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We study the transport of many partially distinguishable and possibly interacting particles under the action
of repeated projective measurements on a target space and investigate how the particles’ interference affects the
mean first-detection time. We contrast the detection of exactly n versus at least n particles, explain divergences
in the mean first-detection time through spectral properties of the generating evolution operator, and illustrate
our findings by an example.
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I. INTRODUCTION

The traveling time of an object through a potential land-
scape not only is an important quantity in classical systems,
it likewise plays a central role in quantum transport problems,
e.g., as a quantifier of the transport’s efficiency [1,2]. How-
ever, while the detection time of a continuously moving object
at a target space is well defined in classical mechanics, in stan-
dard quantum mechanics it is not, since time is no observable
and thus cannot be measured directly. An increasingly popular
approach to circumvent this problem is to perform repeated
projective measurements on the target space [3,4] such that
the first detection time can be well defined as the mean time
until the object is detected for the first time. Intuitively, this
detection scheme strongly depends on the time intervals be-
tween consecutive measurements and results in the quantum
Zeno effect [5] in the limit of small time steps compared to
typical evolution times.

A natural choice is to consider equidistant time steps
(called sampling times τ ) as in investigations of the trans-
port of pure single-particle states along diverse tight-binding
lattices [6–14]. Inter alia, it was observed that the mean
first-detection time diverges for particular, so-called resonant
sampling times [8,9,11,12,14], which disappear if the sam-
pling times are chosen randomly [15]. While the appearance
of these resonances was related to a classical electrostatic
problem [4,12], a full spectral understanding remains desir-
able.

On the other hand, for the transport of many parti-
cles, promising applications, such as universal quantum
computation [16,17], spurred much interest in exploiting par-
ticle indistinguishability [18–23], in both interacting [24–27]
and noninteracting [28–30] systems. The question therefore
arises how stroboscopic measurements affect the transport

*christoph.dittel@physik.uni-freiburg.de
†thiel@posteo.de

properties in these many-body systems. This entails a series
of new problems, e.g., how partial particle distinguishability
or stroboscopic measurements with particle number resolution
affect the mean first-detection time.

In this work we address these questions. By expanding the
formalism so far available, we lift the concept of stroboscopic
measurements to the realm of many partially distinguishable
particles. To this end, we provide a general description of the
first-detection-time statistics in the density operator formal-
ism, valid independently of the exact physical scenario. This
allows for the consideration of mixed states, an essential in-
gredient to treat partial particle distinguishability [21–23,31].
In this general formalism, we additionally address the identifi-
cation of resonant sampling times through a spectral approach.
In particular, we relate divergences of the mean first-detection
time to the spectral properties of the so-called survival op-
erators [6,7] whose expectation values account for the full
first-detection-time statistics.

We then apply our formalism to the transport of N partially
distinguishable, interfering particles, on a finite-dimensional
Hilbert space. For a general number of N particles, with
transport properties generated by an arbitrary many-body uni-
tary evolution operator (describing any conceivable hopping
dynamics and possibly interacting particles), we discuss how
distinguishability affects the first-detection-time statistics and
compare the stroboscopic measurements corresponding to the
detection of exactly n � N and at least n particles on a single
target site. In particular, for the detection of all N particles on
a single target site, we find that the first-detection probabilities
are proportional to the particle exchange symmetry of the
initial state and that the first-detection time is independent
of the particles’ distinguishability. As an example, under-
pinning our analytical results, we finally provide numerical
calculations for the mean first-detection time in the transport
of two noninteracting, partially distinguishable particles on
one-dimensional linear lattices of variable lengths.

The paper is structured as follows. In Sec. II A we pro-
vide the density operator formalism for the stroboscopic
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FIG. 1. Stroboscopic measurement. (a) A coherently evolving
state (blue envelope) is repeatedly measured after equidistant time
steps by a projection on the subspace H⊥, until successful detection.
(b) The probability space is illustrated by a tree diagram, with blue
points illustrating binary (i.e., yes or no) measurements.

measurement and in Sec. II B we further show that the
first-detection-time statistics are fully determined by the
expectation values of the survival operators. Section II C in-
troduces the so-called trapped subspace with the help of which
we determine the divergences of the mean first-detection time
in Sec. II D. These resonances are shown to be anchored to the
so-called degenerate subspace in Sec. II E. In Sec. III A we
then apply our formalism to the transport of many partially
distinguishable particles and discuss different types of stro-
boscopic measurements. We present a numerical illustration
for the transport of two partially distinguishable particles on
linear lattices in Sec. III B. We summarize in Sec. IV. For
the sake of readability, all detailed proofs are deferred to the
Appendixes.

II. FIRST-DETECTION-TIME STATISTICS

A. Stroboscopic measurement

Let us start with providing a general description of
stroboscopic measurements [6–15] in the density operator
formalism. To this end, consider a general quantum state
(irrespective of the exact physical scenario) described by the
density operator ρ and suppose that it is initially prepared in
the subspace H‖ of the total Hilbert space H = H‖ ⊕ H⊥.
We consider its coherent evolution generated by the Hamil-
tonian H and ask for the time delay to successfully detect the
state in the detection subspace H⊥ for the first time. Our strat-
egy is to perform repetitive measurements after equidistant
sampling times τ , according to the binary projective-valued
measurement {P⊥,P‖}, where P⊥ and P‖ = 1 − P⊥ project
on H⊥ and H‖, respectively. We stop the protocol after the
first successful detection in H⊥.

At the first measurement, the evolved state UρU†,
with U = exp(−iHτ/h̄), results in a successful detection
with probability p1 = Tr(P⊥UρU†P⊥), causing the proto-
col to stop. In the case of an unsuccessful detection, the
state has vanishing support on H⊥. It reduces to ρ1 =
P‖UρU†P‖/(1 − p1) and continues evolving to Uρ1U† before
the next measurement. By continuing in this way, illustrated
in Fig. 1(a), the kth measurement yields a successful detection
with probability

pk = Tr[P⊥U (P‖U )k−1ρ(U†P‖)k−1U†P⊥]

(1 − p1) · · · (1 − pk−1)
. (1)

Hence, as evident from the tree diagram in Fig. 1(b),
the probability for the first successful detection at the kth
measurement, called first-detection probability, is Fk = (1 −
p1) · · · (1 − pk−1)pk . Using Eq. (1) and the operator Tk =
P⊥U (P‖U )k−1, it reads

Fk = Tr(T †
k Tkρ). (2)

With this, the total detection probability after k
measurements is

Dk =
k∑

j=1

Fj (3)

and the survival probability, i.e., the probability for no suc-
cessful detection after k measurements, becomes

Sk = 1 − Dk . (4)

Since the stroboscopic measurement is performed with
equidistant sampling times τ , the first detection probabilities
(2) allow us to define the first-detection time (sometimes
called [9,12] mean first detection or passage time) as the
expectation value of the detection time with respect to the
probability distribution {F1/Dk, . . . , Fk/Dk}, in the limit of a
large number k of measurements,

〈tf〉 = lim
k→∞

1

Dk

k∑
j=1

jτFj . (5)

Hence, the stroboscopic measurement protocol allows us to
properly define the time after which we expect the first detec-
tion in the detection subspace H⊥.

