⊗ σie
−iHn

AB-BAt )

= lim
T →∞

1

T

∫ T

0
dt Tr(Sρ0S−1eiSHn

AB-BAS−1t S1

⊗σiS
−1e−iSHn

AB-BAS−1t )

= lim
T →∞

1

T

∫ T

0
dt Tr(ρ0eiHn

AB-BA
′t1 ⊗ σie

−iHn
AB-BA

′t )

(F12)

= lim
T →∞

1

T

∫ T

0
dt Tr

(
n∑

r=1

ρI
0eiHrtσie

−iHrt

)

= −
n∑

r=1

hi
rh j

r

2E2
r

, (F13)

where we use

Sρ0S−1 = ρ0, S = S�1 ⊗ 1, (F14)

ρ0 =
N⊕

r=1

ρr
0, ρr

0 = 1 − σ j

2N
, (F15)

h1
r = h1 − 2t cos θr, (F16)

h2
r = h2, h3

r = h3. (F17)

In order to set them apart, we consider the operators Or such
that

〈Oi
r〉ρ0

= −hi
rh j

r

E2
r

. (F18)

This can be done by considering the N subspaces of 1 ⊗ σi in
Eq. (F1) such that

SOi
rS−1 = (0 ⊕ · · · ⊕ 0︸ ︷︷ ︸

r−1 0s

⊕12 ⊕ 0 ⊕ · · · ⊕ 0) ⊗ σi, (F19)

which is solved by

Oi
r = araT

r ⊗ σi. (F20)

The ar is defined in Eq. (C9).

2. The BA system

From Eqs. (E1), (C18), and (C19), for the bilayer system,
the components of TASP are

〈1 ⊗ σ1〉ρ0
= −h1h3

∑
m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

) ,
〈1 ⊗ σ2〉ρ0

= −h2h3

∑
m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

) , (F21)

〈1 ⊗ σ3〉ρ0
= −h2

3

∑
m

1

4E2
m

,

in which the initial state

ρ0 = 1
2 ⊗ 1

2 (1 − σ3).

For the initial state

ρ0 = 1
2 ⊗ 1

2 (1 − σa), a = 1, 2,

the components of TASP are

〈1 ⊗ σ1〉ρ0
= −h1ha

∑
m

(
E2

m − h2
3

)2

E2
m

(
E2

m − h2
3 + h2

1 + h2
2

)2 ,

〈1 ⊗ σ2〉ρ0
= −h2ha

∑
m

(
E2

m − h2
3

)2

E2
m

(
E2

m − h2
3 + h2

1 + h2
2

)2 , (F22)

〈1 ⊗ σ3〉ρ0
= −h3ha

∑
m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

) .
In short, we have

〈1 ⊗ σi〉ρ0
= −hih jAi j (no summation over i, j), (F23)

ρ0 = 1
2 ⊗ 1

2 (1 − σ j ), (F24)

A11 = A12 = A21 = A22 =
∑

m

(
E2

m − h2
3

)2

E2
m

(
E2

m − h2
3 + h2

1 + h2
2

)2 ,

(F25)

A13 = A31 = A23 = A32 =
∑

m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

) ,
(F26)

A33 =
∑

m

1

4E2
m

. (F27)

Let us look at the dynamical spin-texture fields

˜gi(k) = − 1

Nk
∂k⊥〈1 ⊗ σi〉ρ0

. (F28)

For the initial state

ρ0 = 1

2
⊗ 1

2
(1 − σ3),
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whose BIS is at h3 = 0, the difference is calculated as

	〈1 ⊗ σa〉ρ0

∣∣
k⊥→0 = −

[(
hah3

∑
m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

))∣∣∣∣∣
(k⊥,k‖ )

−
(

hah3

∑
m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

))∣∣∣∣∣
(−k⊥,k‖ )

]∣∣∣∣∣
k⊥→0

∝ −
(

2hak⊥
∑

m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

))∣∣∣∣∣
(0,k‖ )

