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Spontaneous symmetry breaking in nonsteady modes of open quantum many-body systems
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In a quantum many-body system coupled to the environment, its steady state can exhibit spontaneous symme-
try breaking when a control parameter exceeds a critical value. In this study, we consider spontaneous symmetry
breaking in nonsteady modes of an open quantum many-body system. Assuming that the time evolution of the
density matrix of the system is described by a Markovian master equation, the dynamics of the system is fully
characterized by the eigenmodes and spectrum of the corresponding time evolution superoperator. Among the
nonsteady eigenmodes with finite lifetimes, we focus on the eigenmodes with the highest frequency, which we
call the most coherent mode. For a dissipative spin model, it is shown that the most coherent mode exhibits a
transition from a disordered phase to a symmetry-broken ordered phase, even if the steady state does not show
singular behavior. We further argue that the phase transition of the most coherent mode induces a qualitative
change in the decoherence dynamics of highly entangled states, i.e., the Schrödinger’s cat states.

DOI: 10.1103/PhysRevA.107.052208

I. INTRODUCTION

Recent advances in quantum engineering have made it
possible to precisely control atomic, molecular, and op-
tical systems, which include ultracold atoms in optical
lattices [1–5], trapped ions [6–8], Rydberg atoms [9–14], and
coupled optical cavities [15–18]. Decoherence due to cou-
pling with the environment is inevitable in these systems.
The nonequilibrium dynamics of open quantum many-body
systems is highly complex and largely unexplored due to
the intricate interplay of coherent Hamiltonian dynamics and
dissipative dynamics arising from interactions with the envi-
ronment.

Spontaneous symmetry breaking (SSB) is a pivotal concept
in condensed matter physics and statistical mechanics. The
ground state of some quantum many-body systems, such as
the transverse field Ising model and the Bose-Hubbard model,
is known to exhibit a phase transition from a disordered phase
to a symmetry-broken ordered phase [19]. In a typical open
quantum many-body system, a unique steady state is realized
in the long-time limit, so it is natural to consider SSB in the
steady state. Such a steady state is not necessarily at thermal
equilibrium but can be a nonequilibrium state maintained by
a balance between external driving and energy dissipation to
the environment. Phase transitions in nonequilibrium steady
states of open quantum many-body systems are known as
dissipative phase transitions and have attracted much attention
in recent years [20–41].

The dynamics of Markovian open quantum systems is
governed by the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [42,43]. The superoperator that
generates the time evolution of a density matrix is called
Liouvillian. The dynamics of an open quantum system is com-
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pletely determined by the eigenmodes and spectrum of the
Liouvillian. The steady states correspond to eigenmodes with
zero eigenvalues. Therefore, the dissipative phase transition is
interpreted as a transition of a Liouvillian eigenmode.

In this study, we consider the phase structure of nonsteady
eigenmodes that have nonzero decay rates. These eigenmodes
are irrelevant to the long-time behavior of the system but
contribute to the transient dynamics toward a steady state. We
here ask what happens when nonsteady eigenmodes exhibit
SSB as certain control parameters are varied. Phase transitions
of nonsteady eigenmodes can significantly alter the relaxation
dynamics of the system. However, even if some nonsteady
eigenmodes undergo a phase transition, the steady state does
not necessarily exhibit singular behavior. Phase transitions
of nonsteady eigenmodes can provide a new mechanism for
dynamical phase transitions in open quantum many-body sys-
tems.

The purpose of this study is to demonstrate that nonsteady
eigenmodes of a well-studied open quantum many-body
system exhibit previously unrecognized SSB. In particular,
we consider one of the simplest models of open quantum
many-body systems, the transverse field Ising model under
dephasing. The steady state of this system is an infinite-
temperature state, regardless of the strength of the transverse
field or dephasing. Among the nonsteady eigenmodes, we
focus on the one with the highest frequency and call it the most
coherent mode of the Liouvillian. Mean-field analysis for the
infinite-dimensional case and finite-size numerics for the one-
dimensional case show that the most coherent mode exhibits
a phase transition from a disordered (paramagnetic) phase to
a symmetry-broken (ferromagnetic) phase at a critical trans-
verse field that depends on the dephasing rate. This SSB
affects the relaxation dynamics of highly entangled states.
Suppose that an initial state is taken to be an equal super-
position of two symmetry-broken states, which is known as
the “Schrödinger’s cat state.” As the disorder-to-order phase
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transition of the most coherent mode occurs, the early dy-
namics of the density matrix shows a crossover from strongly
damped relaxation to underdamped relaxation with temporal
oscillations. This study reveals a typical situation in which the
SSB of nonsteady eigenmodes causes a qualitative change in
the decoherence dynamics of an open quantum system.

This paper is organized as follows. In Sec. II, we review
the quantum master equation for open quantum systems and
define phase transitions in nonsteady eigenmodes. In Sec. III,
we introduce the transverse field Ising model under dephasing.
The structures of eigenmodes and spectra are discussed for a
small system. Section IV presents the results of the mean-field
analysis for the infinite-dimensional case. The phase diagram
for the transverse field and dephasing rate is determined. In
Sec. V, the critical field in the one-dimensional case is deter-
mined by numerically solving the quantum master equation,
and qualitative agreement with the mean-field calculation is
confirmed. In Sec. VI, we discuss the effect of the transition
of the most coherent mode on the relaxation dynamics of a
highly entangled cat state. Section VII is devoted to discussion
and conclusions.