B. Survival operator

The probabilities Fk , Dk , and Sk are key for the first-
detection-time statistics in stroboscopic measurements. They
are further related through Eqs. (3) and (4) by

Fk = Dk − Dk−1 = Sk−1 − Sk (6)

and thus serve equally well to obtain the full statistics of the
first-detection times (5). Under this perspective, we can now
focus on rewriting one of them, the survival probability Sk , in a
more compact and intuitive form. To this end, let us introduce
the block matrix representation

A =
(
A‖‖ A‖⊥
A⊥‖ A⊥⊥

)
(7)

of a general linear operator A on H , where the first (sec-
ond) column and row corresponds to the subspace H‖ (H⊥).
Accordingly, the projectors on these subspaces are P‖ =
diag(1, 0) and P⊥ = diag(0,1) and the initial density matrix,
which has vanishing support on the detection subspace H⊥,
reads ρ = diag(ρ‖‖, 0). As we show in Appendix A, we can
express the survival probability (4) as the expectation value of
the survival operator [6,7]

Sk = (U k
‖‖)†U k

‖‖ (8)

with respect to ρ‖‖, that is,

Sk = Tr(Skρ‖‖). (9)
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Note that, as indicated by the decomposition (7), U‖‖ is
the block of the unitary evolution operator U in the sub-
space H‖. Accordingly, we can intuitively interpret Sk =
Tr[U k

‖‖ρ‖‖(U k
‖‖)†] as the probability that the first k measure-

ments find the state in H‖, hence the probability for no
successful detection after k measurements.

From Eqs. (5), (6), (8), and (9), the first-detection-time
statistics can be obtained by calculating the kth matrix power
of the complex-valued matrix U‖‖ for all k. In general, U‖‖
is not a normal operator and hence cannot be diagonal-
ized by a unitary matrix. However, it can be decomposed
as U‖‖ = Q�Q−1,1 with the columns of Q corresponding
to the not necessarily orthogonal eigenvectors of U‖‖ and
� = diag(λ1, λ2, . . . ) carrying the corresponding complex-
valued eigenvalues on its diagonal. Consequently, given the
diagonalization U‖‖ = Q�Q−1, the matrix power U k

‖‖ can
efficiently be calculated via U k

‖‖ = Q�kQ−1, with �k =
diag(λk

1, λ
k
2, . . . ).

C. Trapped subspace

The eigenvalues λ j of U‖‖ are in general complex and
satisfy 0 � |λ j | � 1, where the upper bound is due to Sk � 1.
From this we see that for increasing k, all eigenvalues λk

j of
U k

‖‖ for which |λ j | 	= 1 vanish exponentially in k. Hence, in
the limit k → ∞, we are left with the subspace of U‖‖ spanned
by the not necessarily orthogonal eigenvectors associated with
the eigenvalues satisfying |λ j | = 1. Let us denote this sub-
space by HT and let PT be a projector on HT. As we show
in Appendix B, in the limit k → ∞ we find that the survival
operator limk→∞ Sk = S∞ projects on the subspace HT, i.e.,

S∞ = PT. (10)

Accordingly, the survival probability S∞ = Tr(PTρ‖‖) is
equivalent to the fraction of the initial state ρ‖‖ living on HT

and we therefore call HT the trapped subspace (note that in
the literature [13,14] it is sometimes called dark subspace).
That is, in the limit k → ∞ there is a nonvanishing survival
probability S∞ if and only if the initial state ρ‖‖ has support
on the trapped subspace HT (see also [13,14]).

D. Divergence of the first-detection time

We now continue with studying the convergence behavior
of the first-detection time (5). First note that if S∞ = 1, the
entire initial state remains in the trapped subspace and, from
Eq. (5), 〈tf〉 is undefined. In the following we exclude this
trivial case and consider S∞ < 1. As detailed in Appendix C,
we first rewrite 〈tf〉 from Eq. (5) as

〈tf〉
τ

= 1 +
∞∑

k=1

Sk − S∞
1 − S∞

. (11)

1Note that diagonalizable complex-valued matrices form a dense
subset of the set of n×n complex matrices. Hence, almost all n×n
complex matrices are diagonalizable and those which are not can be
approximated to arbitrary precision by a diagonalizable matrix [32].

The convergence properties can then be investigated via the
ratio test [33] of the series in (11). To this end, we consider
the ratio ∣∣∣∣Sk+1 − S∞

Sk − S∞

∣∣∣∣ � 1, (12)

with the upper bound following from Sk+1 � Sk . Since
limk→∞ Sk − S∞ = 0, we naively expect 〈tf〉 from (11) to
converge in the limit of a large number of measurements,
k → ∞. However, given a fixed but possibly large number
of measurements k, it can happen that there is an additional
limit in the sampling time, τ → τres, in which the ratio (12)
becomes arbitrarily close to unity, hence indicating a divergent
series in (11). Accordingly, the first-detection time (11) is then
characterized by a competition between the limits τ → τres

and k → ∞, which (as discussed below) can lead to a diver-
gent (rather than convergent) behavior of 〈tf〉.

Such competition arises if there is at least one continuous,
differentiable eigenvalue λ j (τ ) of U‖‖ (note that we explicitly
state the dependence of λ j on the sampling time τ ), for which
limδτ→0 |λ j (τres ± δτ )| = 1, and |λ j (τres ± δτ )| < 1 for non-
vanishing but small δτ . We call these eigenvalues λ j (τ )
and sampling times τres resonant eigenvalues and resonant
sampling times, respectively. Then limk→∞ |λk

j (τres ± δτ )| =
0 for nonvanishing δτ and limδτ→0 |λk

j (τres ± δτ )| = 1 for
finite k.

Now note that the survival operator is Hermitian [see
Eq. (8)] and, as we show in Appendix D, it can be written as
Sk = PT + Mk , where PT and Mk have orthogonal support,
and limk→∞ Mk = 0. Further recall that PT [see Eq. (10)]
projects on the trapped subspace HT, which is spanned by the
eigenvectors of U‖‖ associated with eigenvalues |λ j (τ )| = 1.
Hence, for δτ = 0 the eigenvalue λ j (τres ± δτ ) is associated
with PT and for |δτ | > 0 with Mk . Therefore, Sk , and hence
〈tf〉, can be discontinuous at τres. We further conclude [recall
that λ j (τ ) is continuous and differentiable] that the survival
operator Sk must have an eigenvalue, which, for small δτ , can
be well approximated by c(k)

m ≈ [1 − γ (δτ )2]k , where γ > 0.
As we discuss in Appendix E, if the initial state ρ‖‖ has
nonvanishing support by the corresponding eigenvector |c(k)

m 〉
of Sk , i.e., 〈c(k)

m | ρ‖‖ |c(k)
m 〉 	= 0, the first-detection time diverges

for small δτ as

〈tf〉
τ

≈ A + B

(δτ )2
, (13)

with A, B > 0 approximately constant for small δτ [cf.
Eqs. (47) and (52) in [12]].