, (F29)

with a = 1, 2. After normalization, we get

˜ga(k)
∣∣∣
k∈BIS

= ha(0, k‖)∑2
a=1[ha(0, k‖)]2

= ĥso,a. (F30)

For the initial state

ρ0 = 1
2 ⊗ 1

2 (1 − σa), a = 1, 2,

whose BIS is at ha = 0, the difference is calculated as

	〈1 ⊗ σb〉ρ0

∣∣
k⊥→0 ∝ −2hbk⊥

∑
m

(
E2

m − h2
3

)2

E2
m

(
E2

m − h2
3 + h2

1 + h2
2

)2

∣∣∣∣∣
(0,k‖ )

, b = 1, 2,

	〈1 ⊗ σ3〉ρ0

∣∣
k⊥→0 ∝ −2h3k⊥

∑
m

E2
m − h2

3

2E2
m

(
E2

m − h2
3 + h2

1 + h2
2

) ∣∣∣∣∣
(0,k‖ )

. (F31)

In short, for

ρ0 = 1

2
⊗ 1

2
(1 − σ j ), j = 1, 2, 3,

	〈1 ⊗ σi〉ρ0

∣∣
k⊥→0 ∝ −2(Ai jhi )|(0,k‖ )k⊥. (F32)

Thus

˜gp(k)
∣∣∣
k∈B

= Apjhp

(Apjhp)2 + (Aq jhq)2
,

p �= q �= j; p, q, j = 1, 2, 3. (F33)

Here g̃ is a vector with two components.
Next we consider N-layer BA systems. The components of

TASP are

〈1 ⊗ σ1〉ρ0
= −h1h3

∑
m

E2
m − h2

3

NDm
,

〈1 ⊗ σ2〉ρ0
= −h2h3

∑
m

E2
m − h2

3

NDm
, (F34)

〈1 ⊗ σ3〉ρ0
= −h2

3

∑
m

1

2NE2
m

,

with the initial state

ρ0 = 1

N
⊗ 1

2
(1 − σ3).

For the initial state

ρ0 = 1

N
⊗ 1

2
(1 − σa), a = 1, 2,

the components of TASP are

〈1 ⊗ σ1〉ρ0
= −h1ha

∑
m

2
(
E2

m − h2
3

)2

N2D2
m

,

〈1 ⊗ σ2〉ρ0
= −h2ha

∑
m

2
(
E2

m − h2
3

)2

N2D2
m

, (F35)

〈1 ⊗ σ3〉ρ0
= −h3ha

∑
m

E2
m − h2

3

NDm
,

where

Dm = Em

(
Em

(
E2

m − h2
3 + h2

1 + h2
2

)
−1 + (−1)N+1

N + 1
h3
(
E2

m − h2
3 − h2

1 − h2
2

))
. (F36)

In short, we have

〈1 ⊗ σi〉ρ0
= −hih jA

(N )
i j (no summation over i, j), (F37)

ρ0 = 1

2
⊗ 1

2
(1 − σ j ), (F38)

A(N )
11 = A(N )

12 = A(N )
21 = A(N )

22 =
∑

m

2
(
E2

m − h2
3

)2

D2
m

, (F39)

A(N )
13 = A(N )

31 = A(N )
23 = A(N )

32 =
∑

m

E2
m − h2

3

Dm
, (F40)

A(N )
33 =

∑
m

1

2NE2
m

. (F41)
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Like the bilayer case, for the initial state

ρ0 = 1

2
⊗ 1

2
(1 − σ j ),

j = 1, 2, 3,	〈1 ⊗ σi〉ρ0

∣∣
k⊥→0 ∝ −2

(
A(N )

i j hi
)∣∣

(0,k‖ )k⊥

(F42)

and

˜gp(k)
∣∣∣
k∈B

= A(N )
p j hp(

A(N )
p j hp

)2 + (
A(N )

q j hq
)2 , p �= q �= j;

p, q, j = 1, 2, 3.

Here g̃ is a vector with two components.
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