II. PHASE TRANSITION OF NONSTEADY MODES

The time evolution of a Markovian open quantum system
is described by the GKSL quantum mater equation [42,43]

i
dρ

dt
= L(ρ) := [H, ρ] + i

∑
ν

(
LνρL†

ν − 1

2
{L†

νLν, ρ}
)

,

(1)
where ρ is the density matrix of the system, [A, B] = AB −
BA, {A, B} = AB + BA, and Lν are called jump operators. The
index ν of Lν represents the types of dissipation or the lattice
sites. The superoperator L that generates the time evolution
of ρ is known as the Liouvillian. The quantum master equa-
tion (1) is justified when the timescale of the dynamics caused
by the interaction with the environment is much longer than
the timescale of the environment [44,45]. Here, we define the
inner product between operators A and B by

(A|B) := Tr[A†B]. (2)

The adjoint operator of L is defined by (A|L(B)) =
(L†(A)|B), and given by

L†(A) = [H, A] − i
∑

ν

(
L†

νALν − 1

2
{L†

νLν, A}
)

. (3)

The right eigenmodes �R
α and left eigenmodes �L

α ofL are
defined by

L
(
�R

α

) = λα�R
α, L†

(
�L

α

) = λ∗
α�L

α, (4)

where λα denotes the αth eigenvalue, and α = 0, 1, . . . , D2 −
1, provided that D is the dimension ofH . We assume that the
eigenmodes are normalized as(

�R
α

∣∣�R
α

) = 1,
(
�L

α

∣∣�R
β

) = δαβ, (5)

for all α and β. Note that, in general, the right eigenmodes
�R

α are not orthogonal to each other because L is not Hermi-
tian. The right eigenmodes �R

α and eigenvalues λα have the
following properties [36].

(1) There is at least one right eigenmode �R
0 with zero

eigenvalue, L(�R
0 ) = 0, corresponding to the steady state.

Here, �R
0 is Hermitian and positive-semi-definite.

(2) All eigenvalues have nonpositive imaginary parts,
which guarantees the convergence of the density matrix to
the steady state in the long-time limit. We assume that the
eigenmodes are sorted such that 0 = |Im[λ0]| � |Im[λ1]| �
· · · � |Im[λD2−1]|.

(3) Tr[�R
α ] = 0 if λα �= 0, which follows from

Tr[L(ρ)] = 0. In general, �R
α with nonzero λα is neither

Hermitian nor positive-semi-definite.
(4) If L(�R

α ) = λα�R
α , then L[(�R

α )†] = λ∗
α (�R

α )†. This
means that the Liouvillian spectrum on the complex plane is
symmetric with respect to the real axis.

In the following, we see that the Liouvillian L can be in-
terpreted as a non-Hermitian operator on an extended Hilbert
space [46,47]. Let {|i〉}i=1,...,D be an orthonormal basis set of
the Hilbert spaceH of the system. An arbitrary operator A can
be mapped to a vector inH ⊗H by

A =
D∑

i, j=1

Ai j |i〉 〈 j| → |A) =
D∑

i, j=1

Ai j |i〉 ⊗ | j〉 ∈ H ⊗H,

(6)
where Ai j = 〈i|A| j〉. We here denote a vector in H ⊗H by
the round ket | . . .). The inner product between |A) and |B)
reads (A|B) = ∑D

i, j=1 A∗
i jBi j from Eq. (2). In terms of this

vector representation, the Liouvillian is rewritten as

L = H ⊗ I − I ⊗ HT + i
∑

ν

D[Lν], (7)

with

D[Lν] = Lν ⊗ L∗
ν − 1

2 L†
νLν ⊗ I − 1

2 I ⊗ LT
ν L∗

ν , (8)

where I represents the identity operator on H , and L∗
ν is

defined as 〈i|L∗
ν | j〉 = 〈i|Lν | j〉∗. For simplicity of notation, the

same notation L is used for the Liouvillian in the vector
representation. The master equation (1) is then rewritten as
the Schrödinger equation-like form

i
d

dt
|ρ) = L|ρ). (9)

The right and left eigenmodes are written as |�R
α ) and |�L

α )
in the vector representation, respectively. If the set of eigen-
modes forms a basis of H ⊗H , the spectral decomposition
of L reads

L =
∑

α

λα

∣∣�R
α

)(
�L

α

∣∣. (10)

The time evolution of the density matrix |ρt ) is given by

|ρt ) = e−iLt |ρini ) =
D2−1∑
α=0

cαe−iλαt
∣∣�R

α

)
, cα = (

�L
α

∣∣ρini
)
,

(11)
where |ρini ) is an initial state.