E. Degenerate subspace

Next let us see how the Hamiltonian’s spectral structure
can lead to the appearance of resonant eigenvalues. To this
end, consider the eigendecomposition U = ∑

j e−iE jτ |Ej〉〈Ej |
of the unitary evolution operator, with |Ej〉 the eigenvector
associated with the eigenenergy Ej . Let us suppose nonde-
generate eigenenergies Ej and P‖ |Ej〉 	= |Ej〉 [Note that, if
P‖ |Ej〉 = |Ej〉, then |Ej〉 is an eigenvector of diag(U‖‖, 0)
whose associated eigenvalue λ j = e−iE jτ has unit modulus
for any sampling time τ . Degenerate eigenenergies Ej can
likewise lead to eigenvalues λ j with unit modulus for any
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FIG. 2. Example of many-particle transport on a lattice. Here N
partially distinguishable particles (shown for N = 2) are prepared in
the first N sites of a linear lattice. As the particles evolve due to
tunneling dynamics, a stroboscopic projective measurement on the
last lattice site l is performed, with P⊥ the corresponding projector
on the detection subspace.

sampling time τ . However, these eigenvalues do not qualify
as resonant eigenvalues as defined above.] Further suppose
that there is a sampling time τ� and a corresponding set �

of eigenenergies such that the eigenvalues e−iE jτ� of U are
degenerate for all Ej ∈ �, i.e., [8,9,11,12,14]

∀ Ej, Ek ∈ � ∃ m ∈ Z : (Ej − Ek )τ� = 2πm. (14)

We then call τ� the degenerate sampling time and define
the corresponding degenerate subspace H� ⊆ H spanned
by the eigenvectors {|Ej〉}Ej∈�, with P� = ∑

Ej∈� |Ej〉〈Ej |
projecting on H�. As we show in detail in Appendix F, any
vector |λ j〉 ∈ H , which lives in the intersection of H� and
H‖, i.e., P� |λ j〉 = P‖ |λ j〉 = |λ j〉, constitutes an eigenvec-
tor of diag(U‖‖, 0) with associated eigenvalue e−iE�τ� . Since
|λ j〉 ∈ H has vanishing support on H⊥, i.e., P⊥ |λ j〉 = 0,
we can drop the subspace H⊥ such that |λ j〉 ∈ H‖ becomes
an eigenvector of U‖‖ whose associated eigenvalue e−iE�τ�

has unit modulus and hence constitutes a resonant eigenvalue
(see Appendix F for details). As a result, we showed that a
degenerate sampling time can cause a resonant sampling time.

III. MANY PARTIALLY DISTINGUISHABLE PARTICLES

A. General formalism

Let us now apply the above formalism of stroboscopic
measurements to the quantum transport of N identical par-
ticles evolving across a network composed of l sites and
investigate how (partial) particle distinguishability affects the
first-detection-time statistics via many-particle interference.
As a paradigmatic setting, we consider the particles to be
initially prepared on the first N sites2 and a detection on site
l > N , also called the target site. Note that we impose no
restrictions on the particles’ hopping dynamics and on the
position dependence of their mutual interaction; we merely
suppose the dynamics to be governed by a general many-body
unitary evolution matrix U . As an example, which is numeri-
cally investigated in Sec. III B below, one can think of a linear
lattice with nearest-neighbor coupling as illustrated in Fig. 2.

The Hilbert space H = H‖ ⊕ H⊥ = H ⊗N
1p is spanned by

N-fold tensor products |E1〉 ⊗ · · · ⊗ |EN 〉 ≡ |E1 · · · EN 〉 of the
single-particle basis states {|E j〉}l

E j=1 of H1p, with |E j〉 de-
scribing a single particle on site E j . For the initial state of one

2Note that the more the particles initially bunch, the less there can
be many-particle interference [21,22]. Hence, we choose one particle
per site to allow for strong interference effects.

particle in each of the first N sites, we have �E = (E1 · · · EN ) =
(1 · · · N ). Note that the case of bunched initial states can
straightforwardly be described following Refs. [21,22].

Particle distinguishability is accounted for by additional
internal degrees of freedom on an N-particle Hilbert space
Hint. We make no restrictions on the particles’ nonsym-
metrized internal states, described by a density operator σ

on Hint (e.g., a pure product state gives σ = | �φ〉 〈 �φ|, with
| �φ〉 = |φ1〉 ⊗ · · · ⊗ |φN 〉).

The initial state ρ on H of N partially distinguishable
bosons (fermions) is then obtained by (anti)symmetrizing
| �E〉〈 �E | ⊗ σ on H ⊗ Hint with respect to all elements π ∈ SN

of the symmetric group SN of N elements and tracing over
the particles’ internal degrees of freedom. Using the shorthand
notation �π | �E〉 = | �Eπ 〉 = |Eπ (1) · · · Eπ (N )〉, with permutations
π ∈ SN , and �π the corresponding permutation operator, this
yields [21–23]

ρ =
∑

π,π ′∈SN

ρπ,π ′ | �Eπ 〉〈 �Eπ ′ |, (15)

with

ρπ,π ′ = (−1)ππ ′
B (F)

1

N!
Tr(�πσ�

†
π ′ ). (16)

Here (−1)ππ ′
B = 1 for bosons, (−1)ππ ′

F = sgn(ππ ′) for
fermions, and �π permutes | �φ〉 ∈ Hint similarly to | �E〉 ∈
H . For perfectly indistinguishable particles, ρ is pure and
has maximal many-body coherences, i.e., off-diagonal ele-
ments, ρ = |ψB (F)〉〈ψB (F)|, with |ψB (F)〉 = (1/

√
N!)

∑
π∈SN

(−1)πB (F) | �Eπ 〉 the usual pure state of N indistinguishable
bosons (fermions). On the other hand, for fully distinguishable
particles we have ρπ,π ′ = δπ,π ′/N!. This yields a maximally
mixed state ρ = (1/N!)

∑
π∈SN

| �Eπ 〉〈 �Eπ |, which is fully inco-
herent [21,22].

The coherences of ρ are essential for many-particle inter-
ference in the particles’ transport dynamics. Hence, they are
relevant for the first-detection-time statistics in stroboscopic
measurements as directly apparent from Eq. (9). To this end,
let us quantify the many-body coherences of ρ via the expec-
tation value of the projector �S = (1/N!)

∑
π∈SN

�π on the
symmetric subspace [23,31],

〈�S〉 = Tr(�Sρ) (17)

= 1

N!