While the structure of the steady state |�R
0 ) has been ex-

tensively studied in many previous studies, here we focus on
the behavior of nonsteady eigenmodes |�R

α ) (Im[λα] < 0).
Suppose that the Liouvillian L contains a control param-
eter g. Let |�R

α (g)) and |�L
α (g)) be some (nondegenerate)
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right and left eigenmodes with a nonzero eigenvalue λα (g).
For a finite system, when g is varied continuously, |�R

α (g)),
|�L

α (g)), and λα (g) should also vary continuously almost ev-
erywhere in the parameter space. It should be noted that
in non-Hermitian systems, eigenvectors and eigenvalues can
exhibit singular behavior when two eigenvalues collide at a
certain parameter value, called the exceptional point [48–56].
We assume that the eigenvalue λα (g) under consideration does
not collide with another eigenvalue when g is varied. Suppose
that for an operator O on H ⊗H , the following property is
satisfied:

lim
L→∞

(
�L

α (g)
∣∣O∣∣�R

α (g)
) =

{
M(g) �= 0, (g < gc),

0, (g � gc),
(12)

where L represents the system size and M(g) is a complex-
valued analytic function. Equation (12) defines the phase
transition of a nonsteady eigenmode. The critical parameter gc

depends on the eigenmode under consideration. Note that the
phase transition of a nonsteady eigenmode is not necessarily
accompanied by a phase transition in the steady state. In
general, the phase transitions of nonsteady eigenmodes do not
affect the long-time behavior of the system, but they can affect
the transient dynamics to the steady state.

Unfortunately, it is difficult to theoretically investigate the
large-scale structure of each nonsteady eigenmode. Instead,
we consider a quantity obtained by averaging with appropriate
weights with respect to the eigenmodes. By interpreting L
as a non-Hermitian Hamiltonian on H ⊗H , we define the
Liouvillian canonical average by

〈O〉β := Tr[Oe−βL]

Tr[e−βL]
=

∑
α e−βλα

(
�L

α

∣∣O∣∣�R
α

)
∑

α e−βλα
, (13)

where β is a fictitious inverse temperature. The canonical
average defined by Eq. (13) can be calculated by various
theoretical methods developed in statistical mechanics and
field theory, such as mean-field approximation, diagrammatic
techniques, and renormalization group analysis. Note that the
expectation value 〈O〉β itself has no physical meaning because
the “Gibbs state” given by e−βL/Tr[e−βL] is neither Hermi-
tian nor positive-semi-definite. It should be considered as a
mathematical tool for extracting the large-scale structure of
nonsteady eigenmodes.

In predicting the qualitative behavior of 〈O〉β , it is use-
ful to invoke the analogy with the conventional quantum
phase transition in Hermitian systems [19]. Figures 1(a-1) and
1(b-1) show the expected phase diagram with respect to the
control parameter g and the fictitious temperature β−1. The
order parameter 〈O〉β takes a nonzero value in the ordered
region, but it vanishes in the disordered region. Figures 1(a-2)
and 1(b-2) show the Liouvillian spectra for g < gc. The red
(blue) region represents the eigenvalues corresponding to the
ordered (disordered) eigenmode. As in Hermitian systems,
there are two cases, depending on whether the order exists
only at “zero temperature” β = ∞ [see Fig. 1(a)] or at finite
temperature β < ∞ [see Fig. 1(b)]. In the first case, the phase
transition occurs only in the eigenmodes with the smallest real
part of eigenvalues, and these modes are denoted as |�R

mc) and

Disordered

g
gc

β -1

0

Disordered

Disordered

Quantum
Cri�cal?

g
gc

β -1

0

Quantum
Cri�cal?

Ordered

Re[λ]

Im[λ]

Re[λ]

Im[λ]

(a-1)

(b-1)

(a-2)

(b-2)
Disordered

Ordered
Ordered

Ordered

Steady state

Steady state

FIG. 1. Schematic phase diagrams and Liouvillian spectra.
(a) Case that the order exists only at zero temperature. (b) Case that
the order exists at finite temperature. Panels (a-1) and (b-1) show
the expected phase diagrams with respect to the control parameter g
and the fictitious temperature β−1. The dashed lines represent the
boundaries of the quantum critical region. Panels (a-2) and (b-2)
show the Liouvillian spectra for g < gc. The red and blue regions
represent ordered and disordered eigenmodes, respectively.

|�L
mc). Then, the zero-temperature limit of Eq. (13) reads

lim
β→∞

〈O〉β = (
�L

mc

∣∣O∣∣�R
mc

)
. (14)

Since the eigenmodes |�R
mc) and |�L

mc) have the largest fre-
quency or the highest coherence, we call them as the most
coherent modes of the Liouvillian. If the order exists at finite
temperature, other eigenmodes close to the most coherent
mode are also ordered [see Fig. 1(b-2)]. Lower-dimensional
systems are expected to correspond to the case (a) and higher-
dimensional systems to the case (b). The dashed lines in
Figs. 1(a-1) and 1(b-1) represent the boundaries of the “quan-
tum critical region,” which is characterized by the absence
of quasiparticle-like excitations [19]. However, the physical
meaning of the quantum critical region in this case is unclear
at present because it includes nonsteady eigenmodes far from
the steady state.