∑
π,π ′∈SN

ρπ,π ′ . (18)

It corresponds to a sum of all elements of ρ and satisfies
0 � 〈�S〉 � 1. The upper bound saturates for a fully symmet-
ric state (e.g., fully indistinguishable bosons), the lower bound
is reached if ρ has no support on the symmetric subspace (e.g.,
if two or more fermions are fully indistinguishable), and fully
distinguishable particles, which give rise to a fully incoherent
state, result in 〈�S〉 = 1/N!.

For the stroboscopic measurement, we consider differ-
ent binary projective measurements: the detection of exactly
n (=n) and at least n (�n) particles at the target site. As
we show in Appendix G, the projectors on the corresponding
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detection subspaces can be expressed as

P=n
⊥ =

N∑
q=n

(−1)q−n

(
q

n

)
Pq (19)

and

P�n
⊥ =

N∑
q=n

(−1)q−n n

q

(
q

n

)
Pq, (20)

with Pq a genuine q-particle observable given by

Pq =
∑

σ∈�(L(q) )

N⊗
α=1

AL(q)
σ (α)

. (21)

Here A1 = |l〉〈l|, A2 = 1, L(q)
j is the jth entry of the mul-

tiset3 L(q) = {1}q ∪ {2}N−q, and �(L(q) ) ⊆ SN is the right
transversal4 of the Young subgroup Sq ⊗ SN−q in SN con-
taining all

(N
q

)
permutations σ , which lead to distinctly

ordered multisets. For example, for N = 2 particles, we
have the one-particle observable P1 = |l〉〈l| ⊗ 1 + 1 ⊗ |l〉〈l|
and the two-particle observable P2 = |l〉〈l| ⊗ |l〉〈l|. The pro-
jection operators on the detection subspaces can then be
expressed as P=1

⊥ = P1 − 2P2 = |l〉〈l| ⊗ (1 − |l〉〈l|) + (1 −
|l〉〈l|) ⊗ |l〉〈l|, P=2

⊥ = P2, and P�1
⊥ = P1 − P2 = P=1

⊥ +
P=2

⊥ . A comparison of Eqs. (19) and (20) shows that both
expressions merely differ by the fraction n/q in (20). Since Pq

is a genuine q-particle observable and this fraction decreases
for increasing q, we see that the sensitivity of P�n

⊥ to genuine
q-particle effects (e.g., q-particle interference) decreases for
increasing q as compared to P=n

⊥ . Hence, in accordance with
the typical interpretation of (anti)bunching as a manifesta-
tion of many-particle properties [35,36], for the measurement
P=n

⊥ we expect more pronounced many-particle interference
effects in the first-detection-time statistics compared to P�n

⊥ .
The stroboscopic measurement corresponding to the de-

tection of a fully bunched event on the target site, i.e., the
detection of exactly N particles with projector P=N

⊥ , is partic-
ularly interesting. In this case, we find that the first-detection
probability (2) is weighted by the fraction (17) of ρ on the
symmetric subspace. In particular, as we show in Appendix H,
we find

Fk = N! 〈�S〉 F D
k , (22)

with F D
k the first-detection probability in the case of fully

distinguishable particles. Accordingly, the total detection
probability (3) becomes Dk = N! 〈�S〉 DD

k and the survival
probability (4),

Sk = 1 − N! 〈�S〉
(
1 − SD

k

)
. (23)

3A multiset is a generalization of a set where multiple instances of
the same element are allowed.

4A transversal of a collection of sets B1, . . . , BR is a set of R
elements which contains exactly one element of each set B1, . . . , BR.
For H a subgroup of the group G, the right transversal of H in G is
a transversal of the set of distinct right cosets of H in G. The right
coset of H in G with respect to π ∈ H is Hπ = {ξπ | ξ ∈ H} [34].

Using this for the first-detection time 〈tf〉 in Eq. (5), we see
that the factor N! 〈�S〉 cancels such that 〈tf〉 is independent
on the particles’ distinguishability, i.e.,

〈tf〉 = 〈
tD
f

〉
, (24)

with 〈tD
f 〉 the first-detection time for fully distinguishable par-

ticles. However, note that 〈tf〉 is undefined if 〈�S〉 = 0 since
then D∞ = 0 [cf. Eq. (5)]. This, for example, applies to two
or more fully indistinguishable fermions, as a consequence of
Pauli’s exclusion principle, which prohibits the detection of
indistinguishable fermions on the same site.

B. Numerical illustration

We now turn to the numerical investigation of an example
for the above-described stroboscopic measurements in many-
particle quantum transport. To this end we consider N = 2
noninteracting, partially distinguishable particles initially pre-
pared in the first two sites of a linear lattice with l > N sites
(see Fig. 2). We suppose nearest-neighbor tunneling, with
equal tunneling rates between neighboring sites, and ask for
the first-detection time to detect at least one (�1), exactly one
(=1), and exactly two (=2) particles at the target site l .

For the particles’ internal state we consider a pure product
state | �φ〉 = |φ1〉 ⊗ |φ2〉 ∈ Hint, with |φ j〉 the internal state
of the jth particle such that, after (anti)symmetrization, the
initial state (15) reads

ρ = 1
2 [|12〉〈12| + |21〉〈21|
± |〈φ1|φ2〉|2(|12〉〈21| + |21〉〈12|)], (25)

with the upper (lower) sign corresponding to bosons
(fermions). Note that the particles’ indistinguishability is en-
coded in the off-diagonal entries of ρ and quantified by the
expectation value of the projector on the symmetric subspace
(18), yielding 〈�S〉 = (1 ± |〈φ1|φ2〉|2)/2.

The linear lattice with constant tunneling rate J between
neighboring sites is described by the single-particle Hamilto-
nian

H1p = −J
l−1∑
E=1

(|E〉〈E + 1| + |E + 1〉〈E |), (26)

which generates the single-particle unitary evolution operator
U1p = exp(−iH1pτ/h̄). Since we consider noninteracting par-
ticles, the two-particle unitary evolution operator is obtained
from the tensor power thereof, U = U⊗2