III. MODEL

We introduce a prototypical model that exhibits the phase
transition of nonsteady eigenmodes, the transverse field Ising
model under dephasing. The Hamiltonian is given by

H = −J
∑
〈 jk〉

σ z
j σ

z
k − g

∑
j

σ x
j , (15)

where σ
μ
j (μ = x, y, z) denote the Pauli matrices at site j

and 〈 jk〉 represents a pair of nearest-neighbor sites. J (> 0)
and g represent the strength of the exchange interaction and
the transverse field, respectively. Suppose that each spin is
affected by dephasing with a rate γ . The corresponding jump
operator at site j is given by

Lj = √
γ σ z

j . (16)
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The Liouvillian is written in the vector representation as

L = − J
∑
〈 jk〉

(
σ z

j,+σ z
k,+ − σ z

j,−σ z
k,−

) − g
∑

j

(
σ x

j,+ − σ x
j,−

)

+ iγ
∑

j

σ z
j,+σ z

j,− − iγ N, (17)

where σ
μ
j,+(−) acts on the first (second) Hilbert space of H ⊗

H , and N represents the number of spins.
The transverse field Ising model under dephasing is equiv-

alent to the usual Ising model affected by a fluctuating
longitudinal field

H (t ) = −J
∑
〈 jk〉

σ z
j σ

z
k − g

∑
j

σ x
j + √

γ
∑

j

ξ j (t )σ z
j , (18)

where ξ j (t ) represents Gaussian white-noise processes with
〈〈ξ j (t )〉〉 = 0 and 〈〈ξ j (t )ξk (t ′)〉〉 = δ jkδ(t − t ′). Here 〈〈. . .〉〉
denotes the average with respect to the noise ξ j (t ). The
time evolution of the state vector |ψ (t )〉 reads i∂t |ψ (t )〉 =
H (t ) |ψ (t )〉. The density matrix ρ(t ) can be obtained by aver-
aging over the noise, ρ(t ) = 〈〈|ψ (t )〉 〈ψ (t )|〉〉. It can be shown
that the time evolution of ρ(t ) is given by the GKSL master
equation with the jump operator (16) (see Refs. [57–59] for
details of the derivation). This type of master equation can
also be derived, under certain conditions, on the assumption
that the environment is a set of independent harmonic oscilla-
tors and that the system-environment coupling is linear with
respect to the bosonic annihilation and creation operators [60].
Experimental realization of the transverse field Ising model is
possible with trapped ions [6] and Rydberg atoms [11–14],
where fluctuations in the trapping field lead to dephasing of
the qubit. Note that for the GKSL master equation to be valid,
the correlation time τc of the noise ξ j (t ) must be much shorter
than the timescales of the system. Since the timescales of the
system are characterized by 1/J , 1/g, and 1/γ , the legitimate
region of the parameters is given by J, g, γ � τ−1

c .
In the absence of the transverse field (g = 0), the most co-

herent modes of L are the product states of the ferromagnetic
state and Néel state, which are four-fold degenerate due to the
Z2 symmetry. In particular, for the one-dimensional case with
the periodic boundary condition, the most coherent modes are
written as ∣∣�R

mc

) = |↑↑↑ · · · ↑〉 ⊗ |↑↓↑ · · · ↓〉,
|↑↑↑ · · · ↑〉 ⊗ |↓↑↓ · · · ↑〉,
|↓↓↓ · · · ↓〉 ⊗ |↑↓↑ · · · ↓〉,
|↓↓↓ · · · ↓〉 ⊗ |↓↑↓ · · · ↑〉, (19)

where N is assumed to be even. The corresponding eigenvalue
is given by λ = −2JN − iγ N . In the presence of infinites-
imal g, the four-fold degeneracy of Eq. (19) is lifted, and
|�R

mc) is the superposition of each term in Eq. (19) with
equal weight. Figure 2(a) shows the Liouvillian spectrum for
the one-dimensional case with g = 0 and N = 4. Note that
each eigenvalue is highly degenerate. For example, the zero
eigenvalue is 2N -fold degenerate because the corresponding
eigenmodes are the product states of two copies of the same
spin configuration. As g increases, each cluster of eigenvalues
becomes elongated and eventually they merge into a large

0
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-8
0-5 -5-10 -10

g = 0.3
0

-2
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-6

-8
0-5 -5-10 -10

0

-2

-4

-6

-8
0-5 -5-10 -10

0

-2

-4

-6

-8
0-5 -5-10 -10

Re[λ]/J

Im
[λ
]/J

Re[λ]/J

Im
[λ
]/J

Re[λ]/J Re[λ]/J

Im
[λ
]/J

Im
[λ
]/J

g = 0.4

g = 0.5 g = 1

Re[λ]

Im[λ]

-2γ

-4γ

-6γ

-8γ

4J-4J 8J-8J

+
-

+
-

(a)

(b)

FIG. 2. Liouvillian spectra of the transverse-field Ising chain un-
der dephasing with N = 4. (a) Spectrum for g = 0. The left-most red
point corresponds to the most coherent mode. The insets show the
spin configuration of the eigenmodes with the largest and smallest
real parts of eigenvalues. (b) Spectra for g = 0.3, 0.4, 0.5, and 1 with
J = γ = 1.

cluster [see Fig. 2(b)]. It should also be noted that the spec-
trum has the dihedral symmetry with respect to the vertical
line Re[λ] = 0 and the horizontal line Im[λ] = −γ N due to
the PT symmetry of the Liouvillian [46].