1p .
With the two-particle unitary evolution operator U and the

initial two-particle state ρ at hand, we calculate the mod-
uli of the eigenvalues of U‖‖, the survival probability S∞,
and the first-detection time 〈tf〉 [using Eqs. (9)–(11)] for 501
equally spaced sampling times in the interval 0 � τJ/h̄ � 10
as well as for all resonant sampling times, nine different par-
ticle distinguishabilities equally spaced in the interval −1 �
±|〈φ1|φ2〉|2 � 1, and different lattice lengths l = 3, 5, 7, and
10. In our calculation of the first-detection time, the sum in
Eq. (11) is truncated if Sk − S∞ < 10−4 or k > 104 due to
limited computation time. In the vicinity of divergences of the
first-detection time 〈tf〉, this truncation as well as the finite
resolution of the sampling time may result in a peak instead
of a true divergence to infinity [for example, in Fig. 3(p)].
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FIG. 3. Numerical results for the transport of two particles across a linear lattice under stroboscopic measurements. (a)–(i) For a linear
lattice with nearest-neighbor tunneling rate J between l = 3 sites, the first, second, and third columns show the results for the stroboscopic
measurement of at least one (�1), exactly one (=1), and exactly two (=2) particles at the target site l , respectively. In (a)–(c) the moduli
|λ j | of the eigenvalues of the block matrix U‖‖ are shown as a function of the sampling time τJ/h̄. Resonant eigenvalues (which give rise to
resonant sampling times) are marked by closed circles and multiple eigenvalues lying on top of each other cause the solid line to appear darker.
(d)–(f) Survival probability S∞ plotted against the sampling time τJ/h̄. (g)–(i) First-detection time 〈tf〉 as a function of τJ/h̄. Closed circles in
(d)–(i) indicate the values of S∞ and 〈tf〉 for the resonant sampling times and the coloring corresponds to different particle distinguishabilities
±|〈φ1|φ2〉|2 [see Eq. (25)], as indicated by the color bar. (j)–(aj) Results similar to (a)–(i) but for a lattice with (j)–(r) l = 5, (s)–(aa) l = 7, and
(ab)–(aj) l = 10 sites.

Let us start by discussing the linear lattice with l = 3 sites.
In this particular case, the particles’ dynamics are perfectly
periodic for sampling times τJ/h̄, which are integer multiples
of 2π/

√
2 ≈ 4.44, i.e., for τJ/h̄ = z2π/

√
2, with z ∈ N0, we

have U = 1. As a result, we see a periodic behavior for the
moduli |λ j | of the eigenvalues of U‖‖ in Figs. 3(a)–3(c). Here
resonant eigenvalues with associated resonant sampling times
τres are marked by closed circles. As discussed in detail in
Sec. II D, depending on the initial state, the first-detection
time 〈tf〉 can diverge for these resonant sampling times.
This is evident by comparing the resonant sampling times
in Figs. 3(a)–3(c) with the divergences of the first-detection
time in Figs. 3(g)–3(i). Note that for the measurement of

at least one and exactly one particle at the target site, the
divergences of 〈tf〉 in Figs. 3(g) and 3(h) only appear if τJ/h̄
is an integer multiple of 2π/

√
2. These are the sampling

times for which U = 1 due to the periodic dynamics, with
all eigenvalues of U‖‖ satisfying |λ j | = 1 [see Figs. 3(a) and
3(b)]. Accordingly, for these sampling times the initial state
remains unaffected such that nothing can be detected at the
target site, as indicated by the survival probability S∞ = 1
in Figs. 3(d) and 3(e). In the vicinity of these sampling
times, the unitary evolution operator slightly deviates from
the identity. As a result, the divergence of 〈tf〉 at these sam-
pling times can be understood through the quantum Zeno
effect [5].
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For the measurement of exactly two particles at the tar-
get site, there are additional divergences of 〈tf〉 for resonant
sampling times, which are no integer multiples of 2π/

√
2

[see Fig. 3(i)]. These divergences can be understood through
the competition of the limits δτ → 0 and k → ∞ in the
vicinity of resonant eigenvalues λk

j (τres ± δτ ) (see Sec. II D).
First consider the divergences appearing halfway between the
periodic sampling times, at τJ/h̄ = (z + 1/2)2π/

√
2, with

z ∈ N0, i.e., for τJ/h̄ ≈ 2.22, 6.66, . . . . For these sampling
times, the unitary evolution operator mirrors the initial state
of the particles with respect to the second site such that one
particle occupies site 2 and one particle site 3. This state has
no support on the detection subspace for the measurement
of exactly two particles at the target site. Hence, we have
a unit survival probability S∞ = 1 [see Fig. 3(f)] and the
first-detection time at these sampling times is undefined [see
above Eq. (11)]. However, for small nonvanishing δτ around
these sampling times, the state is not perfectly mirrored be-
tween consecutive measurements. In this case, 〈tf〉 is well
defined and must diverge in the limit δτ → 0 for which the
survival probability S∞ becomes unity. On the other hand,
at the divergences which are not exactly halfway between
periodic sampling times, e.g., for τJ/h̄ ≈ 1.11, 1.48, . . . , the
survival probability S∞ in Fig. 3(f) becomes unity only for
perfectly indistinguishable fermions (which is due to Pauli’s
exclusion principle). As a result, except for indistinguishable
fermions, the first-detection time 〈tf〉 takes a finite value at
these resonant sampling times, indicated by the closed circles
in Fig. 3(i).

Next let us consider the effect of particle distinguishability
for the survival probability S∞ and the first-detection time 〈tf〉
shown in Figs. 3(d)–3(i). First, consider the measurement of
exactly two particles. In this case, we see that the survival
probability shown in Fig. 3(f) follows Eq. (23), which for
the two-particle state (25) becomes Sk = SD

k ∓ |〈φ1|φ2〉|2(1 −
SD

k ), with the upper (lower) sign corresponding to bosons
(fermions). Furthermore, as predicted by Eq. (24), Fig. 3(i)
reveals that the first-detection time 〈tf〉 appears independently
of the particles’ indistinguishability. For the measurement of
at least one and exactly one particle at the target site, Figs. 3(d)
and 3(e) show a vanishing survival probability S∞ = 0, inde-
pendently of the particles’ distinguishability, except at integer
multiples of the period 2π/

√
2. However, between the di-

vergences, the first-detection times in Figs. 3(g) and 3(h)
show a clear dependence on the particles’ indistinguishability:
The more symmetric the two-particle state, i.e., the larger
±|〈φ1|φ2〉|2 in (25), the larger the first detection time 〈tf〉.5 As
expected from our considerations below Eq. (21), this effect
appears more pronounced for the measurement of exactly one
particle compared to the measurement of at least one particle.

5Note that an increasing first-detection time for increasing symme-
try of the many-body state is not a generally valid trend. Instead, it
is an artifact of the chosen lattice Hamiltonian. For example, for a
one-dimensional linear lattice with three sites and periodic boundary
conditions, i.e., for a ring, and for the detection of exactly one
particle, we find sampling times for which the first-detection time
increases with decreasing symmetry of the two-body state [37].

Next we increase the lattice length to l = 5 sites. The
numerical results are shown in Figs. 3(j)–3(r). In this case,
there are no perfectly periodic dynamics such that the survival
probability yields S∞ = 1 only if τJ/h̄ = 0 or (due to Pauli’s
principle) if we consider the measurement of exactly two
particles in the case of perfectly indistinguishable fermions
[see Figs. 3(m)–3(o)]. However, as indicated in Figs. 3(j)–
3(l), there is an increasing number of resonant eigenvalues,
which give rise to resonant sampling times for which diver-
gences appear in the first-detection time if the initial state has
nonvanishing support by the corresponding eigenvector (see
Sec. II D). Indeed, Figs. 3(p)–3(r) show multiple divergences
of 〈tf〉 together with the values of the first-detection time
for the exact resonant sampling times. The behavior of the
survival probability S∞ and the first-detection time 〈tf〉 as a
function of the particles’ distinguishability is similar to the
behavior on the lattice with l = 3 sites. If we further increase
the lattice length to l = 7 and 10 sites [see Figs. 3(s)–(aj)], we
again find an increasing number of resonant eigenvalues |λ j |
and an increasing number of divergences of the first-detection
time. Interestingly, the general behavior of |λ j |, S∞, and 〈tf〉
appears similar to the case with lattice length l = 5, up to a
rescaling of the time axis. Note that the purpose of Figs. 3(j)–
(aj) is not that the reader can decipher all details, but to see
that the general structure of the first-detection-time statistics
remains similar for an increasing lattice length.

IV. CONCLUSION

Stroboscopic measurements provide a natural approach to
investigate first-detection times in quantum evolutions, a prob-
lem of longstanding interest [38]. While recent investigations
[6–15] mainly focused on pure single-particle states, we pro-
vided here a description in the density operator formalism,
which allowed us to apply the concept of stroboscopic mea-
surements to the realm of many partially distinguishable and
possibly interacting particles, where particle indistinguisha-
bility enters through the coherences of the corresponding
many-body density operator. Now, on the many-body level,
binary projective-valued measurements which are sensitive to
the particle number are conceivable. We focused here on the
detection of exactly n and at least n particles at a single target
site and showed that the former is more sensitive to genuine
many-body effects such as many-body interference, a result in
accordance with the widespread wisdom that (anti)bunching
is a typical manifestation of genuine many-body indistin-
guishability [35,36,39]. Moreover, for the detection of all
particles at the target, we found that for an increasing sym-
metry of the many-body state, the increasing probability for
perfect bunching balances with the decreasing probability
for no successful detection such that, by normalization, the
first-detection time appears independently of the particles’
distinguishability. Other binary measurements include, e.g.,
the detection of coincidences on two different target sites,
which we investigated numerically (not shown here) but did
not observe strong differences to the numerical data presented
here. Our results constitute only a first step towards a rigor-
ous understanding of the first-detection-time statistics on the
many-body level and leave many open questions for future re-
search: What is the role of particle interactions versus particle
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indistinguishability? How does the first return time [4,11,12]
behave? What is the effect of random sampling times [15]?
What happens in the limit of large particle numbers? Which
kind of binary measurements are experimentally feasible?
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APPENDIX A: PROOF OF EQ. (9)

In order to prove Eq. (9), we use Eqs. (3) and (4) to write
Sk = 1 − ∑k

j=1 Fj . Using Fk from Eq. (2) and ρ = P‖ρP‖, we
have

Fk = Tr(T †
k Tkρ)

= Tr(P‖T †
k TkP‖ρ). (A1)

With Tk = P⊥U (P‖U )k−1 [see above Eq. (2)] and using that
P⊥ and P‖ are projectors, we have

P‖T †
k TkP‖ = P‖(U†P‖)k−1U†P⊥U (P‖U )k−1P‖

= (P‖U†P‖)k−1U†P⊥U (P‖UP‖)k−1. (A2)

Inserting P⊥ = 1 − P‖ yields

P‖T †
k TkP‖

= (P‖U†P‖)k−1U†(1 − P‖)U (P‖UP‖)k−1

= (P‖U†P‖)k−1(P‖UP‖)k−1 − (P‖U†P‖)k (P‖UP‖)k .

(A3)

By plugging this into Eq. (A1) and using ρ = diag(ρ‖‖, 0),
P‖UP‖ = diag(U‖‖, 0), and P‖U†P‖ = diag(U†

‖‖, 0) we find

Fk = Tr{[(U†
‖‖)k−1U k−1

‖‖ − (U†
‖‖)kU k

‖‖]ρ‖‖}
= Tr[(Sk−1 − Sk )ρ‖‖]. (A4)

In the last step we used (U†
‖‖)k = (U k

‖‖)† and the definition of

Sk from Eq. (8). With Sk = 1 − ∑k
j=1 Fj we finally arrive at

Sk = 1 −
k∑

j=1

Tr[(S j−1 − S j )ρ‖‖]

= 1 − Tr[(1 − Sk )ρ‖‖]

= Tr(Skρ‖‖), (A5)

which coincides with Eq. (9).

APPENDIX B: PROOF OF EQ. (10)

Since the survival operator S∞ is Hermitian [see Eq. (8)],
with associated survival probability 0 � S∞ = Tr(S∞ρ‖‖) �
1, it has an eigendecomposition

S∞ =
∑

m

cm|cm〉〈cm|, (B1)

with positive eigenvalues 0 � cm � 1 and {|cm〉}m an or-
thonormal eigenbasis of H‖. As discussed above Eq. (10)
in the main text, the set of normalized, not necessarily or-
thogonal eigenvectors {|λ j〉} j of U‖‖ also forms a basis of
H‖. These eigenvectors can be uniquely written as |λ j〉 =∑

m Dm, j |cm〉, with
∑

m |Dm, j |2 = 1. This defines the invert-
ible basis transformation matrix D with elements Dm, j =
〈cm|λ j〉 = 〈cm|D |c j〉, acting as

|λ j〉 = D |c j〉 ,

|c j〉 = D−1 |λ j〉 . (B2)

Together with Eq. (B1) we then find

〈λ j |S∞ |λ j〉 =
∑

m

cm|〈cm|λ j〉|2

=
∑

m

cm|Dm, j |2. (B3)

On the other hand, using Eq. (8) and U k
‖‖ |λ j〉 = λk

j |λ j〉, we
have

〈λ j |S∞ |λ j〉 = lim
k→∞

|λ j |2k

=
{

1 for |λ j | = 1
0 otherwise (B4)

such that, with Eq. (B3),

∑
m

cm|Dm, j |2 =
{

1 for |λ j | = 1
0 otherwise. (B5)

Now suppose that dim(H‖) = d and that there are n eigenval-
ues satisfying |λ j | = 1, which we collect by the index set J =
{ j : |λ j | = 1}. Consider the set of columns {Dm, j}0�m�d, j∈J :
Since D is invertible, this set of columns has at least n distinct
rows, which contain a nonvanishing element Dm, j 	= 0. Ac-
cordingly, from Eq. (B5),

∑
m |Dm, j |2 = 1, and cm � 1, S∞

must have at least n eigenvalues cm = 1. We collect these
eigenvalues by the index set M = {m : cm = 1}. Now con-
sider the set of columns {Dm, j}0�m�d, j /∈J : Similar to before,
since D is invertible, this set of columns has at least d − n
distinct rows, which contain a nonvanishing element Dm, j 	=
0. However, since |λ j | � 1 such that limk→∞ |λ j |2k = 0, for
j /∈ J , from Eq. (B5), there must be at least d − n eigenvalues
cm = 0. Hence, we find that there are at least n eigenvalues
cm = 1 and at least d − n eigenvalues cm = 0. Given that S∞
has exactly d eigenvalues, we conclude that it has exactly
n eigenvalues cm = 1 and d − n eigenvalues cm = 0. This
implies that {|λ j〉} j∈J and {|cm〉}m∈M are isomorphic, with the
survival operator from Eq. (B1) reading