Conversely, for g � J, γ , the most coherent mode is the
paramagnetic state in which all spins are parallel or antiparal-
lel in the x direction∣∣�R

mc

) � |→→ · · · →〉 ⊗ |←← · · · ←〉, (20)

where |→〉 = (|↑〉 + |↓〉)/
√

2 and |←〉 = (|↑〉 − |↓〉)/
√

2.
To distinguish between the ferromagnetic and paramagnetic
states, we define the magnetization for + spins by

Mz
+ := 1

N

N∑
j=1

σ z
j,+. (21)

Here, note that the expectation value of Mz
+ vanishes due to

the Z2 symmetry, (�L
mc|Mz

+|�R
mc) = 0. Instead, we consider

the squared magnetization

O := (Mz
+)2. (22)

If the most coherent mode |�R
mc) is the paramagnetic state

given by Eq. (20), the spin correlation function decays
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exponentially (
�L

mc

∣∣σ z
j,+σ z

k,+
∣∣�R

mc

) ∼ e−d jk/ξ , (23)

where d jk is the distance between sites j and k and ξ is the
correlation length. On the other hand, if the most coherent
mode |�R

mc) is the ferromagnetic state given by Eq. (19), the
spin correlation function converges to a nonzero value

lim
d jk→∞

(
�L

mc

∣∣σ z
j,+σ z

k,+
∣∣�R

mc

) = m2 �= 0. (24)

Thus, there exists a critical value gc such that (�L
mc|O|�R

mc) =
m2 �= 0 for g < gc and (�L

mc|O|�R
mc) = 0 for g > gc in the

thermodynamic limit N → ∞. In the following, we confirm
the existence of the phase transition in the most coherent mode
using mean-field analysis and finite-size numerics.

IV. MEAN-FIELD ANALYSIS

We apply the mean-field approximation to the nonsteady
eigenmodes of the dissipative Ising model. Here, we consider
a hypercubic lattice of arbitrary dimension. To describe the
Néel order, the lattice points are divided into the A sublattice
and the B sublattice. It is convenient to introduce the following
unitary transformation:

U :=
∏

j

exp

(
i
π

2
σ z

j,−

)∏
j∈B

exp

(
i
π

2
σ x

j,−

)
, (25)

where
∏

j∈B represents the product over the lattice sites be-
longing to the B sublattice. The first term in Eq. (25) flips
the x component of all spins and the second term flips the
z component of the B-sublattice spins. The Liouvillian is
transformed as

L̃ := U †LU = − J
∑
〈 jk〉

(
σ z

j,+σ z
k,+ + σ z

j,−σ z
k,−

)

− g
∑

j

(
σ x

j,+ + σ x
j,−

)

+ iγ
∑

j

sgn( j)σ z
j,+σ z

j,− − iγ N, (26)

where sgn( j) = 1 for the A sublattice and sgn( j) = −1 for the
B sublattice. The transformed Liouvillian (26) is symmetric
with respect to the exchange of σ

μ
j,+ and σ

μ
j,−. Thus, the

most coherent mode for g = 0 is the tensor product of the
ferromagnetic states.

Let us define the “Gibbs state” with a fictitious inverse
temperature β by

ρβ = e−βL̃

Tr[e−βL̃]
. (27)

Note that ρβ is not a physical density matrix because it
is neither Hermitian nor positive-semi-definite. The reduced
density matrix for lattice site j is defined by ρβ, j = Tr �= j[ρβ],
where Tr �= j represents the trace for all spins except site j. In
the mean-field analysis, the reduced density matrix is approx-
imated by

ρβ, j � e−βL̃MF
j

Tr j
[
e−βL̃MF

j
] , (28)

with

L̃MF
j = −J

∑
〈k〉 j

(
σ z

j,+mk,+ + σ z
j,−mk,−

) − g
(
σ x

j,+ + σ x
j,−

)
+ iγ sgn( j)σ z

j,+σ z
j,− − iγ , (29)

where 〈k〉 j represents the nearest-neighboring sites around
j and Tr j represents the trace for spins at site j. The
magnetization mk,± := Trk[σ z

k,±ρβ,k] at site k is determined
self-consistently. Note that mk,± is generally complex-valued.
Since mk,± depends only on the sublattice to which k belongs,
we denote it as mA or mB. Then, the mean-field Liouvillian is
given by

L̃MF
A = −zJmB(σ z

+ + σ z
−) − g(σ x

+ + σ x
−)

+ iγ σ z
+σ z

− − iγ , (30)

L̃MF
B = −zJmA(σ z

+ + σ z
−) − g(σ x

+ + σ x
−)

− iγ σ z
+σ z

− − iγ , (31)

where z is the coordinate number of the lattice and we have
omitted the site index of the spin operator. The self-consistent
equations read

mA = Tr1
[
σ z

+e−βL̃MF
A

]
Tr1

[
e−βL̃MF

A

] , mB = Tr1
[
σ z

+e−βL̃MF
B

]
Tr1

[
e−βL̃MF

B

] , (32)

where “Tr1” represents the trace over the one-site Hilbert
space with a basis set {|↑〉 ⊗ |↑〉, |↑〉 ⊗ |↓〉, |↓〉 ⊗ |↑〉, |↓〉 ⊗
|↓〉}. From Eqs. (30), (31), and (32), the following relation
holds:

mA = m∗
B. (33)

The self-consistent equation (32) together with Eqs. (30), (31),
and (33) is numerically solved by iteration.

Figure 3 shows the averaged magnetization m := (mA +
mB)/2 as a function of the dephasing rate γ and the trans-
verse field g. From Eq. (33), the magnetization m is real. For
Hermitian systems, the magnetization satisfies −1 � m � 1.
On the other hand, note that in this case m becomes greater
than 1 when γ and g are large. This is because the right and
left eigenmodes are not equal due to the non-Hermiticity of
the Liouvillian. In Figs. 3(a) to 3(d), the bright region with
m > 0 corresponds to the ferromagnetic (ordered) phase, and
the dark region with m = 0 corresponds to the paramagnetic
(disordered) phase. The phase boundary determines the crit-
ical field gc(γ ). For γ = 0, since the model is identical to
the decoupled copies of the transverse field Ising model, it
exhibits a quantum phase transition at g = 1 at zero tempera-
ture (β = ∞). The critical field gc for γ = 0 decreases as the
temperature increases and it eventually vanishes at β = 1. A
remarkable feature of magnetization is its oscillatory behavior
as a function of γ . In the absence of the transverse field
(g = 0), the magnetization m(γ , g) has a periodicity,

m

(
γ + π

β
, 0

)
= m(γ , 0), (34)

which directly follows from the self-consistent equation (32).
Since for β < 1, m(γ , g) vanishes near γ = g = 0, the peri-
odicity (34) implies the existence of infinitely many islands
of paramagnetic phase, as shown in Fig. 3(d). In this case,

052208-5



TAIKI HAGA PHYSICAL REVIEW A 107, 052208 (2023)

γ/(zJ)

mm m m

m m m mβ = ∞ β = 1.5 β = 1.0 β = 0.8(a) (b) (c) (d)

(e) (f) (g) (h)

0 2 4 6 8
0

1

2

3

4

0
0.25
0.5
0.75
1
1.25

0 2 4 6 8
0

1

2

3

4

0
0.25
0.5
0.75
1
1.25

0 2 4 6 8
0

1

2

3

4

0
0.25
0.5
0.75
1
1.25

0 2 4 6 8
0

1

2

3

4

0
0.25
0.5
0.75
1
1.25
1.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.4
0.6
0.8
1

1.2
1.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.4
0.6
0.8
1

1.2
1.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.4
0.6
0.8
1

1.2
1.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.4
0.6
0.8
1

1.2
1.4

0.2

g/
(z
J)

γ/(zJ)

g/
(z
J)

γ/(zJ)

g/
(z
J)

γ/(zJ)

g/
(z
J)

g/(zJ) g/(zJ) g/(zJ) g/(zJ)

FIG. 3. Magnetization m := (mA + mB )/2 = Re[mA] = Re[mB] calculated by the mean-field approximation with zJ = 1 and β = ∞, 1.5,
1.0, and 0.8. (a)–(d) Magnetization as a function of the dephasing rate γ and the transverse field g. The bright region corresponds to the
ferromagnetic phase. (e)–(h) Magnetization as a function of g for γ = 0 (solid line: green), γ = 2 (dotted line: blue), γ = 4 (short dashed line:
orange), and γ = 6 (long dashed line: red). The vertical red lines in (a)–(d) represent the lines of γ = 0, 2, 4, and 6.

the phase diagram has a reentrant structure. For β = 0.8 and
γ = 4, the transition from the paramagnetic phase to the fer-
romagnetic phase occurs at g � 1.1 with increasing g, and the
second transition to the paramagnetic phase occurs at g � 2.5
[see Figs. 3(d) and 3(h)].

V. NUMERICAL RESULTS FOR ONE-
DIMENSIONAL MODEL

We study the phase structure of the most coherent mode
by the finite-size numerics of the one-dimensional dissipative
Ising model. We assume the periodic boundary condition and
an even number of spins. First, let us consider the phase
diagram at finite temperature. The magnetization Mz

+ for +
spins is defined by Eq. (21) and we consider the average of
the squared magnetization

m2 := Tr
[
(Mz

+)2e−βL̃]
Tr[e−βL̃]

. (35)

The magnetization m is given by the square root of Eq. (35),
which corresponds to (mA + mB)/2 of the mean-field analysis
in Sec. IV, where mA (mB) is the magnetization at the sublat-
tice A (B).