S∞ =
∑
m∈M

|cm〉〈cm|

= PT, (B6)

where PT is the projector on the trapped subspace HT spanned
by the not necessarily orthogonal eigenvectors {|λ j〉} j∈J asso-
ciated with the eigenvalues of U‖‖ satisfying |λ j | = 1.
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APPENDIX C: PROOF OF EQ. (11)

We prove Eq. (11) by starting from Eq. (5) and using
Eq. (6),

〈tf〉 = lim
k→∞

1

Dk

k∑
j=1

jτFj

= lim
k→∞

τ

Dk

k∑
j=1

j(Dj − Dj−1)

= lim
k→∞

τ

Dk

⎛
⎝ k∑

j=1

jD j −
k−1∑
j′=0

( j′ + 1)Dj′

⎞
⎠. (C1)

With D0 = 0, this expression simplifies to

〈tf〉 = lim
k→∞

τ

Dk

⎛
⎝kDk −

k−1∑
j=1

Dj

⎞
⎠

= lim
k→∞

τ

⎛
⎝k + 1 −

k∑
j=1

Dj

Dk

⎞
⎠

= lim
k→∞

τ

⎡
⎣1 +

k∑
j=1

(
1 − Dj

Dk

)⎤
⎦. (C2)

Finally, using Eq. (4), we arrive at

〈tf〉 = τ

⎛
⎝1 +

∞∑
j=1

S j − S∞
1 − S∞

⎞
⎠, (C3)

which coincides with Eq. (11).

APPENDIX D: EIGENDECOMPOSITION OF Sk

In the following we show that Sk can be written as Sk =
PT + Mk , with PT and Mk having orthogonal support, and
limk→∞ Mk = 0. First, let us collect all eigenstates |λ j〉 of
U‖‖ whose corresponding eigenvalues have unit modulus. To
this end, we define the index set J = { j : |λ j | = 1}. Accord-
ingly, by the definition of Sk from Eq. (8), we have, for all
j ∈ J ,

〈λ j |Sk |λ j〉 = 1. (D1)

Since the survival probability (9) satisfies 〈Sk〉 = Sk � 1, this
shows that for all j ∈ J the ket |λ j〉 must also be an eigen-
state of Sk with corresponding eigenvalue 1, i.e., the set of
states {|λ j〉} j∈J spans a degenerate subspace of Sk to the
eigenvalue 1 (note that, for finite k, the survival operator Sk

might have further eigenvalues equal to 1 whose correspond-
ing eigenvectors have vanishing support on this subspace). As
discussed above Eq. (10) and explicitly proven in Appendix B
[see below Eq. (B6)], this degenerate subspace is the trapped
subspace. Accordingly, the eigendecomposition of Sk can be
written as

Sk = PT +
∑

m

c(k)
m

∣∣c(k)
m

〉〈
c(k)

m

∣∣, (D2)

where PT is the projector on the trapped subspace and c(k)
m � 1

are eigenvalues of Sk with corresponding eigenvector |c(k)
m 〉.

By defining Mk = ∑
m c(k)

m |c(k)
m 〉〈c(k)

m |, we then see that Sk =
PT + Mk , with PT and Mk having orthogonal support and,
from Eq. (10), limk→∞ Mk = 0.

APPENDIX E: PROOF OF EQ. (13)

Let us prove the divergence behavior of the first-detection
time stated in Eq. (13) by considering the expression of 〈tf〉
from Eq. (11),

〈tf〉
τ

= 1 +
∞∑

k=1

Sk − S∞
1 − S∞

. (E1)

Using Sk = Tr(Skρ‖‖) and the eigendecomposition
Sk = PT + ∑

m c(k)
m |c(k)

m 〉〈c(k)
m | of the survival operator [see

Eq. (D2)], where PT = S∞ [see Eq. (10)] projects on the
trapped subspace HT and c(k)

m are eigenvalues of Sk with
corresponding eigenvectors |c(k)

m 〉, the numerator in the series
in Eq. (E1) can be written as

Sk − S∞ = Tr

(∑
m

c(k)
m

∣∣c(k)
m

〉〈
c(k)

m

∣∣ρ‖‖

)
. (E2)

Let us now suppose that there is at least one resonant eigen-
value such that there must be at least one eigenvalue c(k)

m ,
which is well approximated by [1 − γ (δτ )2]k for small δτ

(see the main text for details). Next recall that all other eigen-
values c(k)

m must vanish much faster for large k. Hence, for
large k, we have

Sk − S∞ ≈ [1 − γ (δτ )2]kB̃, (E3)

with B̃ approximately constant for small δτ and nonvanishing
if and only if ρ‖‖ has support on at least one of the eigen-
vectors |c(k)

m 〉 corresponding to the eigenvalues which are well
approximated by [1 − γ (δτ )2]k . Given that the approximation
in (E3) only holds for large k, we can introduce Ã ∈ R (which
is also approximately constant for small δτ ) and rewrite
Eq. (E1) as

〈tf〉
τ

≈ Ã + B̃

1 − S∞

∞∑
k=1

[1 − γ (δτ )2]k . (E4)

Using the geometric series
∑∞

k=0 ak = 1/(1 − a) and merging
all constants finally leads to

〈tf〉
τ

≈ A + B

(δτ )2
, (E5)

where B = B̃/γ (1 − S∞) and A = Ã − B̃/(1 − S∞).

APPENDIX F: RESONANT EIGENVALUES

For degenerate sampling time τ�, the unitary U reads [see
Eq. (14)]

U = e−iE�τ�P� +
∑

Ej 	=�

e−iE jτ� |Ej〉〈Ej |, (F1)

where P� = ∑
Ej∈� |Ej〉〈Ej |. Further recall that P‖ |Ej〉 	=

|Ej〉 for all Ej [see above Eq. (14)]. Now consider any vector
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|λ j〉 ∈ H , which lives on the intersection of H‖ and H�, sat-
isfying P‖ |λ j〉 = P� |λ j〉 = |λ j〉. Using P� |λ j〉 = |λ j〉, we
find U |λ j〉 = e−iE�τ� |λ j〉. Together with P‖ |λ j〉 = |λ j〉, this
yields

diag(U‖‖, 0) |λ j〉 = P‖UP‖ |λ j〉
= P‖U |λ j〉
= e−iE�τ�P‖ |λ j〉
= e−iE�τ� |λ j〉 . (F2)

Accordingly, |λ j〉 ∈ H is an eigenvector of diag(U‖‖, 0)
with eigenvalue e−iE�τ� . Given that P⊥ |λ j〉 = 0, we can
drop the subspace H⊥ such that |λ j〉 ∈ H‖ becomes an
eigenvector of U‖‖ with eigenvalue λ j = e−iE�τ� . Given that
limδτ→0 |λ j (τ� ± δτ )| = 1 and |λ j (τ� ± δτ )| < 1 for small
but nonvanishing δτ (the latter is due to the fact that the
degenerate subspace only forms for the sampling time τ�),
we can identify λ j as a resonant eigenvalue, with resonant
sampling time τres = τ�. From this we see that a degenerate
sampling time can cause a resonant sampling time.