Figure 4 shows the magnetization m as a function of the
dephasing rate γ and the transverse field g. The spin number
is N = 4. The clear correlation between Figs. 3 and 4 confirms
the validity of the mean-field approximation. In particular, one
can observe a precursor of the reentrant structure of the phase
diagram in Fig. 4(d). As in the case of the conventional trans-
verse field Ising model, no true long-range order is expected to
exist at finite temperature in one dimension. Thus, the magne-
tization for β < ∞ should vanish in the thermodynamic limit
N → ∞.

Next, we focus on the phase transition of the most coherent
mode (β = ∞). It is hard to calculate the most coherent mode
through the numerical diagonalization of the Liouvillian for
N > 8. Thus, we consider the imaginary time evolution of the
master equation

d

dt
|ρ) = −L̃|ρ). (36)

By integrating Eq. (36) for a sufficiently long time, |ρ) con-
verges to the most coherent mode |�R

mc). To determine the
critical field gc(γ ), we define the Binder cumulant U4 for the
most coherent mode as

U4 := 1 − tr
[
(Mz )4�R

mc

]
3tr

[
(Mz )2�R

mc

]2 , (37)
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FIG. 4. Magnetization m of the one-dimensional dissipative Ising model as a function of the dephasing rate γ and the transverse field g.
The parameters are J = 1, and β = ∞, 1.5, 1.0, and 0.8. The spin number is N = 4. A clear correlation can be seen with the phase diagram
based on the mean-field approximation in Figs. 3(a) to 3(d).
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FIG. 5. (a) Binder cumulant U4 of the most coherent mode as a
function of the transverse field g with γ = 1. The systems sizes are
N = 4, 6, 8, 10, and 12. The cross point of U4 for different system
sizes indicates the critical field gc. (b) Critical field gc as a function
of γ . The regions below and above the curve correspond to the long-
range ordered phase and the disordered phase, respectively.

where �R
mc is the original matrix representation of |�R

mc) and

Mz = 1

N

N∑
j=1

σ z
j (38)

is the magnetization for the original spin operator. Note that
the trace “tr” in Eq. (37) is taken over the original Hilbert
space H . In the thermodynamic limit, the Binder cumulant
U4 takes the value 2/3 in the long-range ordered phase and
zero in the disordered phase.

Figure 5(a) shows the Binder cumulant U4 as a function of
the transverse field g with γ = 1. For sufficiently large system
sizes, it is known that U4 for different system sizes intersects
at the critical field gc. To determine gc, let us denote the cross
point of U4 for two system sizes N and N − 2 as g(N )

c . The crit-
ical field is given by gc = limN→∞ g(N )

c . We fit g(N )
c for N = 6,

8, 10, 12 with the algebraic function f (N ) = a + bN−c (c >

0), where gc = a. Figure 5(b) shows gc determined by this
procedure as a function of the dephasing rate γ . The regions
of g < gc and g > gc correspond to the long-range ordered
phase and the disordered phase, respectively. Note that for
γ = 0, gc = 1 because the model is equivalent to two copies
of the conventional transverse field Ising model. The curve of
gc in Fig. 5(b) coincides with the phase boundary in Fig. 4(a)
for small system size. These results provide evidence for the
existence of an order-disorder transition of the most coherent
mode in one dimension.

VI. RELAXATION DYNAMICS OF A CAT STATE

We discuss how the phase transition of the most coherent
mode affects the relaxation dynamics of the system. As an
initial state, we consider the following pure state:

|ψini〉 = 1√
2

(|F 〉 + |N〉), (39)

where |F 〉 = |↑↑↑ · · · ↑〉 is a ferromagnetic state and |N〉 =
|↑↓↑ · · · ↓〉 is a Néel state. Superpositions of two macroscop-
ically different quantum states, such as Eq. (39), are called
the “Schrödinger’s cat states” [61–64], which are an important
resource in quantum computing and quantum communication.

0-5-10-15 5 10 15
0
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0.3

0.4

0.5

0-10-20 10 20
0

0.05
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0.25

rα

(a) (b)
g = 0.2 g = 2.0

rα

/J /J

FIG. 6. Overlap rα = |(ρini|�R
α )| between eigenmodes |�R

α ) and
the initial state |ρini ) for (a) g = 0.2 and (b) g = 2. The spin number
is N = 6 and the other parameters are J = γ = 1. The horizontal
axis represents the real part of the eigenvalues λα . For a small
g, the overlap is localized to eigenmodes where the real part of
the corresponding eigenvalue is minimum, maximum, or zero. On
the other hand, for a large g, the overlap is delocalized over all
eigenmodes. Note that rα is not perfectly symmetric with respect to
Re[λ] = 0. This is due to the ambiguity in the choice of eigenmodes
in eigenspace when degeneracy occurs.

The corresponding density matrix reads

ρini = |ψini〉〈ψini|
= 1

2 (|F 〉〈F | + |N〉〈N | + |F 〉〈N | + |N〉〈F |). (40)

In the limit of g → 0, the most coherent mode is the equal
superposition of Eq. (19). Thus, the overlap between the initial
state ρini and the most coherent mode �R

mc is given by(
ρini

∣∣�R
mc

) = 1
4 . (41)

From the eigenmode expansion (11), the large overlap be-
tween the initial state and the most coherent mode means
that the time evolution of the density matrix is dominated by
the most coherent mode. Thus, the density matrix is expected
to exhibit coherent oscillations at the frequency of the most
coherent mode. In the opposite case g � J since the most
coherent mode is approximately given by Eq. (20), the overlap
with the initial state is significantly small. Thus, the density
matrix is expected to exhibit monotonic relaxation. In sum-
mary, when g exceeds the critical field gc, a crossover from
coherent relaxation with oscillations to incoherent relaxation
without oscillations is expected to occur.

Figure 6 shows the overlap

rα := ∣∣(ρini

∣∣�R
α

)∣∣ (42)

between eigenmodes |�R
α ) and the initial state |ρini ) given

by Eq. (40). For g � J , the overlap has large values for
eigenmodes with Re[λα] = 0,±2NJ [see Fig. 6(a)] because
the eigenmodes with Re[λα] = 0, −2NJ , and 2NJ have large
overlaps with |F 〉〈F | + |N〉〈N |, |F 〉〈N |, and |N〉〈F |, respec-
tively. This implies that the time evolution of the density
matrix starting from ρini is governed by a small number of
eigenmodes with frequency 2NJ . When g is comparable to J
[see Fig. 6(b)] the overlap is delocalized over all eigenmodes.
In this case, since the time evolution of the density matrix is
given by the superposition of a large number of eigenmodes
with various frequencies, an incoherent relaxation without
oscillations is expected.

We consider the fidelity

F (t ) := (
tr
[(

ρ
1/2
ini ρt ρ

1/2
ini

)1/2])2
, (43)
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FIG. 7. (a) Time evolution of the fidelity F (t ) for g = 0.2, 0.4,
0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 from top to bottom. The spin number is
N = 8 and the other parameters are J = γ = 1. (b) Fourier transform
of F̃ (ω) for g = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 from bottom
to top at ω/(NJ ) = 1. The peak at ω = 2NJ disappears at g � 1.1,
which is close to the critical field gc � 1.11 at which the phase
transition of the most coherent mode occurs.

which represents the distance between the initial state and
the state at time t [65,66]. We have F (0) = 1 at t = 0 and
F (t ) → D−1 in the long-time limit t → ∞, where D = 2N

is the dimension of the Hilbert space. Figure 7(a) shows the
time evolution of the fidelity F (t ) for different values of g.
Note that the horizontal axis is the rescaled time tJN . We
confirm that F (t ) with respect to the rescaled time tJN is
almost independent of the system size N . For g < 1, F (t )
exhibits temporal oscillations, whereas for g > 1, F (t ) decays
monotonically. To highlight this crossover, in Fig. 7(b), we
show the Fourier transform of F (t ),

F̃ (ω) =
∫ ∞

−∞
dte−iωt F (|t |). (44)

The horizontal axis is the rescaled frequency ω/(NJ ). For
g < 1, F̃ (ω) shows a peak at ω/(NJ ) = 2, which is consistent
with the fact that the time evolution is dominated by the most
coherent mode with frequency 2NJ . As g increases, the peak
is smeared and eventually disappears at g � 1.1. The value
of g at which the peak of F̃ (ω) disappears is close to the
critical field gc � 1.11 of the most coherent mode. These
results suggest that the transition of the most coherent mode
leads to a qualitative change in the decoherence of a cat state.

VII. CONCLUSION

In this study, we found that nonsteady eigenmodes of a
simple open quantum many-body system exhibit spontaneous
symmetry breaking. The transition from the disordered phase
to the symmetry-broken ordered phase occurs only in the
vicinity of the most coherent mode, which is the eigenmode
with the highest frequency. This means that the transition
does not change the long-time behavior of the system, but
only affects the transient relaxation dynamics. In particular,
we demonstrated the crossover from underdamped to over-
damped relaxation of a Schrödinger’s cat state.

We discuss the experimental feasibility of the setup pos-
tulated in this study. The transverse field Ising model can
be realized by trapped ions [6] or Rydberg atoms [11–14].
The dephasing of the system is caused by different types of
noise, such as fluctuations in the magnetic field of the ion-
trap device. Recent advances in qubit manipulation techniques
have made it possible to generate Schrödinger’s cat states
with dozens of qubits [61–64]. The off-diagonal elements of
the density matrix, which characterize the coherence of the
state, can be obtained by observing the parity oscillations. We
expect that there exists a critical value of the transverse field
at which the way the coherence decays changes qualitatively.

The introduction of the Liouvillian canonical ensemble
defined by Eq. (13) allows various field theoretical ap-
proaches, such as mapping to a classical model with an
additional dimension, diagrammatic techniques, and renor-
malization group analysis, which have been developed in
the study of conventional quantum phase transitions [19].
Such an analysis can be useful in clarifying “low-energy”
excitations near the most coherent mode and the nature of
the quantum critical regime shown in Fig. 1. The above
field theoretical approach should not be confused with the
Keldysh formalism [25,32,33,38], which was developed to
study steady states. To establish a field theory for nonsteady
eigenmodes has the potential to open a new research direction
on the nonequilibrium dynamics of open quantum many-body
systems.
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