APPENDIX G: PROOF OF EQS. (19) AND (20)

In the following, we prove the expression for the projector
P=n

⊥ and P�n
⊥ from Eqs. (19) and (20), respectively. We start

with P=n
⊥ . To this end, let us first consider the case n = 1, i.e.,

the detection of exactly one particle at the target site l . In this
case, we have

P=1
⊥ =

N∑
α=1

B⊗α−1
2 ⊗ B1 ⊗ B⊗N−α

2 , (G1)

where B1 = |l〉〈l| and B2 = 1 − |l〉〈l|. Note that P=1
⊥ is sym-

metric under particle exchange, as required for an operator
acting on many identical particles. Using the multiset of N
indices L(1) = {1}1 ∪ {2}N−1 = {1, 2, . . . , 2}, Eq. (G1) can be
rewritten as

P=1
⊥ =

N∑
σ∈�(L(1) )

N⊗
α=1

BL(1)
σ (α)

, (G2)

where L(1)
j is the jth element of L(1) and �(L(1) ) =

{(12), (13), . . . , (1N )} ⊆ SN is the right transversal of S1 ⊗
SN−1 in SN containing all permutations σ , which lead to
distinctly ordered multisets, with permutations σ provided in
cycle notation. For a general number n, the projector P=n

⊥
can be written similarly to in (G2). In this case, the multiset
generalizes to L(n) = {1}n ∪ {2}N−n, with �(L(n) ) the right
transversal of the Young subgroup Sn ⊗ SN−n in SN , con-
taining

(N
n

)
permutations σ , which lead to distinct multisets.

Accordingly, we have

P=n
⊥ =

N∑
σ∈�(L(n) )

N⊗
α=1

BL(n)
σ (α)

. (G3)

Next we multiply out all operators B2 = 1 − |l〉〈l|. To this
end, let us define A1 = |l〉〈l|, A−1 = −|l〉〈l| = −A1, and
A2 = 1 such that B1 = A1 and B2 = A2 + A−1. Further-
more, let us introduce the multiset of N indices L(n,q) =

{−1}q−n ∪ {1}n ∪ {2}N−q. After a moment of thought, we see
that

P=n
⊥ =

N∑
q=n

N∑
σ∈�(L(n,q) )

N⊗
α=1

AL(n,q)
σ (α)

. (G4)

Since A1 and A−1 only differ by their sign, the tensor product
can be rewritten in terms of the multiset L(q),

⊗N
α=1 AL(n,q)

σ (α)
=

(−1)q−n
⊗N

α=1 AL(q)
σ (α)

. If we also want to convert the sum

over all σ ∈ �(L(n,q) ) into a sum over all σ ∈ �(L(q) ),
we additionally have to introduce the normalization factor
|L(n,q)|/|L(q)|, with |L(n,q)| = N!/(N − q)!(q − n)!n! the car-
dinality of L(n,q) and |L(q)| = (N

q

)
the cardinality of L(q).

Altogether, this yields

P=n
⊥ =

N∑
q=n

(−1)q−n N!

(N − q)!(q − n)!n!
(N

q

)

×
N∑

σ∈�(L(q) )

N⊗
α=1

AL(q)
σ (α)

=
N∑

q=n

(−1)q−n

(
q

n

) N∑
σ∈�(L(q) )

N⊗
α=1

AL(q)
σ (α)

. (G5)

Using the definition of the genuine q-particle observable Pq

from Eq. (21), we arrive at

P=n
⊥ =

N∑
q=n

(−1)q−n

(
q

n

)
Pq, (G6)

which coincides with the sought-after relation from Eq. (19).
Next we prove Eq. (20). Using

P�n
⊥ =

N∑
n′=n

P=n′
⊥ (G7)

and inserting P=n′
⊥ from Eq. (G6) yields

P�n
⊥ =

N∑
n′=n

N∑
q=n′

(−1)q−n′
(

q

n′

)
Pq. (G8)

We now use that
(q

n′
) = 0 for q < n′ such that the second sum

can be started at q = n instead of q = n′,

P�n
⊥ =

N∑
n′=n

N∑
q=n

(−1)q−n′
(

q

n′

)
Pq. (G9)

Given that the two sums are now independent of each other,
we can exchange their order and then, similarly to before,
lower the upper limit of the second sum from n′ = N to
n′ = q,

P�n
⊥ =

N∑
q=n

N∑
n′=n

(−1)q−n′
(

q

n′

)
Pq

=
N∑

q=n

q∑
n′=n

(−1)q−n′
(

q

n′

)
Pq. (G10)
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Finally, performing the sum over n′ results in the expression
for P�n

⊥ from Eq. (20),

P�n
⊥ =

N∑
q=n

(−1)q−n n

q

(
q

n

)
Pq. (G11)

APPENDIX H: PROOF OF EQ. (22)

Let us prove Eq. (22) by starting with Fk = Tr(T †
k Tkρ)

from Eq. (2), where Tk = P⊥U (P‖U )k−1. First, we write Tk =
P⊥Jk , with Jk = U (P‖U )k−1, such that

Fk = Tr(J †
k P⊥Jkρ). (H1)

Given that we consider the detection of exactly N particles
on the target site l , the corresponding projector (19) onto
the detection subspace reads P=N

⊥ = |L〉〈L|, with |L〉 = |l〉 ⊗
· · · ⊗ |l〉. Using this in Eq. (H1), we get

Fk = 〈L|JkρJ †
k |L〉 . (H2)

By plugging in ρ from Eq. (15), this yields

Fk =
∑

π,π ′∈SN

ρπ,π ′ 〈L|Jk | �Eπ 〉 〈 �Eπ ′ |J †
k |L〉 . (H3)

Next we use that for all π ∈ SN we have |L〉 = �π |L〉
and Jk�π = �πJk . The latter is due to Jk being
an operator acting on many identical particles. Hence,
we have

〈L|Jk | �Eπ 〉 = 〈L|Jk�π | �E〉
= 〈L|Jk | �E〉 (H4)

such that Eq. (H3) becomes

Fk =
∑

π,π ′∈SN

ρπ,π ′ 〈L|Jk | �E〉 〈 �E |J †
k |L〉

= | 〈L|Jk | �E〉 |2
∑

π,π ′∈SN

ρπ,π ′ . (H5)

Using that the density matrix elements corresponding to fully
distinguishable particles satisfy ρπ,π ′ = δπ,π ′/N!, Eq. (H5)
leads us to F D

k = | 〈L|Jk | �E〉 |2. Hence, together with Eq. (18),
we arrive at

Fk = N! 〈�S〉 F D
k , (H6)

which coincides with Eq. (22).
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